CompileDES  3.09
Executable-Code Generation from Synchronised libFAUDES Automata

Detailed Description

The CodePrimitives class extends the common base CodeGenerator by the intended run-time behaviour constructed in terms of abstract primitives of target code. By "abstract" we mean the primitives are not associated with actual target code; this is left for derived classes. Expressing the semantics of synchronised execution of automata and event configuration in terms of primitives enables consistent run-time behaviour of code generated by derived classes; see Execution Semantics for a dicussion of the intended run-time behaviour.

Referring to compilers in general, CodePrimitives is on the same layer of abstraction as the parse tree commonly generated from source code. However, since our case is much more specific, we can drastically simplify the approach. In CodePrimitives, the to-be-generated code is implicitly represented by a linear sequence of primitives, each technically realised by a virtual member method.

Example to iterate over integers ranging from 1 to 10

 DeclareInteger("i",1);
 LoopBegin();
 [... do whatever with integer i ...]
 IntegerInc("i");
 LoopBreak(IntegerIsEq("i",11));
 LoopEnd();

Commenting on the example, we refer to a notion of an integer typed variable, including its declaration/definition, incrementing and comparing with a constant, as well as a notion of a control structure for a conditional loop. For high-level languages such as C, one may safely expect each primitive to be expressible one-to-one by a line of code.

 int i=1;
 while(true) {
   [... do whatever with integer i ...]
   ++i;
   if(i==11) break;
 }

For low-level languages such as machine-code assembler one will need to keep track of some aspects of the corresponding parse tree. If need be, the parse tree can be constructed by a derived class.

Tailored for the specific use case of synchronised automata behaviour CodePrimitives() uses primitives in the above style to assemble code snippets that make up the core of a cyclic function that implements the desired runtime behaviour on the target device. Outline:

 Declarations();     // current state, line buffers for edge detection etc, event sets
 SenseInputs();      // add to pending events
 SenseTimerElapse(); // add to pending events
 UpdateEnabled();    // figure enabled events
 SelectEvent();      // select from pending&enabled with highest priority
 ExecuteEvent();     // update state w.r.t. selected event
 OperateOutputs();   // operate outputs w.r.t. selected output

Referring to the above outline there are a number of options to adapt the generated code to capabilities of the intended target and/or to evaluate trade-offs in performance and memory footprint. Code-options are set in the configuration file and read by CodePrimitives using the virtual method hook DoReadTargetConfiguration(). The following options are supported.

IntegerType/IntegerSize. Target type and bitsize of the designated signed integer datatype. The type is typically gigen as target language literal. Integers are used as event and state indices, so a 16bit type should serve most purposes. When not using compiled transition relations (see below ArrayForTransitions), an 8bit type may be sufficient. Example:

  <IntegerType val="int16_t"/>
  <IntegerSize val="16"/>

WordType/WordSize. Target type and bitsize of the designated unsigned word datatype. The type is typically gigen as target language literal. Words are used to organise bit-arrays. Best performance is expected for natively supported types, e.g. 8bit on AVR8 microcontrollers, 16bit or 32nit for a typical PLC. Some of the below code options assume the size to be a power of 2 and a careful code review is required for other word sizes. Example:

  <WordType val="unsigned char"/>
  <WordSize val="8"/>

ArrayForTransitions. The fallback behaviour is to represent transition relations by a switch/case construct. Depending on the specific target, one may expect reduced usage of variable memory at the cost of extensive use of program memory. Alternatively, transition relations can be precompiled and represented as arrays of integers to be interpreted at runtime; see CodeGenerator() for the data format. Example opting for the alternative:

  <ArrayForTransitions val="true"/>

MaintainStateIndices. By default, the generated code will refer to strategically re-indexd states. Alternatively, one may specify that the provided states indices are maintained. This will introduce a relevant memory-overhead when using the array representation of transition relations. Example opting for the alternative:

  <MaintainStateIndices val="true"/>

ArrayForBitarray. EventSets are represented arrays of bits. The default is to use a sufficient number of individual words and to keep track which events are represented by which word. If the target supports arrays of words these can be used as an alternative to individual words. A performance benefit is expected from avoiding a switch/case construct for word selection. Example opting for the alternative:

  <ArrayForBitarray val="true"/>

ArrayForBitmasks. When the generated code shall access a particular bit within an array of bits or within a word, the corresponding bit-mask (and word-address) can be computed at runtime by bit shift operations. This is the default. Alternatively, the bit-mask (and word-address) can be computed offline and provided to the runtime environment by a look-up table. While performance trade-offs are expected to be minimal, this addresses situation where the target does not provide bit shift operations. Example opting for the alternative:

