Abstraction

FAU Studien aus der Elektrotechnik 25 I

Yiheng Tang

Formal Verification in
Automated Manufacturing

=AU

University Press

Yiheng Tang

Formal Verification in Automated Manufacturing

FAU Studien aus der Elektrotechnik

Band 25

Herausgeber der Reihe:
Prof. Dr.-Ing. Bernhard Schmauf3

Yiheng Tang

Formal Verification in Automated
Manufacturing

Erlangen
FAU University Press
2024

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet tiber http://dnb.d-nb.de abrufbar.

Kontakt: Yiheng Tang, Friedrich-Alexander-Universitit Erlangen-Nirn-
berg (ROR https://ror.org/oof7hpcsy), https://orcid.org/0009-0003-0396-
2619

Bitte zitieren als
Tang, Yiheng. 2024. Formal Verification in Automated Manufacturing. FAU
Studien aus der Elektrotechnik Band 25. Erlangen. FAU University Press.

DOI: 10.25593/978-3-96147-744-9.

Das Werk, einschliefilich seiner Teile, ist urheberrechtlich geschiitzt.
Die Rechte an allen Inhalten liegen bei ihren jeweiligen Autoren.
Sie sind nutzbar unter der Creative-Commons-Lizenz BY.

Der vollstandige Inhalt des Buchs ist als PDF iber OPEN FAU
der Friedrich-Alexander-Universitat Erlangen-Niirnberg abrufbar:
https://open.fau.de/home

Verlag und Auslieferung:
FAU University Press, Universitdtsstrafe 4, 91054 Erlangen

Druck: docupoint GmbH

ISBN: 978-3-96147-743-2 (Druckausgabe)
eISBN: 978-3-96147-744-9 (Online-Ausgabe)
ISSN: 2363-8699

DOL: 10.25593/978-3-96147-744-9

Formal Verification in Automated Manufacturing

Formale Verifikation in der Fertigungsautomatisierung

Der Technischen Fakultat
der Friedrich-Alexander-Universitat

Erlangen-Niirnberg

zur

Erlangung des Doktorgrades Dr.-Ing.

vorgelegt von

Yiheng Tang

Als Dissertation genehmigt
von der Technischen Fakultat

der Friedrich-Alexander-Universitat Erlangen-Niirnberg

Tag der miindlichen

Priifung: 14. November 2023

Gutachter: Prof. Dr.-Ing. Thomas Moor
Prof. Dr.-Ing. Jorg Raisch

Acknowledgement

This dissertation was completed during my work as a research assistant at
the chair of automatic control of Friedrich-Alexander University Erlangen-
Nuremberg. I would like to express my appreciation to all the people who had
helped me to finish this dissertation.

I would like to start by expressing my deepest gratitude to my advisor, Prof.
Dr.-Ing. Thomas Moor, for his patient guidance, inspiring ideas and constant
encouragement, which lay the foundation of this dissertation. Furthermore, I
would like to sincerely thank Dr. rer. nat. Martin Witte from our industrial
partner Siemens AG, who has provided various interesting concepts and use-
cases from practical industry scenarios.

I would like to extend my gratitude to the chair holder, Prof. Dr.-Ing. Knut
Graichen, for taking the chairmanship of the examining committee. [would
also like to express my gratitude to Prof. Dr.-Ing. Jorg Raisch for taking the
revision of my dissertation, as well as Prof. Dr. Christoph Pflaum for the
participation in the examining committee.

I gratefully acknowledge all my colleagues at the chair of automatic control
for the open research atmosphere. Special thanks go to the research group of
discrete-event systems for all the fruitful discussions.

I would like to sincerely express my gratitude to my parents for the constant
love and encouragement to me. Many thanks also to my friends Jingyuan Li,
Danwei Shao and Dr. Hongzhe Zhou for their mental support.

Erlangen, November 2022 Yiheng Tang

iii

Abstract

Inrecent decades, discrete-event modelling has been widely utilised to address
control engineering problems (Preuf3e et al., 2012; Ramadge and W. Wonham,
1987). Comparing with conventional dynamic system modelling where phys-
ical behaviour is explicitly to describe, discrete-event modelling focuses on a
more abstract level where logical behaviour is of interest. In this dissertation,
we focus on the formal verification of the logical closed-loop behaviour of
control systems. To satisfy safety and/or liveness requirements according
to given technical specifications, we exploit the formal semantics of control
programmes to represent the entire closed-loop behaviour in a discrete-event
model, from which the properties of interest can be formally verified.

There are two major challenges to conquer in the current dissertation. The
first one is the lack of formal semantics of control programmes. In prac-
tice, various modelling languages and programming languages have been
developed for control programme design, e.g. Unified Modelling Language
(Object Management Group, 2017b), Interdisciplinary Modelling Language
(Brecher, Obdenbusch, Ozdemir et al., 2016), Grafcet (Provost, J.-M. Rous-
sel et al., 2011) and various programming languages defined in the IEC-61131
standard. Unfortunately, most of the original documents do not provide
sufficiently formalised semantics to support formal verification. In particu-
lar, since we focus on the discrete-event dynamics of closed-loop behaviour,
careful semantics formalisation based on the logic time axis is essential.

The second challenge to conquer is the computational efficiency of the formal
verification for complex systems with modular and/or hierarchical structure.
Typically, such systems are represented by a collection of synchronised auto-
mata, each of which has relatively few states (Leduc, 2002a; Schmidt et al.,
2007). For such systems, we focus on verifying their non-blockingness in the
current dissertation, which can express various safety properties and (weak)
liveness properties (Cassandras and Lafortune, 2008). A conventional way
to address this verification problem is based on analysing the monolithic
representation of the entire system, which is usually infeasible due to the
exponential growth of the state space, a.k.a. the state explosion problem. One
approach that mitigates this issue is the compositional verification (Flordal
and Malik, 2009). Basically, the idea of compositional verification is to itera-
tively (i) abstract each synchronised automaton and (ii) compose a small set
of automata to form a subsystem. The iteration terminates when there is only
one automaton left. In particular, it is required that the abstraction preserves

\%

the property to verify. This guarantees that verifying the monolithic represen-
tation is equivalent to verifying the final automaton after iteration, which in
general has fewer states. Specifically for compositional non-blockingness veri-
fication, various recent contributions have shown convincing results (Flordal
and Malik, 2009; Pilbrow and Malik, 2015; Su et al., 2010; Ware and Malik, 2012),
where it is generally assumed that all automata are synchronised through the
standard synchronous composition (Cassandras and Lafortune, 2008; Milner,
1989). In this dissertation, we address the compositional non-blockingness
verification problem where events are prioritised. More precisely, we envisage
that each event in the entire system has a priority value. In any state, events
with lower priority can never be executed if any event with higher priority is
active in this state. This feature can result from e.g. the formal semantics of
the control programme and indeed changes the way of synchronisation. Thus,
for modular/hierarchical systems with prioritised events, existing frameworks
and results w.r.t. compositional non-blockingness verification need to be
carefully reviewed and adjusted.

vi

Kurzzusammenfassung

In den letzten Jahrzehnten wurde die ereignisdiskrete Modellierung immer
ofter angewandt, um regelungstechnische Probleme zu behandeln (Preufde et
al., 2012; Ramadge and W. Wonham, 1987). Im Vergleich zur konventionellen
Modellierung von dynamischen Systemen, wobei physikalisches Verhalten
explizit zu beschreiben ist, konzentriert sich die ereignisdiskrete Modellie-
rung auf eine abstraktere Ebene, auf der logisches Verhalten von Interesse
ist. In dieser Dissertation konzentrieren wir uns auf die formale Verifika-
tion des logischen Verhaltens von Regelkreisen. Um Sicherheits- und/oder
Lebendigkeitsanforderungen anhand gegebener technischer Spezifikationen
zu gewahrleisten, verwenden wir die formale Semantik von Steuerprogram-
men, um den gesamten geschlossenen Regelkreis von einem ereignisdiskreten
System darzustellen, so dass die interessierenden Eigenschaften formal verifi-
ziert werden konnen.

In dieser Dissertation sind zwei wesentliche Herausforderungen zu bewalti-
gen. Der erste ist die fehlende formale Semantik von Steuerungsprogrammen.
In der Praxis stehen verschiedene Modellierungssprachen und Programmier-
sprachen fiir den Entwurf von Steuerungsprogrammen zur Verfiigung, z.B.
Unified Modelling Language (Object Management Group, 2017b), Interdis-
ciplinary Modelling Langauge (Brecher, Obdenbusch, Ozdemir et al., 2016),
Grafcet (Provost, J.-M. Roussel et al., 2011) und verschiedene in der Norm IEC-
61131 definierte Programmiersprachen. Leider bieten die meisten originalen
Dokumente keine ausreichend formalisierte Semantik, um die formale Veri-
fikation zu ermoglichen. Da die ereignisdiskrete Dynamik in geschlossenen
Regelkreisen fiir uns von Interesse ist, ist eine sorgfaltige Formalisierung von
Semantik auf der logischen Zeitachse notwendig.

Die zweite zu bewadltigende Herausforderung ist die rechnerische Effizienz
der formalen Verifikation fiir komplexe Systeme mit modularer und/oder
hierarchischer Struktur. Solche Systeme werden typischerweise durch mehr-
ere synchronisierte Automaten reprasentiert, von denen jeder relativ wenige
Zustande besitzt (Leduc, 2002a; Schmidt et al., 2007). In dieser Dissertation
konzentrieren wir uns fiir solche Systeme auf die Verifikation von Blockie-
rungsfreiheit, die verschiedene Sicherheits- und (schwache) Lebendigkeits-
eigenschaften (Cassandras and Lafortune, 2008) ausdriicken kann. Eine kon-
ventionelle Vorgehensweise von dieser Aufgabe basiert auf der Analyse der
monolithischen Darstellung des gesamten Systems, was oft wegen des expo-
nentiellen Wachstums des Zustandsraums, auch bekannt als State Explosion

vii

Problem, nicht durchfiihrbar ist. Ein Ansatz, der dieses Problem mildert,
ist die Compositional Verification (Flordal and Malik, 2009). Grundsatzlich
besteht die Idee der Compositional Verification darin, iterativ (i) jeden syn-
chronisierten Automaten zu abstrahieren und (ii) eine kleine Menge von
Automaten zusammenzusetzen, um ein Subsystem zu formen. Wenn nur ein
Automat verbleibend ist, terminiert die Iteration. Insbesondere ist es erforder-
lich, dass die Abstraktion die zu verifizierende Eigenschaft erhaltet. Dies
garantiert, dass das Verifikationsergebnis der monolithischen Darstellung mit
dem des verbleibenden Automaten nach der Iteration tibereinstimmt, der im
Allgemeinen weniger Zustande hat. Speziell fiir die Compositional Verification
der Blockierungsfreiheit haben verschiedene neueste Beitrage tiberzeugende
Ergebnisse geliefert (Flordal and Malik, 2009; Pilbrow and Malik, 2015; Su et
al., 2010; Ware and Malik, 2012), wobei allgemein angenommen wird, dass alle
Automaten durch die standardmaflige synchrone Komposition (Cassandras
and Lafortune, 2008; Milner, 1989) synchronisiert sind. In dieser Dissertation
untersuchen wir die Compositional Verification der Blockierungsfreiheit, bei
der Ereignisse priorisiert sind. Genauer gesagt konnen wir uns so vorstellen,
dass jedes Ereignis im gesamten System einen Prioritatswert besitzt. In jedem
Zustand konnen die Ereignisse mit niedrigerer Prioritat nicht ausgefiihrt wer-
den, wenn in diesem Zustand irgendein Ereignis mit hoherer Prioritat aktiv
ist. Diese Eigenschaft kann z.B. aus der formalen Semantik des Steuerungs-
programms ergeben und dndert die Art und Weise von Synchronisation. In
diesem Zusammenhang muss die existierenden Methoden und Ergebnisse
bzgl. Compositional Verification der Blockierungsfreiheit sorgfaltig tiberpriift
und angepasst werden.

viii

Contents

1 Introduction 1
2 Sequential behaviourdiagram 11
21 Syntaxand semantics oLl oo 12
211 Syntax and informal semantics L. 14

212 Formalsemantics 19

213 Conditionsand variables 30

2.1.4 Operation of the drill stationexample 34

2.2 Translating SBDsintoautomata 35
2.21 Reachabilityautomaton 37

2.2.2 Constraintautomata 38

2.2.3 Resultautomaton and high-priorityevents 46

2.2.4 Representing the global behaviour 47

23 Extended semantics o0 48
2.3.1 Termination condition 49

2.3.2 Writable and controlled variables 51

2.3.3 Immediate instructions 56

2.4 Apracticalexample Lo 57

3 Compositional verification with prioritised events 67
31 Preliminaries. L L 69
311 Prioritisedevents L. 69

3.1.2 Finiteautomata 70

3.1.3 Synchronous composition and non-conflictingness 73

3.2 Conflict-preserving abstractionrules 76
3.2.1 Prioritised weak bisimulation 81

3.2.2 Abstraction rules based on incoming equivalence 93

3.2.3 Furtherabstractionrules 13

3.3 Compositional verification 18

3.4 Casestudies e 122
3.41 SynchronisedSBDs 122

3.4.2 Priority in control hardware 125

4 Sequential functionchart. 000 131
41 Correlating SFCswithSBDs 132
411 Syntax mapping from SFCstoSBDs 132

412 Dense-time SFCsemantics 136

4.1.3 Translating SFCsintoautomata 140

ix

Contents

4.2 Compositional verification of modular SFC programmes 147
43 Casestudy e 150
5 Conclusions and future prospects 155
Bibliography L. 157
Appendix e e e 163
A Plant models of the production line example 163
B U-conflict-preserving abstractionrules 168
C Tablesofsymbols 178

1 Introduction

In modern industrial manufacturing, production procedures are highly auto-
mated through logical control programmes, while manual operations through
workers tend to be less involved. In this context, ensuring that the entire manu-
facturing system satisfies certain safety and liveness requirements (Alpern
and Schneider, 1987) is of great practical value, i.e.

Safety Does the manufacturing system potentially exhibit any unsafe be-
haviour? E.g. is there a risk of collision between two robot arms when
they share some region within their individual movement?

Liveness Does the manufacturing system always make progress? E.g. can
the processing of a workpiece in a machine eventually be terminated?

Instead of performing tedious enumerative tests on real physical systems,
which is extremely time-consuming and may also threaten human life and
property safety, formally ensuring that the desired properties are fulfilled
already in the system design and development phase is obviously preferred.
Typically, safety and liveness requirements are considered as temporal prop-
erties of a dynamic system, which can formally be represented by finite automa-
ta (Cassandras and Lafortune, 2008; Daniele et al., 1999; M. Y. Vardi, 1996).!
Typically, an automaton is a directed graph where each vertex is referred to as
a state and each directed edge connecting two states is considered a transition.
Besides, each transition is labelled by an event.

Figure 1: An automaton

As an example, Figure 1 shows an automaton describing the logical behaviour
of a binary sensor which detects the presence of workpieces in front of it.
Two events ar (for arrive) and Iv (for leave) are labelled on the two transitions
connecting both states I and II, indicating that workpieces alternatively arrive
and leave the sensor. In particular, by considering state I as the initial state,
it is implied that no workpiece is present at the beginning, since event ar,
instead of lv, always occurs first.

' An automaton is finite if it has finitely many states. Throughout the current dissertation,
we assume that all automata are finite.

1 Introduction

=
<
—
[}
<
Q
o=
%)
>
=
=
control
events . .
nstructions
1D:0 I
position = west
GetObject
ID: 1
position = south
1D:1001 i
QE’ [WPtype = A 1D:1003
E [else]
s y Y
on
o
a2 Drill_Typel Drill_Type2 DustRemoval
v—o< ID:2 1D:3 ID:4
i=}
=]
o
o
1D:1004
1D:1002 /
D:5 é

Figure 2: Closed-loop behaviour

With automata as basic model, we now discuss how to ensure desired prop-
erties in a manufacturing system. From a control-theory perspective, we
consider that the entire system behaviour, which is also referred to as the
closed-loop behaviour, is represented by a plant (i.e. the uncontrolled be-
haviour) and a feed-back controller. By reading event sequences from the

1 Introduction

plant, the controller sends control instructions back to the plant; see Figure 2.
As the uncontrolled plant reflects the “physical nature”, we are interested in
the controller, which is the “man-made” counterpart and enforces the desired
properties in the closed-loop system. One well-known approach to achieve
this goal is the Supervisory Control Theory (SCT) (Ramadge and W. Wonham,
1989; Ramadge and W. Wonham, 1987). Given a plant model and a formal
specification describing the intended system behaviour and desired properties,
SCT automatically synthesises a controller (which is also referred to as a super-
visor) that enforces the specification in the closed-loop behaviour. However,
although SCT has been actively studied and developed in recent decades, one
relative drawback of SCT is that constructing formal discrete-event models,
especially formal specifications, is a challenging task that necessarily requires
highly advanced mathematical knowledge. This is one of the main reasons
why, in practice, SCT is seldom applied by automation engineers to solve
real-world control problems.

One alternative to controller synthesis is formal verification, which is a well-
discussed topic in computer science, e.g. in the theory of Model Checking
(E. M. Clarke et al., 2001). In this case, we envisage that control programmes
are already available and the resulting closed-loop system is algorithmically
verified (Bauer, Engell et al., 2004; Buzhinsky and Vyatkin, 2017; Gerber et al.,
2010; Preufle et al., 2012). One major benefit of applying formal verification is
that nominal control sequences are already realised in control programmes
(which is usually considered as “specification” as well when applying SCT).
Thus, the properties to verify are usually much easier to formulate. If the
verification result is positive, the control programme is considered useable
for the manufacturing system; otherwise, revision of the codes is necessary
(possibly with the help of counterexamples from the verification, i.e. an
“evidence” which tells how the desired property can by invalidated).?

Describing closed-loop behaviour with automata Recall that close-loop
behaviour is represented by combining a plant and a controller. As we utilise
automata as our basic model, we purpose that both the plant and the con-
troller are modelled by automata. The closed-loop system is then computed
based on the synchronous composition of the plant and the controller model,
which is a common approach in SCT (Cassandras and Lafortune, 2008). On
this basis, we envisage the overall procedure for the closed-loop behaviour
verification as shown in Figure 3. In the scope of the current dissertation,

> Note that the “trial-and-error” of programme codes is generally unavoidable for controller

synthesis approaches as well. As for SCT, it is common that ill-formed specifications result
in an overly pessimistic controller that disallows everything in the closed-loop behaviour.

3

1 Introduction

physical control
plant programme
automaton automaton
model model
composition
verification
result

Figure 3: Envisaged verification procedure

we propose that the plant model is directly available, which may have been
manually designed (possibly from some component library). From a practical
perspective, manually constructing plant models is not a verbose task since
plant behaviour is usually “determined”, i.e. when programming control codes,
it is rather unlikely to redesign and reassemble the machine. In contrast, since
programme codes may be edited at any time (due to e.g. new functional
requirements or negative verification results), an automatic procedure to
translate programme codes into automata is indispensable. To this end, we
first focus on the Sequential Behaviour Diagram (SBD) defined by Interdis-
ciplinary Modelling Language (IML) (Brecher, Obdenbusch, Ozdemir et al.,
2016; Flender et al., 2019) and utilise SBDs as the formal representation for
control programmes. As being derived from the well-known Unified Modelling
Language (UML) (Object Management Group, 2017b) and System modelling
language (SysML) which have more general modelling purposes, the recently
developed IML has a specific focus on industrial automation systems with
compactly three types of diagrams (comparing with 14 diagram types in UML
and g diagram types in SysML). SBD is a variant of Activity Diagram (AD) from
UML (and SysML as well) that utilises token propagation on a Petri-net-like
structure to illustrate concurrent processes. In fact, a demonstrating example
of an SBD has already been given on the right side of Figure 2. Each “square
block” in an SBD is referred to as a process, which is considered an abstract
programme block that can hold a token. In addition, each edge can propagate

4

1 Introduction

tokens in its direction. Unfortunately, existing literature does not sufficiently
formalise SBD semantics to enable its translation to automata. This problem
is addressed in Chapter 4.

Figure 4: High-priority events preempt low-priority events

At the current stage, a specific feature appearing in the translation result is
worth mentioning - all events in the resulting automata are prioritised. In
any state in the closed-loop behaviour where a high-priority event is active,
all events with lower priority cannot be executed. This semantic feature was
originally studied in process algebra (Baeten et al., 1986; Cleaveland et al.,
2007; Liittgen, 1998). As for SBDs, we shall stipulate in some cases that
token propagation has higher priority over other behaviour. We consider the
automaton fragment given in Figure 4 as an example. The event Trans standing
for token propagation has higher priority over the event Iv, which corresponds
to a positive or negative edge in the line level of some sensor. In this case, we
should remove the transition labelled by Iv as it will always be preempted by
Trans. This is also the reason why we loosely wrote composition instead of the
standard synchronous composition in Figure 3, i.e. the closed-loop behaviour
in this context is represented by removing low-priority transitions (which is
also referred to as shaping) in the synchronous composition.

Compositional non-blockingness verification with prioritised events
In the current dissertation, we pay specific attention to the non-blockingness
as the property of our interest. Non-blockingness is one of the most common
properties required for closed-loop behaviour (Cassandras and Lafortune,
2008; Ramadge and W. Wonham, 1987) which states that in any reachable
state, it is always possible to attain desired system configurations in the future.
As for the example automaton in Figure 1, one can specify that state I encodes
a desired system configuration, which implies that the automaton is non-
blocking. The definition of non-blockingness infers some weak3 liveness
properties of the system. Nevertheless, a great variety of safety properties are
expressible by non-blockingness. Typically, if reaching certain states causes

3 Non-blockingness is weak since it only requires the system to have the opportunity to reach
some good future, while the system does not necessarily need to reach it. See also (Alpern
and Schneider, 1985; De Giacomo and M. Vardi, 2013).

1 Introduction

safety issues, e.g. collision or overheating, these states are considered unsafe
and can be modelled as blocking states in plant models. Since the closed-loop
behaviour needs to be non-blocking, the plant behaviour must be restricted
by the controller so that unsafe states are rendered unreachable.

For a moderately sized system, its non-blockingness can be simply verified
by performing enumerative backward reachability search in the monolithic
representation of the system (Cassandras and Lafortune, 2008). However,
for large-scale systems with multiple synchronised modules, constructing a
monolithic representation greatly suffers from the notorious state explosion
problem, as the entire state space increases exponentially w.r.t. the number
of modules. E.g., even each module has only 5 states, 10 synchronised mod-
ules can still reach a total state count of 5! ~ 9.8 x 10° in the monolithic
representation. To this end, various contributions in recent decades have
attempted to solve the non-blockingness verification problem for modular
systems without explicitly constructing the monolithic representation. One
well-discussed approach is to utilise binary decision diagrams (BDDs) (Akers,
1978) to symbolically encode automata (Kimura and E. Clarke, 1990; Michon
and Champarnaud, 1998), which, compared with enumerating the entire tran-
sition structure, potentially reduces the memory required for representing
the state space.

A well-established alternative to address the non-blockingness verification
problem is compositional verification (Flordal and Malik, 2009; Pilbrow and
Malik, 2015; Su et al., 2010; Ware and Malik, 2012), which is based on applying
abstractions on individual modules. The underlying idea of compositional
verification stems from compositional reasoning, which derives the interface
rule in compositional model checking (E. Clarke et al., 1989). The basic idea
of the interface rule is illustrated in Figure 5, where we suppose that the

Zn
Gl Gz
Hr GGy L
S, i
DGy TTIIIIIIIIIIII
""" G, |G,

Figure 5: Interface rule

1 Introduction

entire system G, || G, consists of two modules G; and G5.* Both modules
communicate with each other through a set of events X,. Besides, we assume
that the property to verify ¢ is expressed by another set of events ¥’. In this
context, theidea is to construct a suitable abstraction G| (which isalso referred
toasan interface in (E. Clarke et al., 1989)) of G; by neglecting all events not in
YUY, i.e. eventsowned by G, privately and irrelevant to ¢. The suitableness
of the abstraction then guarantees that verifying ¢ in G, || G, is equivalent
to verifying ¢ in G || G5, which typically has fewer states than G, || G,. As
for non-blockingness verification, the process-algebraic equivalence conflict
equivalence was proposed in (Malik, Streader et al., 2004) to guarantee the
suitableness of an abstraction. Two automata, say G; and G| where G is
an abstraction of (G, are considered conflict equivalent if for any automaton
T, G, || T is non-blocking if and only if G} || T is non-blocking. As for
the situation in Figure 5, G, clearly is “any automaton”. At this stage, it is
also worth mentioning that, as the composition is generally associative and
commutative, the abstraction can be applied to each module in an arbitrary
order. E.g. for 10 modules, reducing the state count of each module from 5 to
3 already yields an appreciable overall state space reduction from 9.8 x 10° to
5.9 x 10%,

Another key feature of compositional verification is that abstraction can also
be applied iteratively (Flordal and Malik, 2009; Su et al., 2010). Recall that
abstractions make use of private events. Suppose that a modular system
consists of five modules G, ... , G5 where each module has been abstracted,
resulting into G7, ..., G5, respectively. At this stage, strategically choose a
small set of automata to compose, e.g. G] || G5 =: G,,, potentially enables
further abstractions since events only being shared by G, and G, are rendered
private. Thus, composition and abstraction can be iteratively applied to the
entire system until there is only one module left, whose non-blockingness is
identical to that of the monolithic representation. Figure 6 shows a possible
procedure to apply compositional verification for five modules. Each edge
transforming an automaton G into G’ indicates the application of suitable
abstractions, while edges merging multiple automata into a single automaton
indicates the composition. In this context, verifying the non-blockingness of
G, || Gy || G5 || G4 || G5 is equivalent to verifying G345, which usually has
significantly fewer states.

Recently, various abstraction methods have been developed for the compos-
itional non-blockingness verification of (ordinary) automata (Flordal and

4 In this paragraph, we loosely utilise the operator || to denote some kind of composition
which is commutative and associative.

1 Introduction

G, —> G,

~
G2—>G'2/

G|2—> G’l2

G;—> G| > G 12345

Ga—> G~
G5_>G,5/

G45 e G:15

Figure 6: Possible procedure to apply compositional verification for a modular system with five
modules

Malik, 2009; Malik, 2015; Pilbrow and Malik, 2015; Su et al., 2010; Ware and
Malik, 2012). Besides, compositional verification has been successfully applied
to several extended types of automata and/or other properties (Malik and
Leduc, 2013; Mohajerani, Malik et al., 2016; Ware and Malik, 2013). Since
non-blockingness is also one of the standard properties required for SCT, com-
positional synthesis of supervisors has also been widely discussed and shown
convincing results (Malik and Teixeira, 2016; Mohajerani, Malik et al., 2014;
Mohajerani, Malik et al., 2017). However, it is challenging to apply existing
results to verify the non-blockingness of modular/hierarchical SBDs, since
prioritised events influence the synchronisation of modules. As far as the
author’s knowledge, most contributions addressing compositional verification
problems take synchronous composition as the semantics of synchronisation
between modules, i.e. the behaviour of the entire system complies with the
synchronous composition of all modules. Unfortunately, this is not the case
for SBDs due to prioritised events. As we shall see in Chapter 2, the high-
priority of token-propagation events has a global effect across all modules. By
referring to the case in Figure 6, the behaviour of the entire modular system
shall comply with (G, || G, || G5 || G4 || G5), where the shaping operator
S(-) removes low-priority transitions in each state in an automaton. In this
case, it is conceivable that the ordinary conflict equivalence does not guarantee
the suitableness of abstraction any more - new equivalence over automata
with new abstraction methods need to be developed for compositional non-
blockingness verification with prioritised events. This topic is discussed in
Chapter 3 in more detail.