  <ArrayForBitmasks val="true"/>

BitAddressArithmetic. When not using ArrayForBitmask falling back to runtime computation is the default. Alternatively, avoiding look-up tables and bit shifting altogether, bit access can be resolved by extensive switch/case construct. This option is chosen by setting the BitAddressArithmetic attribute to false. This is not recommended for practical use. Example to opt for runtime computations:

  <BitAddressArithmetic val="true"/>

BisectionForBitfind. Technically, event selection amounts to finding the left-most bit set in an bitarray. This can be done by testing all individual bits until a set bit is found. Alternatively, one can organize the search by an bisection approach, gaining 2x or 4x in performance for 8bit words and 16bit words, respectively, provided that the word data type is natively supported by the target platform. Example to use bisection:

  <BisectionForBitfind val="true"/>

ArrayForState. Use an array of integers to represent the overall state (aka parallel-state). This option is required for the optional callback hook on state updates. In the current implementation, the generated code will only access the state array with addresses known at compiletime. Thus, there should be no performamce penalty. Example opting for arrays:

  <ArrayForState val="true"/>

LoopPendingInputs. There is a relevant history on whether and when multiple transitions can be taken within one scan-cycle. The conservative answer from the semantic perspective is "never", however, performance considerations push for "under certain circumstances we should". Using the option LoopPendingInputs the event-execution loops until no more input event is scheduled. Since there can be only finitely many pending input events and since input events are preferred over other events, this option is considered safe. Example:

  <LoopPendingInputs val="true"/>

LoopEnabledOutputs. With this option, event-execution loops until an event is scheduled with priority lower than the lowest output event priority. To prevent high-level activity-loops, this option requires all internal events to be of lower priority than any non-internal event. In order to ensure that the loop does not get stuck one can conservatively test that neither automaton has a strictly connected component with output events only. This option targets "react within one scan cycle" performance requirements — use with care.

  <LoopEnabledOutputs val="true"/>

StrictEventSynchronisation. It is considered an error if no event can be scheduled while pending input events are available. However, when this error is caused by lazy modelling it can be resolved by discarding pending events. Since this is the default behaviour of simfaudes, some of the older FGDES lab experiments require this option to be set. For new developments, it is recommended to set this option to false.

  <StrictEventSynchronisation val="false"/>

EventNameLookup, StateNameLookup. Events and states are internaly represented by integers in a particular layout depending on various code generation options. For diagnostic puposes, a lookup table can be generated to recover the original event names and state names, respectively. For a state name lookup, the current implementation implies to maintain the provided state indices. Further implementation details are target dependent. Example:

  <EventNameLookup val="true"/>
  <StateNameLookup val="true"/>

EventExecutionHook, StateUpdateHook. The generated code can invoke hook functions whenever an event is executed and whenever a state changes. This mechanism is meant for diagnosis purposes only, it should not be used to implement relevant dynamics like state based execution code. Implementation details are target dependent. Example:

  <EventExecutionHook val="report_event"/>
  <StateUpdateHook val="report_state"/>

Definition at line 244 of file cgp_codeprimitives.h.

#include <cgp_codeprimitives.h>

Inheritance diagram for CodePrimitives:
Inheritance graph

Basic Class Maintenance

As usual, we have constructor and destructor. Note the necessity to reimplement the virtual member Clear() since we introduce additional configuration data.

 CodePrimitives (void)
 Constructor.
virtual ~CodePrimitives (void)
 Explicit destructor.
virtual void Clear (void)
 Clear all data.

Code Snippets

Code modules to assemble standard semantics as known from simfaudes. The individual blocks interact via common global variables, i.e., relevant re-implementations require the examination of all modules from scratch.

virtual void LiteralPrepend (void)
 Cosmetic: prepend literally from configuration data.
virtual void DeclareStatus (void)
 Declare "status".
virtual void DeclareReset (void)
 Declare "reset".
virtual void DeclareRecentEvent (void)
 Declare "recent_event".
virtual void DeclareParallelState (void)
 Declare "parallel_state".
virtual void DeclarePendingEvents (void)
 Declare "pending_events" and "enabled_events".
virtual void DeclareLoopState (void)
 Declare loop state, i.e. line levels, loop flag.
virtual void DeclareTimers (void)
 Use target implementation to declare timers, typically "timer_run_*" and "timer_cnt_*".
virtual void DeclareAux (void)
 Declare variables local to the provided snippets, e.g. helpers for bit-mask computation.
virtual void DeclareLargeCarray (void)
 Declare compiled transition relations.
virtual void DeclareSmallCarray (void)
 Declare bit-mask loop-ups.
virtual void DeclareEventNameLookup (void)
 Declare symbolic name lookup tables.
virtual void DeclareStateNameLookup (void)
 Declare symbolic name lookup tables.
virtual void ResetState (void)
 Reset state.
virtual void ResetReturn (void)
 Reset bail out.
virtual void SenseInputs (void)
 Sense input events and add to "pending_events".
virtual void SenseTimerElapse (void)
 Sense timer elapse vents and add to "pending_events".
virtual void BeginExecutionLoop (void)
 Execution Loop, begin.
virtual void UpdateEnabled (void)
 Update "enabled_events" from "parallel_state" if "exec_event" was set.
virtual void ScheduleEvent (void)
 Select event to execute from "pending_and_enabled_events" or "enabled_events".
virtual void BreakExecutionLoop (void)
 Execution Loop, break.
virtual void ExecuteEvent (void)
 Take transition and figure new state.
virtual void OperateTimers (void)
 Start/stop/reset timers w.r.t. "exec_event".
virtual void OperateOutputs (void)
 Operate output lines w.r.t. "exec_event".
virtual void EndExecutionLoop (void)
 Loop end.
virtual void LiteralAppend (void)
 Cosmetic: append literally from configuration.
virtual void InsertExecHooks (void)
 Helper to insert target code for execution hooks.
virtual void ExecuteEventBySwitching (void)
 Alternative implementation of ExecuteEvent()
virtual void ExecuteEventByInterpreter (void)
 Alternative implementation of ExecuteEventBy()
virtual void UpdateEnabledBySwitching (void)
 Alternative implementations UpdateEnabled()
virtual void UpdateEnabledByInterpreter (void)
 Alternative implementations UpdateEnabled()

Abstract Addresses and Expressions

We use strings as abstract addresses that correspond to symbolic addresses on the target platform. Similarly, we use strings as abstract expressions that evaluate to a value on the target platform. To differentiate the two types, we formally derive AA (for address) and AX (for expression) from std::string.

TargetAddress() resolves the abstract address argument to an actual address on the target platform. In order to invoke primitives that expect an expression type argument with an address, TargetExpression() converts an abstract address to an expression that represents the associated value. There is also a convenience method TargetSymbol() to mangle any string to a valid target symbol.

Note: a more advanced approach could use different classes to distinguish the target type of expressions and one would perhaps maintain the parse tree of an expression.

virtual std::string TargetAddress (const AA &address)=0
 Convert abstract address to target symbolic address.
virtual AX TargetExpression (const AA &address)=0
 Convert abstract address to target expression of the respective value.
virtual std::string TargetSymbol (const std::string &str)
 Mangle string to valid target symbol.

Model of Integer Type

The elementary integer type is meant to represent target event/state indices. Thus, it typically should be 16bit, and, to this end, signed.

We discuss some conventions used for this and the subsequent data types.

  • declaration is provided with and without explicit initialisation;
  • "address" is an abstract address, e.g, "current_state" and will be transformed by TargetAddress() just before writing to the output file, e.g. "FGDES_current_state" for a high-level target with prefix to emulate a namespace or, in contrast, "0x0024" on a low-level target that maintains a symbol table and organises memory allocation.
  • "val" is a constant value and will be transformed by IntegerConstant() to the appropriate textual representation on the target, e.g., "BYTE#16#40" for a bit-mask in IEC 61131-3 syntax.
  • "expression" is an expression of appropriate type on the target; for targets that support the concept of an expression this can be a literal representation, e.g., "a+3"; low-level targets record a suitably formatted representation to be resolved when actually used, e.g., in an assignment.
  • return values are target expressions.

Specifically for the integer type, declaration, assignment and increment is mandatory to reimplement in derived classes, and, hence, declared pure virtual. Other integer primitives by default trigger a run-time error when needed by the particular code options. E.g., when generating code that uses IntegerIsGreater(), the implementation of CodePrimitives() will trigger an error if not reimplemented by the respective derived class. For arithmetics (reading quotient and remainder), there is a query-function to allow the derived class to seek for alternatives if the respective functions are not implemented.

virtual void IntegerDeclare (const AA &address)=0
virtual void IntegerDeclare (const AA &address, int val)=0
virtual void IntegerAssign (const AA &address, int val)=0
virtual void IntegerAssign (const AA &address, const AX &expression)=0
virtual void IntegerIncrement (const AA &address, int val=1)=0
virtual void IntegerDecrement (const AA &address, int val=1)
virtual AX IntegerQuotient (const AX &expression, int val)
virtual AX IntegerRemainder (const AX &expression, int val)
virtual AX IntegerBitmask (const AX &expression)
virtual AX IntegerIsEq (const AA &address, int val)
virtual AX IntegerIsEq (const AA &address, const AX &expression)
virtual AX IntegerIsNotEq (const AA &address, int val)
virtual AX IntegerIsNotEq (const AA &address, const AX &expression)
virtual AX IntegerIsGreater (const AA &address, int val)
virtual AX IntegerIsLess (const AA &address, int val)
virtual AX IntegerConstant (int val)=0
virtual bool HasIntmaths (void)

Model of Word Type.