Outline The outline of the current dissertation is as follows. In Chapter 2,
we concentrate on translating SBDs into automata. This starts with a rigorous
formalisation of the syntax and semantics of SBDs, where we also consider
modularly and hierarchically structured SBDs from a practical perspective.
In particular, the discrete event dynamic behaviour of SBDs is clarified over
the logic dense time axis, which is naturally correlated with the semantics of

8

1 Introduction

automata. This chapter ends with a practical example, where a set of modu-
lar and hierarchical SBDs are constructed to control a production line. The
non-blockingness of the entire closed-loop system is then envisaged to be
verified by the compositional verification procedure introduced in Chapter 3
- in Chapter 3, we focus on modular systems whose behaviour is represented
by synchronised automata with prioritised events. By formally defining the
shaping operator §(-), we purpose a new equivalence over automata, i.e. the
conflict equivalence w.r.t. prioritised events, as a new characterisation for
suitable abstractions in our case. On this basis, new abstraction rules are
developed. At the end of this chapter, compositional verification is applied to
two different use-cases with prioritised events, including the SBD model pre-
viously constructed in Chapter 2. Finally, in Chapter 4, we discuss a graphical
programming language, the Sequential Function Chart (SFC), which has been
actively used in industry foryears. The motivation foradding this final chapter
is that the Petri-net-based structure of SFCs is apparently comparable with
SBDs. Thus, a question naturally arises is whether the translation procedure
for SBDs introduced in Chapter 2 and the compositional verification approach
developed in Chapter 3 are applicable for SFC verification. Nevertheless, due
to the physical-time-based semantics of SFC as well as the specific execu-
tion order of SFC control sequences, careful extensions and assumptions are
necessary.

2 Sequential behaviour diagram

The main objective of the current dissertation is to verify the controlled be-
haviour of manufacturing systems, a.k.a. closed-loop behaviour which is com-
posed from a plant model and a controller model. In particular, we focus on
the controller part and seek a possible formal representation which, from a
practical perspective, is sufficiently intuitive and comprehensive for automa-
tion engineers. To this end, we set our sights on the concept of modelling
languages, which has been intensively discussed recently in various fields, e.g.
software engineering, business management and industrial manufacturing.
The aim of modelling languages is to standardise the procedures of design
and analysis of complex systems. In particular, many of the modelling lan-
guages provide various possibilities to model sequential behaviour of a target
system, which can be utilised to design control programmes in automated
manufacturing. One common choice is the Activity Diagrams (AD) from the
well-known Unified Modelling Language (UML) (Object Management Group,
2017b) and System Modelling Language (SysML) (Object Management Group,
2017a); see e.g. (Fanti et al., 2013; Kohler et al., 2000; Y. Liu et al., 2014).

One of the most high-lighted features of UML and SysML is their flexibility
and versatility in different modelling domains. However, this may become
a burden when it comes to formal verification, which generally requires the
formalisation of the massive semantic structure documented in natural lan-
guage. In fact, many of the recent contributions addressing formal semantics
of AD take a subset from the complete language; see e.g. (Daw and Cleaveland,
20153; R. Eshuis, 2006; Jarraya et al., 2009; Lima et al., 2013). In this context, we
focus on the recently developed Interdisciplinary Modelling Language (IML)
(Brecher, Obdenbusch, Ozdemir et al., 2016; Flender et al., 2019; Herfs et al.,
2018) which has a specific aim of enabling common and consistent production
machine design with interdisciplinary technical requirements. Technically,
IML provides three types of diagrams for graphical modelling: Functional
Structure (FS) represents functions and their sub-functions in a hierarchical
fashion and determines the corresponding physical components realising
the respective function; Interaction Structure (IS) describes the interaction
between components through physical links and information flows; Sequen-
tial Behaviour Diagram (SBD) establishes the abstract structure of control
sequences which realises the functions of the machine. Among the three
diagram types, SBD is closely related to AD in that they both describe concur-
rent sequences through Petri-net-like structures. In addition, this intuition is

1

2 Sequential behaviour diagram

followed by other programming languages for industrial applications as well,
e.g. Sequential Function Charts (SFC) as defined in the IEC-61131 standard.
Thus, in this chapter, we select SBDs as the formal representation of control
programmes for manufacturing systems.

The subsequent question is, what property should be formally verified. In
this dissertation, we are mostly interested in the non-blockingness, which
can describe various safety properties as well as weak liveness properties
in closed-loop behaviour. To this end, we propose to translate SBDs into
automata, which is one of the most common models for non-blockingness
analysis (Cassandras and Lafortune, 2008; Ramadge and W. Wonham, 1987).
In particular, the translation result can be composed with plant models given
in automata as well to form closed-loop behaviour, whose non-blockingness
shall be formally verified. To this end, a sufficiently formalised semantics
of SBDs is essential for the translation procedure, which, however, is not
provided in existing documentations. Thus, in the current chapter, we first
focus on the formalisation of SBD semantics by clarifying the discrete event
dynamic behaviour of SBDs over logic dense time axis, which differs from
the ordinary physical time axis in that multiple events can be “stacked” on
a same physical time instance. In other words, a sequence of events can be
executed without consuming a positive duration of physical time. This time
model correlates SBD semantics with automata, which enables a semantically
precise translation from SBDs to automata.

This chapter is organised as follows: Section 2.1 introduces the formal syntax
and semantics of SBDs, based on which the translation procedure is developed
in Section 2.2. In Section 2.3, a typical practical use-case is considered, based
on which several extended semantic features are suggested for more precise
verification results. Finally, a relatively complicated practical example is mod-
elled in Section 2.4, based on which a brief overview of the non-blockingness
of SBDs is presented.

2.1 Syntax and semantics

In this section, we introduce the formal syntax and semantics of SBDs. Beinga
Petri-net-like graph, the dynamic behaviour characterised by SBDs is basically
organised by token propagation. Hence, structural components similar to
Petri-net places (in which tokens can be held), transitions as well as directed
edges (along which tokens are propagated) are conceivable. We first consider
a prototypical example of a drill station as depicted in Figure 7 to demonstrate
some basic features of SBDs. The drill station comprises a robot arm which

12

2.1 Syntax and semantics

workpiece robot arm

o dril

ventilator

can fetch workpieces, a drill which processes workpieces, and a ventilator
that removes dust while drilling. The intended usage of the drill station is
that, after taking a workpiece to the south position, a whole is drilled into
the workpiece, possibly with different depths depending on the workpiece
type. While drilling, the ventilator continuously blows off the dust. The above
specification can be expressed by the SBDs given in Figure 8, in which we
highlight the following features:

Figure 7: A drill station

Nested SBDs One entire IML project may consist of multiple SBDs. In Fig-
ure 8, the SBD T'is nested to SBD S, which is denoted by “M: 7”7 in S. The
operation of T'is activated whenever S invokes it, while the operation of
S is started spontaneously.

Nodes and edges Nodes are basic structural elements in SBDs which are
connected by directed edges. In Figure 8, all nodes are numbered with a
unique ID. Note that not all types of nodes can hold tokens for a positive
duration of time.

Process nodes Process nodes are the core of SBDs. Each process node is a
“black box” which can be seen as an abstract representation of a control
programme fragment. In Figure 8, nodes with ID 1, 2, 3, 4, 11 are process
nodes. Each process node has its pre- and postcondition to denote the
prerequisite and the guaranteed result of executing the process, respect-
ively. These are directly represented at the top or bottom of a process
node, respectively, and is trivially true if the respective box is empty. For
example, the process node with ID = 1 can be executed only when the
precondition position = west is fulfilled. After execution, it is guaranteed

3

2 Sequential behaviour diagram

S

10:10?

button = pushed

DrillWP
ID:11 m:r

ID:lZé

ID:OI

position = west

ID: 1

GetObject

position = south

Drill_Typel
1D:2

ID:1001 \
[wptype = a] ID:1003
[else]
Y
Drill_Type2 DustRemoval
ID:3 1D:4
> 1D:1004
1D:1002 Y

ID:Sé

Figure 8: SBDs describing the control sequences of a drill station

that position = east is achieved. Besides,the process node with ID = 4 has

trivial precondition and trivial postcondition.

Auxiliary nodes All nodes not being process nodes are referred to as auxiliary
nodes, which are adapted from ADs defined in UML. These are initial
nodes (ID: 0, 10) which initialise token propagation, terminal nodes (ID: 5,
12) which eliminate tokens, forks/joins (ID: 1001/1002) which begin/ter-
minate synchronous sequences, and branches/merges (ID: 1003/1004)

which begin/terminate alternative sequences.

2.1.1

We first formalise the syntax of SBDs and introduce the intended usage of all
types of SBD components. We shall first notice that, as mentioned in the drill
station example, a complete IML project may include multiple SBDs, whose
executions are related to each other. Thus, we first declare the scope of SBDs

14

Syntax and informal semantics

2.1 Syntax and semantics

that are relevant to the control of a given manufacturing system, namely, an
SBD project.

Definition 2.1.1. An SBD project is a family SBDP = (S;),;-;, of SBDs.

Technically, an SBD S € SBDP is a special kind of directed graph in which
to each node (or “vertex” from a graph-theoretical perspective), a node-type
attribute is assigned. Recall that there are totally seven types of nodes, which
motivates us to define the set of node types as

NodeTypes = {initial, process, terminal, fork, join, branch, merge}. (1)

We are now prepared to give the definition of an SBD.

Definition 2.1.2. Given an SBD project SBDP, an SBD S € SBDP is a tuple
S = (Nodesg, Edges,, type, invokeg, Guardsg) where

» Nodesg is the set of nodes;
» Edges, C Nodesg x Nodesg is the set of directed edges;
* type, : Nodesg — NodeTypes is the node type assignment function;

e invokeg : Processesg — SBDPU{()} is the invocation function with

Processesg being the set of all nodes with the node type process within S;

e Guardsg is a substructure for condition assignments.

In the following, we take the convention that for any S,7" € SBDP where
S #+ T, Nodesg N Nodes;, = () must hold. For brevity, the subscript (-)g of
elements of a given SBD S € SBDP is often dropped if it is clear from the
context that only one SBD is currently discussed, e.g. we may write n € Nodes

instead of n € Nodesg. Besides, for any node n € Nodes in some SBD, we
define

pre(n) := {n’ € Nodes | (n’,n) € Edges }; (2)
suc(n) := {n’ € Nodes| (n,n") € Edges } (3)

to conveniently access its predecessors and successors.

Clearly, randomly connecting two nodes of any types through edges shall not
always result in a well-formed SBD with practical meaning. This motivates
us to first discuss the intended usage of each type of nodes, which inspires
us to stipulate several reasonable syntactical restrictions for a syntactically
well-formed SBD. Basically, SBDs describes the sequential behaviour of con-
current processes, which is referred to as SBD dynamics in the following. SBD

15

2 Sequential behaviour diagram

dynamics is organised by token propagation, which is a concept originates
from Petri-nets. As for SBDs, tokens are propagated in edge directions to
model the sequence of process activation (by receiving a token) and deactiva-
tion (by sending a token), which is similar to the so-called control flows in
AD. Since tokens do not carry concrete objects (as opposed to modelling e.g.
resources), we stipulate that the weight of each edge is equal to 1. Besides,
each node can carry at most one token at the same time, which is an intended
restriction especially due to the conceptional meaning of process nodes; see
below for a detailed discussion.

Initial nodes A node n € Nodes with type(n) = initial is an initial node and

we write
InitialNodes := { n € Nodes | type(n) = initial } (4)

for the set of all initial nodes in an SBD. An initial node has no predecessors
and exactly one successor. Upon the activation of the current SBD, one
token is generated in each initial node and the token is immediately
propagated to its successor as soon as the successor is capable of receiving
a token.

Processes A node n € Nodes with type(n) = process is a process node (or

16

concisely a process) and we write
Processes := { n € Nodes | type(n) = process } (5)

for the set of all processes in an SBD. A process has exactly one predecessor
as well as exactly one successor and models a programme block which
takes a non-negative duration of physical time to execute. To abstractly
describe the dynamic behaviour of processes, we utilise the so-called
process state to describe the cyclic execution of each process; namely,

ProcessStates := {idle, busy, done}, (6)

without explicitly specifying the concrete content of a process. Each
process is initially in the process state idle upon the activation of the
current SBD, which is immediately switched to the process state busy
when it receives a token. This starts the execution of the programme
associated with this process. Afterwards, upon the termination of the
programme, the process state is immediately switched to done. In this
state, if the successor is ready to take a token, the token is immediately
sent to the successor and the process state cycles back to idle. It is worth
mentioning that, we have already introduced all types of nodes which

2.1 Syntax and semantics

can hold a token for a positive duration of physical time, i.e. initial nodes
and processes. Finally, we shall stipulate that a process can hold at most
one token at any given time, since we do not allow the instantiation of
multiple copies of a process at the same time. This may sound overly
restrictive especially when compared with ADs, but in the context of
automated manufacturing, we should note that a physical plant generally
does not provide multiple instances. Recall the drill station example in
Figure 8 and consider the process GetObject, which could be relatively
complicated involving motion control of a robot arm and other sensor
behaviours for workpiece positioning. While GetObject is busy, it is clear
that a “second instance” can not be provided if there is no “second copy”
of the drill station.