Elementary type to represent a word-of-bits.

This may be anything from 8bit to 64bit, with different tradeoffs in memory footprint and performance. This data type is exclusively used as a default basis for more general bit-arrays with uniform but arbitrary size. You may opt to reimplement Bitarray directly. In this case, Word is not required.

virtual void WordDeclare (const AA &address)
virtual void WordDeclare (const AA &address, word_t val)
virtual void WordAssign (const AA &address, word_t val)
virtual void WordAssign (const AA &address, const AX &expression)
virtual void WordOr (const AA &address, word_t val)
virtual void WordOr (const AA &address, const AX &expression)
virtual void WordOr (const AA &address, const AA &op1, const AA &op2)
virtual void WordOr (const AA &address, const AA &op1, word_t op2)
virtual void WordAnd (const AA &address, word_t val)
virtual void WordAnd (const AA &address, const AX &expression)
virtual void WordAnd (const AA &address, const AA &op1, const AA &op2)
virtual void WordAnd (const AA &address, const AA &op1, word_t op2)
virtual void WordNand (const AA &address, const AX &expresson)
virtual AX WordIsBitSet (const AA &address, int idx)
virtual AX WordIsBitClr (const AA &address, int idx)
virtual AX WordIsMaskSet (const AA &address, word_t mask)
virtual AX WordIsEq (const AA &address, word_t val)
virtual AX WordIsNotEq (const AA &address, word_t val)
virtual AX WordConstant (word_t val)

Model of Boolean Type.

Elementary type to represent single bits.

The base implementation defaults to Integer and may be overloaded for a more compact representation. It is currently used to manage conditionals and edge detection on line level. Performance of bit access is regarded more relevant than memory footprint.

virtual void BooleanDeclare (const AA &address)
virtual void BooleanDeclare (const AA &address, int val)
virtual void BooleanAssign (const AA &address, int val)
virtual void BooleanAssign (const AA &address, const AX &expression)
virtual AX BooleanIsEq (const AA &op1, const AA &op2)
virtual AX BooleanIsNotEq (const AA &op1, const AA &op2)

Model of Constant Array of Integers

Type to represent a constant vector of integers.

This is used to represent precompiled transition relations; i.e., implementation is optional. When implemented, the target type must be identical to the type used for the implementation of Integer.

virtual void CintarrayDeclare (const AA &address, const std::vector< int > &val)
virtual AA CintarrayAccess (const AA &address, int index)
virtual AA CintarrayAccess (const AA &address, const AA &indexaddr)
virtual bool HasCintarray (void)

Model of Constant Array of Words

Representation of a constant vector of words.

This is used to represent precompiled bit-masks; i.e., implementation is optional. When implemented, the target type must be identical to the type used for the implementation of Word.

virtual void CwordarrayDeclare (const AA &address, const std::vector< word_t > &val)
virtual AA CwordarrayAccess (const AA &address, int index)
virtual AA CwordarrayAccess (const AA &address, const AA &indexaddr)
virtual bool HasCwordarray (void)

Model of Constant Array of Strings

Type to represent a constant vector of strings.

This is used to represent symbol tables for e.g. event names. Implementation is optional.

virtual AX StringConstant (const std::string &val)
virtual void CstrarrayDeclare (const AA &address, const std::vector< std::string > &val)
virtual AA CstrarrayAccess (const AA &address, int index)
virtual AA CstrarrayAccess (const AA &address, const AA &indexaddr)
virtual bool HasCstrarray (void)

Model of Array of Integers

Type to represent a variable vector of integers.

This is optionally used to represent the parallel state. When implemented, the target type must be identical to the type used for the implementation of Integer.

virtual void IntarrayDeclare (const AA &address, int len)
 default int-array: not supported
virtual void IntarrayDeclare (const AA &address, const std::vector< int > &val)
 default int-array: not supported
virtual AA IntarrayAccess (const AA &address, int index)
 default int-array: not supported
virtual AA IntarrayAccess (const AA &address, const AA &indexaddr)
 default int-array: not supported
virtual bool HasIntarray (void)
 default int-array: not supported

Model of Array of Words

Type to represent a variable vector of words.