Terminal nodes Anoden € Nodeswith type(n) = terminal isa terminal node
and we write

TerminalNodes := { n € Nodes | type(n) = terminal } (7)

for the set of all terminal nodes in an SBD. A terminal node has exactly one
predecessor, no successors and eliminates any token it receives immedi-
ately. Readers being familiar with UML may have discovered that terminal
nodes are comparable with flow final nodes in ADs in that eliminating a
token does not influence other tokens in the SBD, i.e. the execution of
the SBD shall proceed if there are still remaining tokens. When all tokens
in one SBD are eliminated, we say that this SBD is finished.

Forks and joins A node n € Nodes with type(n) = fork is a fork while a node
n’ € Nodes with type(n’) = join is a join. We write

Forks := {n € Nodes | type(n) = fork }; (8)
Joins := {n € Nodes | type(n) = join } (9)

for the set of all forks and joins in an SBD, respectively. A fork has exactly
one predecessor as well as at least two successors and describes the simul-
taneous beginning of concurrent processes. Thus, when taking a token
from its predecessor, the received token is duplicated to match the num-
ber of successors. Note that a fork is not able to hold a token for a positive
duration of physical time, which indicates that the duplicated nodes
must be instantaneously propagated to the successors. Therefore, a fork
taking a token implicitly requires that each successor must be ready to
receive a token. On the other hand, a join represents the simultaneous
termination of concurrent processes and has at least two predecessors as

17

2 Sequential behaviour diagram

well as exactly one successor. As the counterpart of forks, a join receives
tokens from all its predecessors and assembles them into a single token,
which is instantaneously propagated to its successor afterwards. A join
cannot hold a token for a positive duration of physical time either. Thus,
each predecessor of a join n € Joins can send its token only if (i) all other
predecessors of n are ready to send a token and (ii) the successor of n can
receive a token.

Branches and merges A node n € Nodes with type(n) = branch is a branch
while a node n” € Nodes with type(n’) = merge is a merge. We write

Branches := {n € Nodes | type(n) = branch }; (10)
Merges := { n € Nodes | type(n) = merge } (11)

for the set of all forks and joins, respectively. A branch has exactly one
predecessor as well as at least two successors and represents the choice
of alternative processes. Upon receiving a token from its predecessor,
a (possibly non-deterministic) choice of successor is taken, to which
the token is instantaneously propagated. The non-determinism can be
resolved by assigning disjunct branchconditions on each outgoing edge,
which will be discussed in detailed in Section 2.1.3. Besides, similar to
forks, since a branch cannot hold a token for a positive duration of physical
time, a branch can only take a token if the chosen successor is ready to
take a token. On the other hand, a merge denotes the termination of
alternative processes and has at least two predecessors as well as exactly
one successor. If some predecessor n’ € Nodes of a merge n € Merges is
ready for token propagation and the successor of n is ready to receive a
token, the token in n’ is instantaneously propagated to the successor of
n.

With the intended usage of each type of nodes as discussed above, it is con-
venient for us to define the syntactical well-formedness of an SBD. In the
remainder, we assume that all SBDs are syntactically well-formed. For con-
venience, we say a sequence of nodes nyn, ...n;, k > 1 wheren; ; € suc(n;)
forall i € {0,... k — 1} is an instant node sequence if none of the nodes in this
sequence is an initial node, a process or a terminal node.

Definition 2.1.3. An SBD S = (Nodes, Edges, type) is syntactically well-
formed if and only if all the following conditions hold:

(W1) for any node n € Nodes,
(i) if type(n) = initial, then pre(n) = () and |suc(n)| = 1;

18

2.1 Syntax and semantics

(ii) if type(n) = process, then |pre(n)| = |suc(n)| = 1;

(iii) if type(n) = terminal, then |pre(n)| = 1 and suc(n) = 0;

(iv) if type(n) € {fork, branch}, then |pre(n)| = 1 and |suc(n)| > 1;

(v) if type(n) € {join, merge}, then |pre(n)| > 1 and |suc(n)| = 1;
(W2) |InitialNodes| > 1;
(W3) forany instant node sequence nyn, ... ny, if ny, € Forks, thenn,, ¢ Joins;
(W4) for any instant node sequence nyn; ... ny, ny % ny;

(W5s) for any two instant node sequences nyn, ...n; and nyn} ...n,, where
ny € Branches and n, # nj, there does not exist any n” € Joins so that
n” is in both sequences.

While conditions (W1) and (W2) are relatively straightforward from intuition,
we briefly explain (W3)-(W5) which specify the structure of instant node
sequences. (W3) prescribes that a join shall never be reached from a fork
without visiting any process, otherwise an empty but instantaneous concurrent
execution is present, which shall be considered spurious. This condition is
inspired by (R. Eshuis, 2006, Transformation rule 2). Furthermore, (W4)
disallows any instant node sequence to be cyclic, which prevents indefinite
instantaneous cycling of token propagation. Finally, (W5) requires that for any
two instant node sequences beginning at the same branch but with different
successor choices, they shall not be able to instantaneously reach the same
join, as token propagation through such a join can never take place.

2.1.2 Formal semantics

2.1.2.1 Single SBD

In this subsection, we focus on formalising SBD semantics and begin with the
case where only one SBD is involved. As SBDs are syntactically comparable
with ADs, existing literature addressing the semantics formalisation prob-
lem for ADs are great references. One common approach to formalising AD
semantics is to consider ADs as Petri-nets with extended semantic features;
see e.g. (H. Eshuis, 2002; R. Eshuis and Wieringa, 2003; Storrle, 2004). Recall
briefly that a Petri-net is a bipartite graph with two disjunct vertex sets, i.e. the
set of places and the set of transitions, and a set of directed edges so that each
edge either connects a place to a transition or vice versa. Most prominently,
only places are able to hold tokens, while firing transitions, i.e. propagate
tokens from places via transitions in the edge directions to further places, is

19

2 Sequential behaviour diagram

instantaneous.! In this context, it is worth mentioning that, modelling pro-
cesses (or activities in ADs) as places or transition in Petri-nets are both valid
semantic interpretations. The former interpretation which is studied in (H.
Eshuis, 2002; R. Eshuis, 2006) follows the UML 1.5 specification where ADs
are considered as extended UML State Machines (SMs), which is again derived
from statecharts (Harel and Naamad, 1996). However, this is not the case in
UML 2.z where SM and AD are semantically separated from each other. An
activity in UML 2.z is loosely considered as the sequencing of instantaneous
actions, and thus is naturally considered as a transition in Petri-net; see e.g.
(Storrle, 2004). Although the latter one is often considered as closer to Petri-
net semantics (R. Eshuis and Wieringa, 2003), the former approach is more
preferable for our modelling requirement in that each process represents a
programme block and programme execution can consume a positive duration
of physical time. Thus, control instructions specified in a process do not need
to be instantaneous. Thus, we introduce the notation

Places := InitialNodes U Processes C Nodes (12)

to denote the set of nodes which correspond to places in Petri-nets.

Conventionally, the dynamic behaviour of a Petri-net is characterised by the
change of token distribution over places, which is caused by token propagation.
This intuition is generally followed by SBD dynamics as well. To this end, a
careful explanation of the time model used by SBD dynamics is demanded
for a faithful formalisation. For a great number of physical systems, time is
usually described on the non-negative real time axis R so that continuous
dynamics can be expressed appropriately. However, in this case, it is awkward
to express multiple instantaneous transitions which are ordered in a specific
sequence. This motivates the application of the two-dimensional time axis
RS % N, where in addition to the ordinary continuous dynamics (i.e. the
“horizontal axis”), instantaneous events can be finitely “vertically” stacked.
This is referred to as dense time in e.g. (Eker, Janneck, Lee, J. Liu et al., 2003)
and the resulting dynamic behaviour is considered hybrid (Tabuada, 2009).
For SBDs, we assume that continuous dynamics is not considered, which
allows us to simplify the dense time model to N, x N,. Furthermore, we can
in fact utilise N, as our time model, which is often referred to as the logic time,
on which the physical time duration between two points ranges over Rj. By

! Note that this is true in most timed Petri-nets as well. In such cases, once a transition
becomes enabled, it can actually be fired only after a non-negative duration of physical time.
While “waiting” for firing, tokens enabling the transition still stay in original places and
firing transitions is instantaneous; see e.g. (Cassandras and Lafortune, 2008).

20

2.1 Syntax and semantics

keeping the two-dimensional time axis N, x N, in mind, the terminology
elapse of physical time is utilised to denote the progress in the horizontal
time axis, i.e. in the physical time. Thus, we utilise ¢ € N, in the following to
denote a concrete “time point” on the logic time axis.

Based on the logic time axis, we define the token distribution over places,
i.e. the configuration of an SBD, as a semantic variable* Marking. Recall that
each place in an SBD can hold at most one token. Thus, it is convenient to let
Marking directly range over subsets of Places, i.e. utilise

Marking(¢) C Places (13)

to map a time instance ¢ € N, to a subset of Places.

If token propagation is possible at some time instance ¢, the token in n €
Marking(¢) is instantaneously propagated to suc(n) (note that n as a place has
only one successor). However, if suc(n) N Places = (), further instantaneous
propagations shall be taken, until there are no tokens left in any non-place
node. From (W3y), a series of instantaneous propagations from one configura-
tion to the successive one always takes finite steps, i.e. only a finite number of
edges will be visited. Token propagation through such a finite edge sequence,
which is referred to as a hyper-edge as suggested in (R. Eshuis, 2006), does
not consume any physical time and is semantically mapped to a Petri-net
transition. We write HEs to denote the set of all hyper-edges included in an
SBD. For any h € HEs, it is convenient to define

Sources(h) C Places and Targets(h) C Places (14)

to access its sources, from which the tokens are propagated by firing /, and
targets, which obtain tokens after firing h, respectively. Note that an hyper-
edge must have at least one source, but may have no outputs due to token
elimination at terminal nodes, which is a possible situation in Petri-nets as
well. In addition, another type of information a hyper-edge may carry is its
branch choices, i.e.

BranchChoices(h) C { (n,n”) |n € Branches,n” € suc(n) } =: BranchChoices,

(15)

> A semantic variable is referred to as a variable utilised to formulate SBD semantics. Semantic
variables shall not be confused with system variables (or concisely variables) later on, which
are utilised to e.g. formulate conditions.

21

2 Sequential behaviour diagram

which record all branches h passes through and the corresponding successor
choice at each such branch. Since each hyper-edge only represent determin-
istic branch choice, it holds that for each h € HEs, we must have

V(n,n"), (m,m") € Branchchoices(h). n=m = n’ =m'. (16)

Since a hyper-edge may pass through multiple different kinds of non-place
nodes, it is not trivial to compute HEs of a given SBD. In the following, we
show an algorithm which constructs a single hyper-edge % from a given place
ny € Places so that n, € Sources(h). The pseudo-codes of the algorithm
are given in Algorithm 1. Note that since only one hyper-edge is constructed
from n, which may pass through branches and merges, consistent choices
for each branch to one of its successors as well for each merge back to one
of its predecessors are necessary for multi-step searches. These are denoted
by 5 : Branches — Nodes and v : Merges — Nodes as global parameters of
Algorithm 1, respectively, where we naturally require that

Vn € Branches. 5(n) € suc(n); (17)
Vn' € Merges.y(n") € pre(n’) (18)

must hold. We now explain Algorithm 1 as follows.

HYPEREDGECONSTRUCTION(n,) This function constitutes the main func-
tion of the algorithm which consists of a recursive breadth-first forward
search FORWARDSEARCH for the given seed node n, and a recursive
breadth-first backward search BACKWARDSEARCH if any join is visited
during the forward search. To represent the resulting hyper-edge i where
ny € Sources(h), this function returns all sources and targets of the hyper-
edge as well as all involved branch choices.

FORWARDSEARCH(N, N,) This function recursively search successors from
the input node set N C Nodes. To encode the successor choice induced
by /3, we introduce a restricted successor map suc; which is defined by

suc(n) if n € Nodes — Branches;
sucg(n) = (19)

{B(n)} if n € Branches.

For each n € N, all non-place non-terminal successors are recorded in
a set sucs C Nodes — Places — Terminals for the next iteration, while all
place successors are recorded in the result targets C Places. Note that if
a successor is a join, its unvisited non-place predecessors are recorded in

22

2.1 Syntax and semantics

Algorithm 1 Hyper-edge construction

—

AN I

14:
15:
16:

17:
18:
19:
20:

21:

22:
23:
24:

25:
26:
27:
28:

29:

global: sources > result to return, initialised to empty set
global: targets [> result to return, initialised to empty set
global: branchChoices > result to return, initialised to empty set
global: [> pre-defined successor choice of each branch
global: v > pre-defined predecessor choice of each merge

function HYPEREDGECONSTUCTION(7,)
sources < {n,}
back < FORWARDSEARCH ({n},)
BACKWARDSEARCH (back)
return sources, targets, branchChoices
end function

function FORWARDSEARCH(N, N)
sucs « () [> (one-step) successors for the next iteration
foralln € Ndo
sucs < sucs U (sucg(n) — (Places U Terminals))
targets < targets U (sucg(n) N Places)
if n € Branches then
branchChoices < branchChoices U (n,sucg(n)) [>sucg(n)
has only one element
end if
forall n, € sucs N Joins do [> record other joined nodes
N, <= N, U (pre(ny) — {n} — Places) [> non-place pred. for
bw. search
sources < sources U (pre(n,) N Places)
end for
end for
if sucs # () then
N, < N, UFORWARDSEARCH (sucs, IN,) [> collect all joined nodes
recursively
end if
return N,
end function

function BACKWARDSEARCH (V)
pres < () [> (one-step) predecessors for the next iteration
foralln € Ndo
pres < pres U (prew(n) — Places)
sources < sources U (prew(n) N Places)

23

2 Sequential behaviour diagram

30:

32!
33:
34
35:
36:
37:

if n € Branches then
branchChoices < branchChoices U (n, pre(n)) [>abranch
has only one pred.
end if
end for
if pres # () then
BACKWARDSEARCH (pres)
end if
end function

N, C Nodes — Places for backward search. It is worth mentioning that
due to (W4), no non-place node can be reached twice and the recursion
is guaranteed to terminate.