This is optionally used to represent bit-arrays, i.e., implementation is not mandatory. When implemented, the target type must be identical to the type used for the implementation of Word.

virtual void WordarrayDeclare (const AA &address, int len)
virtual void WordarrayDeclare (const AA &address, const std::vector< word_t > &val)
virtual AA WordarrayAccess (const AA &address, int index)
virtual AA WordarrayAccess (const AA &address, const AA &indexaddr)
virtual bool HasWordarray (void)

Model of Array of Bits

Representation of arrays-of-bits.

The size can be arbitrary but must be known at compile time. This data type is used to model event sets and is used for the default implementation of EventSet. If EventSet is reimplemented from scratch, neither arrays-of-bits nor arrays-of-words are not required.

For indexed bit access via integer expressions, the size must not exceed the number of events. For the default implementation, bit-arrays are represented by an appropriate number of words-of-bits. An alternative implementations uses target arrays-of-words. The main purpose of the data type is the representation of event sets. Here, indexed bit access uses the parameter offset to account for target event indices to begin with 1 as opposed to native bit-addresses that begin with 0.

Without the options ArrayForBitmasks or BitaddressArithmatic, indexed access performs poorly. With the option ArrayForBitarrays indexed access performs best. These considerations apply to the indexed version of BitarraySetBit() and BitarrayClrBit() as well as BitarrayFindFirst(). Check the implementation for details.

virtual void BitarrayDeclare (const AA &address, int blen)
virtual void BitarrayDeclare (const AA &address, const std::vector< bool > &val)
virtual void BitarrayAssign (const AA &address, const std::vector< bool > &val)
virtual void BitarrayAssign (const AA &address, const AA &otherarray)
virtual void BitarrayClear (const AA &address)
virtual void BitarrayFull (const AA &address)
virtual void BitarraySetBit (const AA &address, int bitaddr)
virtual void BitarraySetBit (const AA &address, const AA &indexaddr, int offset=0, const std::vector< bool > &hint=std::vector< bool >())
virtual void BitarrayClrBit (const AA &address, int bitaddr)
virtual void BitarrayClrBit (const AA &address, const AA &indexaddr, int offset=0, const std::vector< bool > &hint=std::vector< bool >())
virtual void BitarrayIsBitSet (const AA &address, const AA &indexaddr, const AA &result, int offset=0, const std::vector< bool > &hint=std::vector< bool >())
virtual void BitarrayOr (const AA &address, const std::vector< bool > &val)
virtual void BitarrayOr (const AA &address, const AA &op1, const std::vector< bool > &op2)
virtual void BitarrayOrAllWords (const AA &address, const AA &result)
virtual void BitarrayAnd (const AA &address, const std::vector< bool > &val)
virtual void BitarrayAnd (const AA &address, const AA &otherarray)
virtual void BitarrayAnd (const AA &address, const AA &op1, const AA &op2)
virtual void BitarrayAnd (const AA &address, const AA &op1, const std::vector< bool > &op2)
virtual void BitarrayFindFirst (const AA &address, const AA &result, int offset=0)

Model of Eventsets

Representation of EventSets. This is a wrapper for Bitarray, however, derived classes may reimplement it altogether. This may be worthwhile on C++ targets with STL available. In the default implementation, the bit-addresses assigned by the CodeGenerator are used, i.e., ordered by execution priority.

virtual void EventSetDeclare (const AA &address)
virtual void EventSetDeclare (const AA &address, const EventSet &evset)
virtual void EventSetAssign (const AA &address, const EventSet &evset)
virtual void EventSetInsert (const AA &address, const EventSet &evset)
virtual void EventSetInsert (const AA &address, Idx ev)
virtual void EventSetInsert (const AA &address, const AA &evaddr)
virtual void EventSetInsert (const AA &address, const AA &evaddr, const EventSet &hint)
virtual void EventSetErase (const AA &address, const EventSet &evset)
virtual void EventSetErase (const AA &address, Idx ev)
virtual void EventSetErase (const AA &address, const AA &evaddr)
virtual void EventSetErase (const AA &address, const AA &evaddr, const EventSet &hint)
virtual void EventSetExists (const AA &address, const AA &evaddr, const AA &result, const EventSet &hint)
virtual void EventSetRestrict (const AA &address, const AA &otherset)
virtual void EventSetUnion (const AA &address, const AA &op1, const EventSet &op2)
virtual void EventSetIntersection (const AA &address, const AA &op1, const EventSet &op2)
virtual void EventSetClear (const AA &address)
virtual void EventSetFull (const AA &address)
virtual void EventSetIsNotEmpty (const AA &address, const AA &result)
virtual void EventSetFindHighestPriority (const AA &address, const AA &result)

Controls

The common if/then/else construct is mandatory, while switch/case and loop depend on code options. Without array-of-words, switch/case is required. With array-of-words or precompiled vectors for transition relations, loops are required. Loops are also required for loop-all-pending-events.