BACKWARDSEARCH(N) Since the forward search may visit joins, a backward

search for non-place predecessors at each join is necessary. Similar to
sucg, a restricted predecessor map pre_ is defined by

{7(n)} if n € Merges. (20)

pre(n) if n € Nodes — Merges;;
pre_(n) = {

to encode the predefined merge predecessor choice. Note that whenevera
branch is visited during the backward search, its unique predecessor and
itself is directly recorded in the branch choice regardless of 3. Also note
that if the backward search is performed, it can never reach a fork without
visiting a process beforehand due to (W3). Thus, the forward search does
not need to be performed anew. In addition, (Ws5) guarantees that all
branches visited during the backward search shall not have appeared
in the forward search. Hence, ambiguous branch choices can always be
avoided, as required in (16).

Based on applying Algorithm 1 for each place n € Places, each possible branch
successor configuration and merge predecessor configuration -, the set of
all hyper-edges of an SBD can be determined. Note that since each place
can be a source of only one hyper-edge under given (and ~, places which
already belong to sources of some constructed hyper-edges can be skipped.
Furthermore, enumerating 3 and -y can be recursively implemented by forking
the computation when any new branch or new merge is detected during
recursion, respectively.

24

2.1 Syntax and semantics

Recall that SBD dynamics is organised by firing hyper-edges. Basically, a
hyper-edge can be fired only if it is enabled. Since enabledness of a hyper-edge
is related to the process states of its sources and targets, we first define a
semantic variable ProcessState,, for each process n € Processes to map each
time instance ¢ to one of the process states, i.e.

ProcessState,, (¢) € ProcessStates, (21)

based on which the definition of an enabled hyper-edge is given as follows.

Definition 2.1.4. A hyper-edge h € HEs is enabled at time ¢ if and only if all
the following conditions hold:

(E1) Sources(h) C Marking(¢);
(E2) Vn € Sources(h) N Processes. ProcessState,, (1) = done;
(E3) Vn € Targets(h). n ¢ Marking(t) — Sources(h);

(E4) the guard condition associated with h evaluates true at ¢.

In Definition 2.1.4, (E1) requires that all sources of the considered hyper-edge
are currently in the configuration. In addition, (E2) further requires that all
processes in the sources must be in the process state done. (E3) implies that all
targets of the considered hyper-edge must be in the process state idle, except
when a target is also a source of the same hyper-edge. Finally, we temporarily
assume that (E4) always holds. A detailed discussion of conditions will be
presented in Section 2.1.3. For convenience, we define the semantic variable
Enabled to denote the set of enabled hyper-edges at some time instance ¢, i.e.

Enabled(t) C HEs. (22)

In the following, we characterise the SBD dynamics by describing the individual
update of configuration as well process states of all processes at ¢ + 1 utilising
the information at .. Note that the complete dynamic behaviour is based
on updating SBD from proper initialisation of the SBD, which can only be
faithfully described considering how SBDs are nested with each other within
an SBD project; see Section 2.1.2.2.

Definition 2.1.5. The individual update of an SBD S'is defined by the following
equations:

25

2 Sequential behaviour diagram

(i) if Enabled(:) # 0, then by picking any h € Enabled(v) and fire h, the

configuration is updated by
Marking(c + 1) = (Marking(¢) — Sources(h)) U Targets(h), (23)

and the process state of each process n € Processes is updated by the
following equations:
if n € Sources(h) U Targets(h), then

idle if n € Sources(h) — Targets(h);

ProcessState,, (1 + 1) =
busy if n € Targets(h);

(24)
otherwise,
idle if ProccessState,, (1) = idle;
ProcessState,, (¢« + 1) = < busy or done if ProccessState,, (1) = busy;
done if ProccessState,, (1) = done;
(25)

(ii) otherwise, i.e. if Enabled(:) = (), then the configuration is updated by

Marking(¢ + 1) = Marking(¢) (26)

and the process state of each process is updated according to (25).

Generally, the individual update is defined as such that if some hyper-edges is
enabled, one of them must be fired, causing a configuration update by remov-
ing tokens from all sources and then providing tokens to all targets. Besides,
the process state of each process is updated according the idle-busy-done cycle.
At the current stage, the following two points w.r.t. Definition 2.1.5 are worth
mentioning:

26

» In the second case of (25), a process n € Processes which is irrelevant
to the picked enabled hyper-edge and is in the process state busy at ¢
have two possible process states at ¢ + 1, namely, either still busy or
done. This corresponds to two possible situations: if n does not invoke
any other SBD, evolving from busy to done is spontaneous due to the
black-box mechanism of processes; otherwise, i.e. n invokes some SBD
T, n evolves from busy to done if and only if 7'becomes finished. The
latter case is addressed in detail in Definition 2.1.8.

2.1 Syntax and semantics

» Since an enabled hyper-edge £ is arbitrarily picked from all currently
enabled hyper-edges, non-deterministic behaviour may emerge when
multiple simultaneously enabled hyper-edges share some sources. In
other words, if two enabled hyper-edges visit the same branch with
different branch choices, firing one hyper-edge may disable the other.
This is often referred to as conflict; see e.g. (R. Eshuis, 2006). Neverthe-
less, in practice (especially in automated manufacturing), deterministic
behaviour of control programmes is often desired. As for SBDs, this
can be interpreted as such that different orders of firing simultaneously
enabled hyper-edges should lead to the same configuration. This can
be achieved by exclusive branch conditions, which will be introduced in
detail in Section 2.1.3.

Finally, we recall that a token can not be propagated into a process which
currently holds a token, which is also stated in Definition 2.1.4. We encode
this semantic restriction into semantic well-formedness, or concisely well-
formedness, as follows, which is assumed for all SBDs in the remainder.

Process A Y

Process B

Process A

Process B é

Figure 9: Example SBDs with concurrent processes that are not properly joined

Definition 2.1.6. A (syntactically well-formed) SBD S is semantically well-
formed if and only if

27

2 Sequential behaviour diagram

(W6) forall h € Enabled(v) at any time instance 1, it holds that

Sources(h) C Marking(t) — (Marking(.) —Sources(h)) N Targets(h) = 0.

_(27)

One typical situation for a syntactically well-formed SBD being not (semanti-
cally) well-formed is such that multiple tokens generated by a fork or initial
nodes are improperly merged, e.g. as depicted in Figure 9. In fact, in other
programming languages with similar Petri-net-like structure, e.g. Sequential
Function Charts (SFCs) as defined in IEC 61131 — 3 standard, structures in
Figure g are considered illegal as well. In practice, more restrictive syntactic
rules are often preferred where concurrent (or alternative) processes initialised
by a join (or a branch) must be terminated by a fork (or a merge). This kind
of restriction is adopted by e.g. Siemens-GRAPH, which is a programming
language derived from SFC.

2.1.2.2 Nested SBDs

Based on the semantics of each individual SBD, the global behaviour of a
complete SBD project can be formalised by considering parallel execution
(modularity) and invocations (hierarchy) between SBDs. Recall that the tuple
of an SBD S € SBDP includes the invocation function invokegy. For any
n € Processesg, invokeg(n) € SBDP indicates that n does invoke an SBD,
in which case n is referred to as an invoker. Contrarily, if invokeg(n) = 0,
then the process n is atomic and its behaviour is not specified by any SBD.
Correspondingly, we utilise3

invokedBy: SBDP — gProcesses™ (28)

with
GL._
Processes” " := Ug.ggppProcessesg (29)

to denote the set-valued inverse of invoke, i.e. to match an SBD S to all its
invoker processes globally. For any SBD S so that invokedBy(.S) = 0, it is not
invoked by any process and thus is referred to as a root. Note that an SBD
project may contain multiple root SBDs, which are operated in parallel in
that they are initialised simultaneously; see Definition 2.1.7 below. Also note
that henceforth, the convenient notation (-)°" is utilised to union sets of

3 2% denotes the power set of a set X.

28

2.1 Syntax and semantics

components in all SBDs of the SBD project with uniform component type,
which also applies to semantic variables, e.g. we utilise

Marking®" (1) := UsesgppMarking (1) . (30)

to denote the global configuration at time ¢.

Based on the individual update of each SBD, the dynamics of an complete
SBD project can be represented by the initialisation and update of the global
configuration and the process state of each process. Initialisation of an SBD
project occurs at ¢ = 0. Upon initialisation, globally all processes are set to the
process state idle, while in each root SBD, each initial node obtains one token.

Definition 2.1.7. The initialisation of an SBD project SBDP is defined by the
following equations:
For all S € SBDP,

InitialNod if invokedBy(S) = 0;
Marking(0) = nitialNodesg if invokedBy(S) = 0) (31
0 if invokedBy(S) # 0.
For all n € Processes®",
ProcessState,, (0) = idle. (32)

As for the updates, special care should be taken for each invoker process and
the SBD it invokes. Unlike atomic processes, the behaviour of an invoker is
specified by an SBD, which implies that the process state cycle is related with
its invoked SBD. This motivates us to adapt the CallBehaviorAction defined
in ADs to interpret the semantics of SBD invocation; namely, a invoker is in
the process state busy when the invoked SBD is under execution, and sent to
the process state done when the invoked SBD is finished. This design choice
is also similar to that of macro steps in Grafcet (Provost, J.-M. Roussel et al.,
2011).

Definition 2.1.8. The update of an SBD project SBDP is defined by the conjunc-
tion of individual updates of each SBD S € SBDP and the following equations:

(i) Let h € HEs®" be enabled and fired at time instance (. For all n €
Targets(h) so that invoke(n) =T € SBDP, it holds that

Marking (¢ + 1) = InitialNodes; (33)

29

2 Sequential behaviour diagram

G

(ii) At any time instance , for all n € Processes®" so that invoke(n) = T €

SBDP, it holds that

Marking, (1) # () = ProcessState,, (1) = busy; (34)
Marking,(¢) =) = ProcessState, (¢) € {done, idle}. (35)

With Definitions 2.1.5, 2.1.7 and 2.1.8, all possible trajectories of Marking®" ()
and ProcessState,, (1) for all n € Processes®" of a given SBD project can be
described, which can further be represented by automata. At the end of
this paragraph, we recall that instantiating multiple copies of any process is
considered illegal. As for nested SBDs, this indicates invoking a non-root SBD
T'is not allowed when T has already been invoked and is still unfinished. In
addition, we syntactically disallow cyclic invocation structure. For an SBD
S with a invoker process n € Processesg, allowing processes in invoke(n) to
invoke S'is with little practical value. Hence, we introduce the well-formedness
of an SBD project. For convenience, we introduce the term invocation sequence
to denotea finitely concatenated sequence of SBDs S5 ... S, where k > 1and
for each S; and S, 4, there exists some n € Processesg. so that invoke(n) =
Siy1-

Definition 2.1.9. An SBD project SBDP is well-formed if and only if
(WP1) for any time instance i, it holds that

Vn,n’ € Marking® (1). n # n’ A invoke(n) € SBDP A invoke(n’) € SBDP
— invoke(n) # invoke(n'); (36)

(WP2) for any invocation sequence S5, ... Sy, it holds that S, # S,

In the remainder, well-formedness is assumed for all SBD projects.

2.1.3 Conditions and variables

In this section, the long awaited definition of the substructure Guards of each
SBD tuple is revealed. Recall from Definition 2.1.4 that a hyper-edge is always
associated with a guard condition, which is defined within Guards. We first
provide the formal definition of Guards as follows.

Definition 2.1.10. The guards of an SBD is a tuple Guards := (Variables,
precond, postcond, branchcond, Initcond) where

e Variables is a set of system variables, or concisely variables;

30

2.1 Syntax and semantics

e precond : Processes — Conditions is the precondition assignment function
where
Conditions denotes the set of all legit propositions formulated by Variables;

e postcond : Processes — Conditions is the postcondition assignment func-
tion;

e branchcond : BranchChoices — Conditions is the branch-condition assign-
ment function;

¢ I|nitcond € Conditions is the initial condition.

Each SBD has a set Variables of (system) variables which are manipulated
by processes (e.g. for controlling actuator) and/or describe the plant status
(e.g. by reading sensor line levels). In additions, variables can be utilised
to construct various conditions to guard token propagations. Technically, a
condition is a mapping from some expression based on variable evaluation at
some physical time instance to a boolean value,* where we particularly require
the trivial condition true must be a valid condition, i.e. true € Condition
must hold. Since continuous dynamics is not considered, for each variable
v € Variables, a finite set of values is defined which is denoted by range(v),
from which a value is taken by v at each discrete physical time instance and
we write

v(1) € range(v). (37)

Note that ¢ in (37) denotes a time instance on the logic time axis, which encodes
the (discrete) physical time axis as well. However, in order to faithfully illus-
trate the cooperative relation between token propagation and variable evalu-
ation, the two-dimensional dense time axis N, x N is essential. Semantically,
we require that if a hyper-edge is fireable, i.e. enabled and actually chosen
if conflict among enabled hyper-edges exists, then it must be fired immedi-
ately. This semantic assumption is widely adopted in various Petri-net-like
modelling languages; see e.g. (R. Eshuis, 2006; Object Management Group,
2017b; Provost, J.-M. Roussel et al., 2011), since as soon as the guard condition
associated with a transition evaluates true, firing this transition shall never
be delayed as such that its guard condition is again invalidated. Thus, in
the context of SBDs, fireable hyper-edges are stacked vertically on a physical
time instance. More importantly, value changes of some explicit variable can

4 At the current stage, we do not explicitly require the form a condition expression should take.
In fact, when translating SBDs to automata in Section 2.2, it is expected that each atomic
element forming a condition in Conditions, i.e. an atomic proposition, always takes the form
of an equality proposition, e.g. position = west as in the drill station example. Extending
expressions to more general syntax is beyond the scope of the current dissertation.

31

2 Sequential behaviour diagram

Lo vi=1 v:=0
t,) 1 fireh
1,y 1 fire

Lp

T T
Lho tn

0, "

Figure 10: Value change and hyper-edge firing on the two-dimensional logic time axis (the
vertical axis is directed from top to bottom to suit the intuition of “the top most event occurs
first”)

only happen at the top of such stacks, i.e. there must be a minimal positive
duration of physical time between value changes. Meanwhile, “inserting” a
value change into the middle or bottom of the stack is forbidden.> A concise
example of this mechanism is illustrated in Figure 10, where we explicitly
utilise ¢, and ¢, to separately denote the discrete physical time and vertical
instantaneous action stack, respectively. Suppose the value of some variable v
changes from 0 to 1 at physical time ¢;, = ¢;,,. This event is placed at the top of
the stack; namely, at (¢, ¢,) = (t1,0, tyo) Where ¢, by default denotes the first
instance of a stack at any ¢;,. Subsequently, hyper-edges h and i’ are enabled
and instantaneously fired at the same physical time instance. Although the
value of v may eventually again change from 1 to 0 at some physical time
instance ¢, it is guaranteed that ¢;,; > 5.

In the following, we introduce the semantic effect of all types of conditions of
an SBD.

Precondition To each process, a precondition is assigned by the function
precond. The precondition of a process guards the process state transition
from idle to busy, so that it is guaranteed that the process is “correctly
started”. This implies that a hyper-edge A is enabled at some time instance
¢ only if the precondition of each n € Targets(h) evaluates true at ¢.

Postcondition To each process, a postcondition is assigned by the function
postcond. The postcondition of a process guards the process state tran-
sition from done to idle. Thus, a hyper-edge # is enabled at some time
instance ¢ only if the postcondition of each n € Sources N Processes evalu-
ates true at ¢. This guarantees that the process is “correctly left”. Besides,
at any time instance ¢ so that the process state of some n € Processes

5 Note that this holds for all variables, i.e. two variables cannot change their values at exactly
the same physical time point.

32

2.1 Syntax and semantics

turns from busy to done, postcond(n) is guaranteed to evaluate true. Thus,
if a process is in the process state done, its postcondition may be invali-
dated due to e.g. the execution of other processes. In order that the
successive hyper-edge of n can be fired, such postcondition invalidation
must be temporary. Note that alternatively, we could have also interpreted
postconditions as such that the “correct leaving” part is dropped; namely,
the process state of a process can evolve from done to idle regardless of
its postcondition. Processes with such kind of interpretation can be in
fact equivalently modelled by our construct through concatenating a
dummy process with trivial pre- and postconditions, which is similar to
the so-called wait node as suggested in (R. Eshuis, 2006) and the SFC
specification in [EC 61131 — 3 standard.

Branch condition To each branch choice, a branch condition is assigned
by the function branchcond. A hyper-edge & is enabled at some time
instance ¢ only if all branch conditions assigned to branch choices in
BranchChoices(h) evaluate true at ¢. In order to guarantee deterministic
choice at each branch, branch conditions associated with each branch
must be exclusive, which can be verified through syntactical analysis. This
can be guaranteed for branches with two successors by simply utilising
the keyword else which denotes the complement of the branch condition
on the other branch choice.

Initial condition To each SBD, an initial condition Initcond is assigned. An
SBD can start execution, i.e. obtain tokens in initial nodes, only if its initial
condition evaluates true. In the context of nested SBDs, since the process
state of an invoker process n is instantaneously set to busy when the
SBD T = invoke(n) starts operation, a hyper-edge h with n € Targets(h)
is enabled only if the initial condition of 7 evaluates true. In fact, the
initial condition of an non-root SBD plays the same semantic roll as
the precondition of its invoker process. However, when considering
translating SBDs into automata, several computational advantages are
conceivable when utilising initial conditions since it generally reduces
the state space of each SBD containing invokers (since possibly fewer
variables are associated with this SBD) and each non-root SBD (since
this SBD can only be initialised in restricted cases). Finally, since all root
SBDs are directly activated upon the initialisation of the SBD project, it
is natural to stipulate that the initial condition of a root SBD must be
trivially true.

With all types of conditions explained, the guard condition of an hyper-edge
which is required in (E4) of Definition 2.1.4 can be formalised as follows.

33

2 Sequential behaviour diagram

Definition 2.1.11. Let SBDP be an SBD project. The guard condition of an
hyper-edge h € HEs®" is defined by the condition ¢;, € Conditions®" where

¢, = (/\ precond(n) A Initcondinvoke(n))

neTargets(h)

A (/\ postcond(n))

neSources(h)NProcesses®

A (branchcond(n, n’)) (38)
(n,n’)eBranchChoices(h)

where for any n € Processes®" so that invoke(n) = (), we have Initcond;,yoke(n) =
true.

2.1.4 Operation of the drill station example

With the SBD formal semantics explained, we review the operation of the drill
station as given in Figure 8. Recall that each node has a globally unique ID,
i.e. Nodes®" C N,,. In this context, each hyper-edge i € HEs is conveniently
denoted by a symbolic name which encodes its sources, targets and branch
choices, i.e. a hyper-edge i € HEs generally takes the form of

h = HE[S[sy, ..., 8,]C[by>cy, oo, b;>c| Tty - 8], (39)

with {s;,...,s;} = Sources(h), {(by, 1), ..., (b;, c;) } = BranchChoices(h) and
{t1, .. ty} = Targets(h). Thefragment C[b; >cy, ..., b;>c;]and/or T[ty, ... t;]
in (39) is omitted if the involved hyper-edge i does not visit any branch and/or
the target set of h is empty, respectively. Considering this nomenclature, the
nested SBDs S'and 7'in Figure 8 hold hyper-edges

HEsg = { HE[S[10]T[11]],

HE[S[11]] } (40)

and

34

2.2 Translating SBDs into automata

Upon the initialisation of the SBD project SBDP = {S,T'}, a token is immedi-
ately generated in the initial node 10 in Swhile there is no token in 7. Byassum-
ing that the initial condition of T'is trivial, the hyper-edge HE[S[10]T[11]]
becomes enabled as soon as precond(11), i.e. button = pushed, evaluates true.
Once HE[S[10]T[11]] becomes enabled, it is fired immediately, causing the
token in initial node 10 to propagate into process 11 DrillWP. This propagation
sends process 11 to the process state busy and since process 11 invokes SBD 7'
(denoted by the symbol 1), a token is generated in the initial node 0 in T'at
the same time. At this stage, if precond(1) (i.e. position = west) evaluates true,
the only subsequently fireable hyper-edge HE[S[0]T[1]] is instantaneously
fired. This sends process 1 to the process state busy and the programme
codes in process 1 are executed. Upon the termination of process 1, it is
switched to the process state done and its postcondition position = south
must evaluate true. At this stage, two hyper-edges are possible to be fired sub-
sequently, i.e. HE[S[1]C[1003>2]T[2,4]] and HE[S[1]C[1003>3]T[3,4]]. Fir-
ing either hyper-edge requires postcond(1) to be true. In addition, firing
HE[S[1]C[1003>2]T|2, 4]] requires that branchcond(1003,2), i.e. wptype = a
evaluates true, while firing HE[S[1]C[1003>3|T|[3, 4]] requires that branchcond
(1003, 3) evaluates true. For instance, we pick HE[S[1]C[1003>2]T[2,4]] to
fire. This sends the configuration of T from {1} to {2, 4}, i.e. drilling starts
and the ventilator for dust removal is turned on parallelly. At this stage, the
next fireable hyper-edge is HE[S[2, 4]], which becomes enabled once both
processes 2 and 4 are in the process state done. Firing HE[S[2, 4]] finishes SBD
T, which turns process 11 of the SBD S to the process state done. Since the
postcondition of process 11 is trivial, its successive hyper-edge HE[S[11]] is
directly enabled and thus immediately fired afterwards. This eliminates all
tokens in SBD S and, since there is no token left in any SBD, the execution of
this SBD project is terminated.

2.2 Translating SBDs into automata

Based on the formal semantics introduced in Section 2.1, the current sec-
tion proposes the procedure to translate SBDs into automata. Technically,
we represent the global behaviour of an SBD project by the synchronisation
of multiple automata, each of which is translated from one SBD in the pro-
ject® while an explicit construction of the global behaviour is unnecessary.

6 Note that we do not explicitly refer to as the standard synchronous composition at the
current stage. See Step 4 below.

35

2 Sequential behaviour diagram

r SBD

reachability constraint
automaton automata

o
=1
—
o
=]
o
-
&

result automaton
&

high-priority |- — - - — — — — — — —]

events

Figure 11: Translation procedure of a single SBD (plant automata are not considered throughout
this section)

Moreover, each SBD is translated based on the construction of its correspond-
ing reachability graph as well as various types of constraint automata. By
referring to Figure 11, we outline the translation procedure for each SBD as
follows:

Step1 Construct the reachability graph of the SBD and interpret it as an au-
tomaton by mapping each reachable configuration of the SBD into a state
and mapping hyper-edges to the alphabet of this automaton. In addition,
for a non-root SBD in the context of nested SBDs, the reachability graph
is extended to describe its cyclic activation and deactivation, since its
invokers may be activated multiple times.

Step 2 Construct automata to represent various constraints. In the current
section, there are two types of automata involved:

Condition automata Automata of this type handle the guard conditions
of hyper-edges. By interpreting value change of variables as events,
automata can be constructed where each state represents the evalu-
ation of one or multiple variables. As we only consider conditions
formulated based on equality propositions, hyper-edges can be fired
only in states where the variable evaluations satisfy the guard condi-
tion.

Process state automata Automata of this type organise the process state
cycles of processes.

Step 3 All automata constructed in the previous two steps are composed
through synchronous composition (Cassandras and Lafortune, 2008). To

36

2.2 Translating SBDs into automata

represent the closed-loop behaviour of the (sub-)system, a pre-constructed
plant model is taken into the composition as well. Finally, to represent the
high-priority of firing certain hyper-edge over value changes of variables,
we collect all events with higher priority as part of the translation result.
A typical situation is that for an SBD upon initialisation (i.e. the configur-
ation is InitialNodes), all enabled hyper-edges must be fired immediately
as soon as the preconditions of all successive processes evaluate true.

From the translation procedure above, translating one SBD results in one
single automaton combined with a set of high priority events. The technical
details are illustrated in the following subsections. At the end of the current
section, we will also clarify how the global behaviour can be represented by
the translation results, i.e. how are the automata synchronised considering
the high-priority events. Note that for an automaton constructed during
the translation of some SBD S € SBDP, we persist to utilise the subscript
(-)g if multiple SBDs are involved. The superscript (-)°" is utilised in similar
situations where uniform type of elements resulting from each individual SBD
translation need to be collected.

2.2.1 Reachability automaton

To represent the dynamics of a Petri-net, its reachability graph is commonly
utilised which is a directed graph where each vertex denotes one reachable
token configuration and each directed edge is associated with one or several
Petri-net transitions. Analogously, we represent the individual update of
an SBD as defined in (23) and (26) by constructing a reachability graph and
interpret it as an automaton. Such an automaton Ggrgacy is a reachability
automaton with its alphabet Yzgpacy. For the drill station example, both
reachability automata resulting from SBDs S and T'are depicted in Figure 12.
To clarify Ygeacy, we utilise the event set ¥y, in which each event 0, € ¥,
is bijectively mapped to a hyper-edge h € HEs, i.e.

Thes = {0 | h € HEs}. (42)

Clearly, this event set is identical to the alphabet of the reachability automaton
of aroot SBD, e.g. for Ggeacy g in Figure 12, we have

2REACH,S = EHEs,S . (43)

In addition, from the SBD initialisation as defined in (31), the initial state of
GRreach.s corresponds to the configuration InitialNodesg. On the other hand,
for any non-root SBD, the alphabet of its reachability automaton shall be

37

2 Sequential behaviour diagram

— (o) @D+ 3

lHE[S[lO]T[ll]] lHE[S[O]T[l]]

@D

lHE[S[l 1]

B11

HE[S[1]C[1003>2]T[2,4]] @ HE[S[1]C[1003>3]T[3,4]]

D, HESI2. 4N, HEIS[3.41
-~

J

Figure 12: Reachability automata of the drill station example: Ggeacy, 5 for S (left) and
Greacn, 7 for T (right)

extended. From (34), an invoker being sent to the process state busy implies
that the invoked SBD gets tokens in its initial nodes. As for the non-root SBD
T, its corresponding alphabet is given by

ZREACH,T = ZHES,TO Z|Nv,T (44)

where
Yinv,r = 1{Bn|n € Processes®" A invoke(n) = T'}. (45)

At the current stage, we explain the event set Xy, 1-as such that by executing
any Bn € ¥\y 1, the process state of n € Processes®" (which invokes T') is
turned to busy. In fact, events in the form of Bn are referred to as “busy events”
which will be discussed in detail in the following subsection. For the current
example, we have ¥y, = {B11}. In the subsequent subsections, we shall
see that the event B11 will appear in the translation result of .S as well. This
construction represents the hierarchical structure in a modular fashion, which
is similar to the usage of interface in (Leduc, 2002a). Furthermore, as (31)
suggests, the initial state of Girgacp 7 corresponds to its empty configuration
and for each Bn € ¥\y 1, a transition is constructed from the empty con-
figuration to the configuration IntialNodes,. Finally, from the perspective of
automata theory, we point out that state names are only cosmetically illus-
trated in figures as they do not contribute to the formal language generated
by the automaton.