The current code generators do not collapse switch-cases, this may change in a later version.

virtual void IfTrue (const AX &expression)
virtual void IfFalse (const AX &expression)
virtual void IfWord (const AX &expression)
virtual void IfElseIfTrue (const AX &expression)
virtual void IfElse (void)
virtual void IfEnd (void)
virtual void SwitchBegin (const AA &address)
virtual void SwitchCase (const AA &address, int val)
virtual void SwitchCases (const AA &address, int from, int to)
virtual void SwitchCases (const AA &address, const std::set< int > &vals)
virtual void SwitchBreak (void)
virtual void SwitchEnd (void)
virtual bool HasMultiCase (void)
virtual void LoopBegin (void)
virtual void LoopBreak (const AX &expression)
virtual void LoopEnd (void)
virtual void FunctionReturn (void)

Primitives for Triggers andAactions

The default implementation passes through as in value access and assignment, respectively.

virtual void RunActionSet (const std::string &address)
virtual void RunActionClr (const std::string &address)
virtual void RunActionExe (const AX &expression)
virtual AX ReadInputLine (const std::string &address)
virtual AX InputExpression (const std::string &expression)

Primitives to Implement Timers

virtual void TimerDeclare (const AA &address, const std::string &litval)
virtual void TimerStart (const AA &address)
virtual void TimerStop (const AA &address)
virtual void TimerReset (const AA &address, const std::string &litval)
virtual AX TimerIsElapsed (const AA &address)

Misc

virtual int StateTargetIdx (size_t git, Idx idx)
 Overload base class to use the vector address only if the respective code option is active)
virtual Idx StateFaudesIdx (size_t git, int idx)
 Overload base class to use the vector address only if the respective code option is active)
virtual void Comment (const std::string &text)
 Target comments (see EmbeddedcCodeGenerator for consistent reimplementation pattern)
virtual void VariableDeclare (const std::string &laddr, const std::string &ltype)
 declaration template (optional to facilitate declaration constructs)
virtual void VariableDeclare (const std::string &laddr, const std::string &ltype, const std::string &lval)
 Overload base class to use the vector address only if the respective code option is active)

Classes

class  AA
 Abstract address; see also Absstract_Addresses. More...
class  AX
 Abstract expression; see also Absstract_Addresses. More...
struct  bitarray_rec
 Record declared bit-arrays. More...

Protected Member Functions

virtual void DoCompile (void)
 virtual hook to extend compiled data
virtual void DoGenerate (void)
 cut-and-paste template for code snippet assembly
virtual void DoGenerateDeclarations (void)
 cut-and-paste template for code snippet assembly
virtual void DoGenerateResetCode (void)
 cut-and-paste template for code snippet assembly
virtual void DoGenerateCyclicCode (void)
 cut-and-paste template for code snippet assembly
virtual void DoReadTargetConfiguration (TokenReader &rTr)
 re-implement token i/o for extra configuration
virtual void DoWriteTargetConfiguration (TokenWriter &rTw) const
 re-implement token i/o for extra configuration
- Protected Member Functions inherited from CodeGenerator
virtual void DoRead (TokenReader &rTr, const std::string &rLabel="", const Type *pContext=0)
 Read the configuration from TokenReader, see faudes Type for public wrappers.
virtual void DoWrite (TokenWriter &rTw, const std::string &rLabel="", const Type *pContext=0) const
 Writes the configuration to TokenWriter, see faudes Type for public wrappers.