2.2.2 Constraint automata

We now construct automata which guard the transitions in a reachability
automaton, namely, condition automata and process state automata.

38

2.2 Translating SBDs into automata

2.2.2.1 Condition automata

Recall from Definition 2.1.4 thata hyper-edge can be fired only if its correspond-
ing guard condition (38) evaluates true. Since we only consider conditions
formulated by equality propositions resulting from variable evaluations, for
any condition ¢ € Conditions, an automaton G, is constructed based on com-
posing variable automata G, for each v € Variables involved in c. Basically,
the state set of GG, is set up as such that each state is bijectively mapped to a
value [€ range(v), from which we define the alphabet of each G, as

5, = {0, |1 € range(v)} (46)

where each event o, , € ¥, is interpreted as “the value of variable v has
changed to [”. For convenience, we utilise the notation

EVAR = UveVariabIeszv (47)

as well to denote all variable events of an SBD. Finally, one or several values
can optionally be picked from range(v) to denote possible initial values of
v in order to restrict the set of initial states. Otherwise, all states of GG, are
considered initial.

We show an example G, for a variable light with three possible values
range(light) = {off, blink,on} and initial value off in Figure 13. To match
the style of hyper-edge names, we symbolically represent each event in ¥, for
the variable v by

0,1 = VE[v,]] (48)

Typically, each value may be changed to any other value freely, which may seem
to be overly permissive in some contexts. Consider briefly another situation
where a variable depth has three values range(depth) = {Ocm, 1cm, 2cm}. This
can e.g. be utilised to denote the drilling depth for the drill station example.
Clearly, from Ocm, the state 2cm shall not be reachable without first reach-
ing 1cm. Nevertheless, such kind of restrictions can always be described in
properly constructed plant models.

Let h € HEs be some hyper-edge. In order to construct GG, for the guard
condition ¢, € Conditions of h, the synchronous composition of all G,, where
v € Variables is involved in c is first to take. Each state in the resulting
automaton indicates a possible evaluation of all involved variables. On this
basis, self-loops labelled by 0, € ¥ggacy can be appended in states of this
automaton where the guard condition ¢;, of h € HEs evaluates true. Finally, for
the considered SBD, an automaton G ¢oyp Which guards all hyper-edges of the

39

2 Sequential behaviour diagram

VE([light, on]

W VE[light. blink] N
ight, blin
— (o) < .
T VE[light, off]
VE(light, off] VE[light, blink]

Figure 13: Automaton tracking a variable light with range {off, blink, on}

current SBD can be constructed by computing the synchronous composition
ofall G, foreach h € HEs.

Remark 2.2.1. Since the guard condition defined in (38) is in conjunctive form,
we could normally separately construct automata for precondition, postcondi-
tion, etc., which are then composed via synchronous composition. Moreover,
if Conditions only recognises conjunctions of equality propositions, condition
automata can be constructed straightforward on a per-variable basis without
needing an explicitly construction of G.. This is achieved by directly construct-
ing G,, for each v € Variables and append a self-loop labelled by o}, € Xzeach
in each specific state of G,, whenever

» v is involved in the guard condition of h and

» the value corresponding to this state matches the equality proposition
utilised in h.

On this basis, G¢onp can be computed by the synchronous composition of all
such “self-loop augmented” G, since G op overall describes the conjunction
of a collection of equality propositions. Note that special care should be taken
for branch conditions if this pure conjunctive form of conditions is adopted,
especially when utilising the keyword else for deterministic successor choice. If
one of the branch condition is a conjunction of at least two equality propos-
itions, its complement is generally a disjunction, which cannot be implicitly
described by synchronous composition. In such cases, we shall separately
construct a condition automaton G, for the branch choice with else condition,
which is again composed into Gonp-

As for the drill station example, there are globally three involved variables
for various conditions, i.e. Variablesg = {button} and Variables; = {position,
wptype}. Their respective value ranges and initial values are listed in Table

40

2.2 Translating SBDs into automata

goS
press goWw HE[S[1]C[1003>2]T[2,4]]
release HE[S[10]T[11]] HE[S[O]T[1]] HE[S[1]C[1003>3]T[3, 4]]
ﬂ press ﬂ goS ﬂ
~ () ———= R R ——

@) (b)

isA isB
HE[S[1]C[1003>2]T[2,4]] HE[S[1]C[1003>3]T[3,4]]
2 2

O —)

(©

Figure 14: Variable automata for variables button (a), position (b) and wptype (c)

1. With Remark 2.2.1, three variable automata Gy t1on, Gposition A0 Grptype
are constructed with correspondingly augmented self-loops of hyper-edge
events. On this basis, Gconp s is identical to Gy,0n, While Geonp 7 can
be constructed by computing the synchronous composition of G and

G

position

wptype*

2.2.2.2 Process state automata

In this paragraph, process state automata are constructed in order to represent
the process state cycles of processes as defined in (24) and (25). Basically, we
utilise Ypgoc to denote the set of events which change the process state of a
process, i.e.

Y := {Bn|n € Processes}; (49)

Table 1: Variables involved in the drill station example with their corresponding values (initial
values are underlined); push = VE[button, pushed], release = VE[button, released|, goW =
VE|position, west], goS = VE|[position, south], isA = VE[wptype, a] and isB = VE[wptype, b].

variable values events

button {pushed, released} {push, release}

position {south, west} {goW, goS}
wptype {a, b} {isA, isB}

41

2 Sequential behaviour diagram

Yp := {Dn|n € Processes}; (50)
Y, :=={In|n € Places}; (51)
Yproc = 2p U Xp U X (52)

where each Bn € X5, Dn € ¥ or In € ¥, changes the process state of process
n € Processes to busy, done or idle, respectively. For convenience, we associate
each initial node with an idle event to indicate that the token has left the node.
Besides, we recall that firing an enabled hyper-edge causes a series of process
state changes of its source and target places. To acknowledge that all process
state changes caused by firing some hyper-edge are completed, an additional
event ackg is introduced for each SBD S € SBDP which is often paired with
0}, € Yy IN process state automata.

For each individual SBD S € SBDP, we construct one process automaton
which is the synchronous composition of five types of automata. For con-
venience, we utilise regular expressions? to represent each automaton to be
constructed due to their overall cyclic structure. We shall point out that, to
save computational effort, we do not explicitly handle done event Dn € ¥,
if n is not a invoker, since from (25), such Dn may spontaneously happen
between an Bn € ¥z and In € X, without any constraints. Nevertheless, we
point out in advance that in Section 2.3.1, we may flexibly assign the done
event to any process depending on modelling requirements.

(PA1) For each process n € Processes, we represent the process state cycle by
generating
(Bn - Dn - In)* (53)

if n is an invoker or
(Bn - In)* (54)

if n is not a invoker, respectively. Note that the generated sequence always
begins with a busy event Bn € ¥y since all processes are initially in the
process state idle, as defined in (32). Besides, by considering each initial
node as a special type of empty process without predecessors, we generate

In (55)

7 Automata in the current paragraph are represented by regular expressions where sums + and
products - stand for expression union and concatenation, respectively. A superscript asterisk
(-)* denotes the Kleene-closure of a language. The terminology of “by generating some
regular expression” is interpreted as such that the generated language of the automaton
to construct matches the prefix closure of the given regular expression (Cassandras and
Lafortune, 2008).

42

2.2 Translating SBDs into automata

for each n € InitialNodes if S is a root SBD, since once a token has left n,
n can never hold a token again; in contrary, if S is not a root SBD,

(EINV,S - n) (56)

is generated for n, since S can repeatedly be invoked. By referring to the
definition of synchronous composition, we observe that for an invoker
process n, anautomaton generating (53) and Grgacp rforanyinvoke(n) =
T are synchronised over the event Bn, which indeed represents (34).

(PA2) Foreach hyper-edge h € HEs, we represent the deactivation of source
places as well as the activation of target places by generating

((ml 4+ 4+ Ink + Bml 4+ -+ Bmk’ + acks)* - oy
(%)
Ing - Iny, - Bmy - Bmy, -ackg)* (57)
(8%)

to denote that firing h sends places {n,, ..., n,} = Sources(h) to the pro-
cess state idle and sends places {m, ..., m, } = Targets(h) to the process
state busy, respectively. Note that enabling the ($) part is necessary since
all places nq, ..., ny, my, ..., my, in ($) can also be sources or targets of
hyper-edges other than h. Besides, ackg can also be utilised to acknow-
ledge hyper-edges other than / in HEsg. Moreover, the order of events in
(3%) of the above expression is in general inessential.

(PA3) Foreach process n € Processes, we restrict the execution of Bn so that
it can only occur between a hyper-edge, of which n is a target, and the
subsequent ackg. Thus, we utilise

NTARGET . — L5, € Yye. | € Targets(h)} (58)

to denote the set of hyper-edge events which place a token on n and

generate
(ackly - XTARCET . Bn* . ackg)* (59)

for each n € Processes. Recall that initial nodes are not associated with
busy events. Similarly, we generate

(ackl - ZSOURCE . n* . ackg)* (60)
for each n € Places where
YSOURCE . — {5, € Ypes | € Sources(h)} (61)

43

2 Sequential behaviour diagram

denotes the set of hyper-edge events which take a token from n.

(PA4) For each invoker process n € Processes, we generate
(Dn - BSOURCE .), (62)
to represent that firing a hyper-edge is possible only if all its source pro-

cesses are in the process state done.

(PAs) Since firing hyper-edges is instantaneous, it is clear that variable events
shall not occur between a hyper-edge event and a subsequent ackg. Thus,
we generate

((Xvar)" * Lpes - ackg)™ (63)
for the current SBD S.

Note that the above construction only handles a single SBD S € SBDP, which
indicates that (P5) only addresses local variable events. For an SBD project
with multiple SBDs, an overall version of (Ps) shall be generated as

((ES,I&R>* : Eﬁlés ’ Echk)* (64)

where X80 := Ug_cgpp{ackg} is the union of all hyper-edge acknowledge-

ments.

At this stage, we recall from (35) where we required that the done state tran-
sition of a invoker and finishing the invoked SBD are synchronised. To this
end, we first take the assumption that

VS € SBDP. invoked(S) # () = |Terminalsg| =1, (65)

i.e. any non-root SBD has exactly one terminal node. In this situation, any
non-root SBD T'is finished if any event in

Yt = {0y, € Byes | Targets(h) = 0} (66)

is executed. By recalling (35), it is the event set ¥¢y 1 that sends the invokers
of T'to the process state done. Hence, we conveniently define a mapping fin as

fin(Dm) = {{Dn} if invoke(n) = g; 67)

EFIN,invoke(n) if inVOke(n) 7/:

forall n € Processes®" and replace Dr in (53) and (62) with fin(Dn). As for
the drill station example, the only explicit done event is D11 (since only the

44

2.2 Translating SBDs into automata

process with ID = 11 is an invoker), which should be replaced by fin(D11) =
{ HE[S[2,4]],HE[S[3,4]] }. At this stage, it is worth mentioning that one con-
sequence of the replacement through fin is that done events will totally dis-
appear in the translation result. Nevertheless, we shall see below in Section
2.3.1 that we could optionally append done events to atomic processes as well.

Remark 2.2.2. Depending on the verification purpose, it is often desired to only
preserve the (replaced) done events fin(Xp) (that is the union of fin(Dn) of all
processes) in the model while neglecting %, ¥g as well as ackg. In such cases,
the tedious construction of process state automata as proposed in (PA1)-(PAs)
as well as (64) can be circumvented, since the reachability automaton Gggacn
already implicitly encodes whether a process is currently in the process state
idle or not. In this regard, there are two questions to answer:

How to synchronise invocation We recall that a non-root SBD is activated
through the synchronisation via busy events of its invokers. For each non-
root SBD T, if we remove all busy events in the translation result, we shall
simply replace X\ 1 as defined in (45) by

EF,@(\IT = {0, € Zﬁ%s | 3n € Targets(h). invoke(h) = T'}, (68)

i.e. the set of hyper-edge events, by executing which an invoker of T'receives
a token.

How to distinguish busy and done states To answer this question, we only
need to introduce a binary flag for each invoker process, which evalu-
ates true if and only if this process in currently in the process state done.
Upon receiving a token, the flag is initially false, i.e. the process is in the
process state busy, which then becomes true by executing any event in
fin(Dn). On this basis, instead of composing the process state automaton
with the reachability automaton later on, we can more efficiently extend
the reachability automaton by enabling fin(Dn) for each process n which is
currently in the process state busy, i.e. those in current configuration but
with the additional flag evaluated false. Correspondingly, executing any
event in fin(Dn) changes the flag to true. This kind of state space reduction
is also utilised in other semantics formalisation scenarios; see e.g. (Daw
and Cleaveland, 2015a) where the author computed the so-called “macro
steps” of ADs by abstracting the detailed token propagation steps.

In summary, if the construction of process state automata is undesired, minor
modifications in the reachability automaton are required. The resulting extend-
ed reachability automata GRgacy g and Grgacy o of SBDs S and T for the drill
station example are illustrated in Figure 15.

45

2 Sequential behaviour diagram

— (010
HE[S[10]T[11]] <)

\ 1HE[S[0]T[1]]

@

HE[S[2, 4]
L HE[S[3.4]] HE[S[I]C[IOO3>2]T[2,4‘]]/ \HE[S[I]C[1003>3]T[3,4]]

(1]
HE[S[11]] HE[S[2,4N AE[S[SA]]
| ~@

@)

HE[S[10]T[11]]

Figure 15: Extended reachability automata for SBDs S and T in the drill station example

2.2.3 Result automaton and high-priority events

All automata constructed in the previous two steps (as well as a plant modelled
by automata) are composed through synchronous composition to form the
translation result Gggp. At this stage, we again consider Definition 2.1.5. As
soon as a hyper-edge becomes enabled (and if deterministic branch choices
are guaranteed), it must be fired instantaneously. Combining the explanation
of variable value changes in the time model as introduced in Section 2.1.3 and
Figure 10, we conclude that at some state in Gggp, if a hyper-edge i € HEs is
enabled, its corresponding event o;, € ¥, shall take priority over all variable
events Y ,g. However, concluding that a hyper-edge is enabled requires that
all its source processes are in the process state done, which currently can only be
implied if the considered process is an invoker, i.e. its completion is implied by
the completion of the SBD it invokes. Note that although process completion
implies that its postcondition evaluates true, the converse generally does not
hold. Thus, we collect all hyper-edge events o;, € ¥}, so that

Vn € Sources(h). n € InitialNodes V (n € Processes A invoke(n) # () (69)

holds. Such events are related to hyper-edges whose enabledness can be
concluded on a per-state basis and thus are with higher priority. As for the
drill station example, we shall collect { HE[S[10]T[11]], HE[S[11]] } from SBD
Sand { HE[S[0]T[1]] } from SBD T as high-priority events.

46

2.2 Translating SBDs into automata

HE4

Figure 16: Translation result after local shaping (self-loops of ¥,z are omitted); HE1 =
HE[S[10]T[11]], HE2 = HEJ[S[O]T[1]], HE3 = HE[S[1]C[1003>2]|T[2,4]], HE4 =
HE[S[1]C[1003>3]T|[3, 4]]; at both states where HE2 is active (blue), all active variable events
are disabled

2.2.4 Representing the global behaviour

The translation procedure introduced hitherto represents each single SBD
as one automaton with a set of high priority events, as depicted in Figure 11.
For the entire SBD project, the monolithic global behaviour complies with a
single automaton which can be constructed by

» translating each SBD following the procedure hitherto and constructing
their synchronous composition;

» shaping spurious transitions according to the high priority events, i.e. if
any high-priority event is executable in some state, all outgoing tran-
sitions labelled by a non-high-priority event must be removed.

The purpose of (ii) is to remove all transitions labelled by variable events
whenever a high priority event collected in Section 2.2.3 is active. This is also
referred to as preemption which represents the fact that if a hyper-edge is

47

2 Sequential behaviour diagram

enabled, it must be fired immediately before any variable changes its value,
i.e. enabled hyper-edges preempt variable events.

Remark 2.2.3. Without influencing the global behaviour, shaping spurious
transitions can in fact already partially be applied in the local construction
phase. This simplifies each module by reducing its transition count, which
possibly reduces its state space since some states may become unreachable.
Technically, if a high-priority event is private, i.e. does not appear in other
synchronised automata, we can shape the local behaviour directly since the
high-priority event will never be disabled by other modules; see Lemma 3.2.2 in
Chapter 3 for a more detailed explanation. We show a fragment of the shaped
translation result of SBD T'in the drill station example in Figure 16, where the
only high priority event HE[S[0]T[1]] is clearly private. Note that by following
Remark 2.2.2, we omit representing g and ¥, explicitly. Similarly, both high
priority events { HE[S[10]T[11]], HE[S[11]] } from SBD S are private as well,
thus can locally preempt other events.

2.3 Extended semantics

As shown in the previous two sections, SBD semantics is generally represented
by firing enabled hyper-edges in an extended Petri-net with guard conditions
and process state cycles. Technically, the process state cycle is a means of
abstraction of process operations. However, this is in some cases a too weak
model for verification. We consider the following practical scenario as shown
in Figure 17: suppose the temperature of the liquid in a container is to be
controlled. At some stage direct before process Heat is activated, the container
is cooled down naturally. When hitting the critical temperature 50°C (as stated
in the precondition in Figure 17), the process Heat is activated which heats
the container with heating wires. When reaching temperature 100°C, process
Heat should be left so that the correctly heated liquid can be processed further.

l

temp = 50°C

Heat

temp = 100°C

%

Figure 17: A temperature controlling process

48

2.3 Extended semantics

We consider the following three questions which cannot be answered within
the current SBD semantics:

Question 1: When does the process terminate? If only the information from
postcondition is available, the process Heat is allowed to heat the liquid
to any extremely high temperature (which shall not be allowed) and
eventually cool it down to around 100°C. This ill-formed sequence can
even be repeated multiple times, as we only need to guarantee that the
temperature is 100°C when the process is terminated.

Question 2: Which variable(s) can(not) be manipulated? Naturally, a faith-
fully modelled plant shall represent the logic that the temperature of the
liquid can increase only if it is heated. Thus, heating itself may be related
to e.g. a boolean variable, by setting which to 1 the container is heated.
If no information about which process can manipulate which variable
(i.e. write values to a variable) is available, any process may freely heat
the liquid.

Question 3: When should the control come into effect? Although the process
Heat isintended to heat the liquid at 50°C, there is no information describ-
ing when the container will actually be heated. Thus, the temperature of
the liquid can still decrease when the process Heat is in the process state
busy, since starting the process Heat does not necessarily imply that the
liquid is immediately heated.

Without being able to answer the above three questions, the translation result
may conceivably allow spurious closed-loop behaviour and produce overly
pessimistic verification result. To answer the questions, we propose several
optional annotations for each process in the following respective subsections.
Note that the extensions do not change the overall translation procedure as
depicted in Figure 1. Instead, only the individual steps are modified.

2.3.1 Termination condition

Recall from (53) that a process n € Processes (with an explicit done event Dn)
cycles its process states by repeatedly executing Bn - Dn - In. As stated in (57),
the busy event Bn and the idle event In are triggered by firing hyper-edges and
thus are guarded by guard conditions. This inspires us to answer Question 1 by
optionally assigning a termination condition to a non-invoker process. Similar
to invoker processes, each non-invoker process n with specified termination
condition is equipped with an explicit done event Dn, whose execution is

49

2 Sequential behaviour diagram

guarded by the termination condition. The assignment of termination condi-
tions is represented by the map

termcond : Processes — Conditions U {0)}. (70)

where () ¢ Conditions is dedicated to representing unspecified condition. Thus,
we clearly have

Vn € Processes. invoke(n) € SBDP = termcond(n) =0, (71)

since the termination of a invoker process is implied by finishing the SBD it
invokes. For any busy process n € Processes with termcond(n) # 0 (i.e. the
termination condition of n is specified), its process state must immediately
be switched to done whenever termcond(n) evaluates true. This implies a
refinement of the individual update of an SBD as stated in Definition 2.1.5, i.e.
we shall append

ProcessState,, (¢ + 1) = done (72)

for each n € Processes with termcond(n) € Conditions if
(i) ProcessState,(¢) = busy;

(ii) termcond(n) evaluates true at time ¢.

Remark 2.3.1. Readers shall not confuse unspecified conditions with trivial
conditions. A trivial condition is a condition that evaluates true at any time.
However, as introduced in Definition 2.1.10, unspecified condition cannot be
assigned to preconditions, postconditions, branch conditions and initial condi-
tions.

Recall from Section 2.1.4 that the termination of a process implies its postcon-
dition. Thus, the termination condition of a process, if specified, must imply
its postcondition. In this context, if a hyper-edge has only one source pro-
cess, no branches involved and preconditions of all its target places evaluate
true, the termination condition of the source process triggers the hyper-edge
immediately, i.e. the tokens are instantaneously propagated before the value
of any variable changes. Contrarily, if such a hyper-edge is delayed due to
e.g. invalid precondition of some target processes, the process may remain
in the process state done for a positive duration of physical time. In this time
period, the postcondition may be invalidated due to e.g. the operation of
other running processes. This circumstance will be addressed in detail in the
following Section 2.3.2 where we discuss the write access to variables.

50

2.3 Extended semantics

By reviewing the translation procedure introduced in Section 2.2, we imple-
ment the termination condition by modifying and extending the steps in
Sections 2.2.2 and 2.2.3:

Section 2.2.2 For each process n € Processes with termcond(n) € Conditions
—{true} (i.e. n has specified non-trivial termination condition), an expli-
cit done event Dn is equipped to n which can be seen as a generalised
hyper-edge event. In this context, Dn is enabled only if termcond(n) evalu-
ates true. Recall that the condition automaton G qnp Was originally
composed by a set of automata associated with guard conditions of hyper-
edges. This set is thus augmented by automata associated with termina-
tion conditions of all involved processes. Thus, a brief adaption is required
for (AP1) in Section 2.2.2 as well so that for each process n € Processes
with termcond(n) € Conditions — {true}, we generate (Bn - Dn - In)* as
well.

Section 2.2.3 Due to the introduction of termination condition, more hyper-
edges can be determined as enabled from a per-state basis. Technically,
all hyper-edge events o), € ¥, where

Vn € Sources(h). n € InitialNodes V (n € Processes A invoke(n) # ()
V termcond(n) € Conditions (73)

are considered as high priority events, i.e. we extend (69) by additionally
allowing source places to have specified termination conditions. In add-
ition, for each process n € Processes so that termcond(n) € Conditions —
{true}, its corresponding done event Dn € ¥ is with high priority as well.

Since more processes are equipped with explicit done events, it is worth men-
tioning that the construction of extended reachability automata as suggested
in Remark 2.2.2 is influenced as well. As for the drill station example, we
assume that processes with ID = 2 and 4 are specified with non-trivial termin-
ation conditions. The resulting extended reachability graph of the SBD T'is
depicted in Figure 18.

2.3.2 Writable and controlled variables

As pointed out by the example in Figure 17, some variables of an SBD may be
associated with e.g. actuator manipulation. Note that generally, plant models
do not restrict the write access to such variables since the plant model shall
allow any kind of control instructions from the controller. Thus, to answer

51

2 Sequential behaviour diagram

- N
lHE[S[O]T[ln
HE[S[10]T[11]]

HE[S[1]C[1 003>2]T[2,jy@\HE[S[11C[1003>3]TI[3, 4]]
N
i’
N,

[2D,4D] 3,4D]

HE[S]2, 4§®AE[S[3, 41]

—

Figure 18: Extended reachability automaton for SBD T'with specified termination conditions

Question 2, the write access to a set of writable variables needs to be restricted
on a per-process and per-SBD basis.

Technically, writable variables are referred to as variables that can actively be
manipulated by processes and define globally for an SBD project two disjoint
sets

Variables®t = WVariables®" U UVariables®" (74)

where WVariables stands for writable variables and UVariables stands for unwrit-
able variables, respectively. Typically, an unwritable variable describes the
status of some sensor or some external control agent. On the other hand,
a writable variable can conveniently be utilised to denote actuator status,
internal operations or sometimes the consequence of some complicated con-
trol sequences.

Foran SBD S € SBDP, owning some writable variable v € Variables,y, ¢ does
not imply that there exists some process n € Processesg having write access
to v, since v may be manipulated only in some other SBD 7" # S while S only
passively reads v to e.g. form guard conditions. This inspires us to define for
each S € SBDs and n € Processesg the set of controlled variables

CVariablesg(n) C {(v,1) | v € WVariablesg, [€ range(v)}, (75)

52

2.3 Extended semantics

where each (v,1) € CVariablesg indicates that process n has the access to set
the value of v to [. In addition, we write

CVariablesg := U CVariablesg(n) (76)

neEProcessesg

todenote theset of all controlled variables of the SBD S. It is worth mentioning
that CVariablesg(n) = () implies that the process n does not have write access
to any writable variables. Moreover, for nested SBDs, we require that the
controlled variables of a invoker process is identical to that of the SBD it
invokes, i.e.

VS, T € SBDP,n € Processesg. invoke(n) =T
— CVariablesg(n) = CVariables,. (77)

We are now in the position to represent controlled variables in automata.
Naively, we could interpret each controlled variable (v,) bijectively as one
variable event 0, ; € ¥\ sg. However, apart from to which value a variable is
set, it is also important to determine which process has this write access when
two parallel processes share some controlled variables. The reason for this
assertion is that shared events are synchronously executed in synchronous
composition. This indicates that for two parallel (non-invoker) processes
n,n’ € Processes®" sharing the write access to some controlled variable (v, [),
the write access of n to (v,) may be disallowed by n’ (e.g. since n’ is currently
not active). Thus, we shall, instead of (v, 1), map (v,l,n) intoan event o,,; ,,)
where n € Processes and (v,1) € CVariables(n). This motivates us to modify
the variable event set as Xy ag = Uy,cvariables 2y 1-€. the alphabet ¥ of an
variable automaton G, of an variable v € Variables depends on its writability:

{0y, |1 € range(v)} if v € UVariables;
2, =19q {0, |l € range(v),invoke(n) = 0, . . (78)
(v,1) € CVariables(n)} if v € WVariables.

Note that for an invoker process n’, its write access to some controlled vari-
able (v,1) is inherited from the SBD it invokes. Hence, no variable event
o, should be introduced in this situation. Consider the variable auto-
maton in Figure 13 again. Suppose the write access to (light,on) is shared
by two non-invoker processes 1 and 2, while the write accesses to (light, off)

53

2 Sequential behaviour diagram

and (light, blink) are exclusively owned by process 1. The corresponding vari-
able automaton G, should be modified as depicted in Figure 19, where we
symbolically name the events with

Ty = VE[v,1,n]. (79)

v,l,n —

VE([light,on, 1]
VET[light, on, 2]
1

$ A7
)5//
VE([light, blink, 1] _
RO
T [light, off, 1] T
VE[light, off, 1] VET[light, blink, 1]

Figure 19: Variable automaton extended for shared write access

We now embed writable and controlled variables into our translation proced-
ure. Technically, additional self-loops are introduced on the reachability au-
tomaton to activate/deactivate corresponding events. Note that variable ma-
nipulation shall be considered as a part of the process operation. Thus, the
write access to controlled variables of a process should only be allowed if it
is in the process state busy. This