Protected Attributes

std::string mWordType
 target data type for word
std::string mIntegerType
 target data type for integer
std::string mPrefix
 universal prefix (pseudo name space)
bool mArrayForTransitions
 code option: use const array to represent transitions
bool mMaintainStateIndices
 code option: use state indices as provided
bool mBitAddressArithmetic
 code option: compute bit and word address on target
bool mArrayForBitmasks
 code option: use const array to represent bit-masks
bool mArrayForBitarray
 code option: use const array to represent bit-masks
bool mBisectionForBitfind
 code option: use bisection to fing lowest set bit
bool mArrayForState
 code option: use int arrays to represent that overall state
bool mEventsetsForPerformance
 code option: eventsets for performance
bool mLoopPendingInputs
 code option: loop until all inputs are resolved
bool mLoopEnabledOutputs
 code option: loop until all enabled outputs are executed
bool mStrictEventSynchronisation
 code option: strict event synchronisation
bool mEventNameLookup
 code option: event name lookup
bool mStateNameLookup
 code option: state name lookup
std::vector< bool > mHasStateNames
 code option: record per generator whether there is a lookup table
std::string mEventExecutionHook
 code option: event exec hook
std::string mStateUpdateHook
 code option: state change hook
std::string mLiteralPrepend
 extra code to prepend
std::string mLiteralAppend
 extra code to prepend
std::map< std::string,
bitarray_rec
mBitarrays
 Record of all declared bit-arrays.
- Protected Attributes inherited from CodeGenerator
std::string mName
 faudes object name (aka project name)
std::vector< TimedGenerator > mGenerators
 list of executors
std::vector< std::string > mGeneratorNames
 list of filenames when generator are read from file
cgEventSet mAlphabet
 event configuration by attributes
int mWordSize
 compressed boolean capacity of target type word
int mIntegerSize
 compressed boolean capacity of target type integer
std::map< Idx, int > mEventBitAddress
 mapping from faudes event idx to bit address (descending priority, range 0 .
std::map< int, Idx > mEventFaudesIdx
 mapping from bit address to faudes event idx
int mLastInputEvent
 highest bit-address with input (or timer) event (-1 for none)
int mLastOutputEvent
 highest bit-address with output event (-1 for none)
std::vector< std::map< Idx, int > > mStateVectorAddress
 mapping from faudes state idx to vector index
std::vector< std::map< int, Idx > > mStateFaudesIndex
 mapping from vector state idx to faudes index
std::vector< std::vector< int > > mTransitionVector
 compiled transition-sets, represented as vectors of integers with 0 as separator
std::vector< std::vector< int > > mStateVector
 compiled state-sets, map faudes index to vector address
EventSet mUsedEvents
 configured events that are referred to by some generator
EventSet mOutputEvents
 used events that are configured as outputs
EventSet mInputEvents
 used events that are configured as inputs (incl timer)
EventSet mInternalEvents
 used events that are configured as internal events (excl.
std::map< std::string,
LineAddress
mLines
 input event generation
std::map< std::string,
FlagExpression
mFlags
 input event generation
std::map< std::string,
TimerConfiguration
mTimers
 timer definitions
std::map< std::string,
ActionAddress
mActionAddresses
 action addresses
std::map< std::string,
TimerAction
mTimerActions
 timer actions by event name
int mVerbLevel
 diagnpstic-output level
std::string mOutMode
 output file name (base)
char mMuteMode
 current output mode
bool mMuteComments
 mute comments
std::string mRecentMutedComment
 recent muted comment
std::ostream * pOutStream
 output stream
std::ostream * pErrStream
 error stream

Additional Inherited Members

- Public Types inherited from CodeGenerator
enum  OutSink { CONSOLE, FILE, STRING }
typedef std::vector
< TimedGenerator >
::const_iterator 
Iterator
 Iterator for read-only access of generators.
typedef unsigned long word_t
 Code-generator internal data type of target words.
typedef std::map< std::string,
LineAddress >::iterator 
LineIterator
 Access to line records by iterator.
typedef std::map< std::string,
FlagExpression >::iterator 
FlagIterator
 Access to flag records by iterator.
typedef std::map< std::string,
TimerConfiguration >::iterator 
TimerIterator
 Access to timer records by iterator.
typedef std::map< std::string,
ActionAddress >::iterator 
ActionAddressIterator
 Access to action record by iterator.
typedef std::map< std::string,
TimerAction >::iterator 
TimerActionIterator
 Access to timer records by iterator.
- Public Member Functions inherited from CodeGenerator
 CodeGenerator (void)
 Constructor.
virtual ~CodeGenerator (void)
 Destructor.
virtual void Name (const std::string &rName)
 Set objects's name (reimplementing base faudes::Type)
virtual const std::string & Name (void) const
 Get objects's name (reimplementing base faudes::Type)
virtual void Compile (void)
 Compile input data for alternative representation.
Idx Size (void) const
 Number of generators.
void Insert (const std::string &file)
 Add a Generator from file.
void Insert (const TimedGenerator &rGen)
 Add a generator by reference.
const TimedGenerator & At (int i) const
 Direct access for read-only access of generators.
Iterator Begin (void) const
 Begin-iterator for read-only access of generators.
Iterator End (void) const
 End-iterator for read-only access of generators.
Idx EventIndex (const std::string &rName) const
 Faudes-event index lookup.
std::string EventName (Idx index) const
 Faudes-event name lookup.
const AttributeCodeGeneratorEventEventAttribute (Idx ev) const
 Event configuration attribute lookup.
void EventAttribute (Idx ev, const AttributeCodeGeneratorEvent &attr)
 Set event attribute.
void Alphabet (const cgEventSet &rAlphabet)
 Set all event attributes.
const cgEventSetAlphabet (void) const
 Access alphabet (incl event attributes)
virtual int EventTargetIdx (Idx idx)
 Get target event Idx from faudes Idx (use bit-address + 1)
virtual int EventTargetIdx (const std::string &ev)
 Get target event Idx from faudes name (use bit-address + 1)
int EventBitAddress (Idx idx)
 Get event bit-address from faudes Idx (consecutive, starts at 0)
Idx EventFaudesIdx (int idx)
 Get faudes Idx from target Idx (aka from bit-address + 1)
std::vector< bool > EventBitMask (Idx idx)
 Get vector representation for a single faudes event Idx.
std::vector< bool > EventBitMask (const EventSet &eset)
 Get vector representation for faudes event set.
int EventBitMaskSize (void)
 Get overall number of events.
word_t WordFromBitVector (const std::vector< bool > &vect, int wordindex)
 Extract individual word from boolean vector.
std::vector< word_tWordVectorFromBitVector (const std::vector< bool > &vect)
 Convert boolean vector to word array.
const std::vector< int > & TransitionVector (size_t git)
 Get target state index (refer to vector representation as default, overload in CodePrimitives)
LineIterator LinesBegin ()
 Access to line records by iterator.
LineIterator LinesEnd ()
 Access to line records by iterator.
FlagIterator FlagsBegin ()
 Access to flag records by iterator.
FlagIterator FlagsEnd ()
 Access to flag records by iterator.
TimerIterator TimersBegin ()
 Access to timer records by iterator.
TimerIterator TimersEnd ()
 Access to timer records by iterator.
ActionAddressIterator ActionAddressesBegin ()
 Access to action addresses by iterator.
ActionAddressIterator ActionAddressesEnd ()
 Access to action addresses by iterator.
TimerActionIterator TimerActionsBegin ()
 Access to timer records by iterator.
TimerActionIterator TimerActionsEnd ()
 Access to timer records by iterator.
virtual void Generate (void)
 Generate code.
void Verbose (int level, std::ostream *altout=0)
 Set verbosity level.
virtual void OutputMode (const std::string &mode)
 Set code output mode.
std::string OutputMode (void)
 Report code output mode.
virtual std::ostream & Output (void)
 Output stream.
const std::string & OutputString (void)
 Get accumulated output as string.
void OutputString (const std::string &strbuf)
 Set output to string.
virtual void MuteMode (char mode)
 Set current mute mode.
virtual void MuteCond (char mode)
 Set mode condition.
virtual void LineFeed (int lines=1)
 LineFeed (convenience support for derived classes)
virtual std::string LineCount (void)
 LineFeed (convenience support for derived classes)
virtual void IndentInc ()
 Indentation (convenience support for derived classes)
virtual void IndentDec ()
 Indentation (convenience support for derived classes)
std::string RecentComment (void)
 Recent muted comment (convenience support for derived classes)
virtual void XmlTextEscape (bool on)
 XmlTextEscape (escape "<", ">", "&", "\"" and "'")
virtual void XmlCdataEscape (bool on)
 XmlCdataEscape (escape "]]>")
virtual void MuteComments (bool on)
 Mute comments (convenience support for derived classes)
virtual void MuteVspace (bool on)
 Mute empty lines (convenience support for derived classes)
- Static Public Member Functions inherited from CodeGenerator
static std::string VersionString (void)
 Version (refers to macro COMPILEDES_VERSION, defined in cgp_codegenerator.h)
static void Register (const std::string &type, CodeGenerator *(*newcg)(void))
 Insert derived class in the registry.
static std::vector< std::string > Registry (void)
 Access registry contents.
static CodeGeneratorNew (const std::string &type)
 Instantiate by identifier (returns 0 on unknown class)
- Public Attributes inherited from CodeGenerator
std::vector< int > mWordAddressVector
 Look-up table to map a bit-address to the word-index.
std::vector< word_tmBitMaskVector
 Look-up table to map a bit-address to the word-bitmask.

Class Documentation

struct CodePrimitives::bitarray_rec
Class Members
int blen
vector< bool > value

Member Function Documentation

std::string CodePrimitives::TargetSymbol ( const std::string &  str)
protectedvirtual

Definition at line 411 of file cgp_codeprimitives.cpp.


The documentation for this class was generated from the following files: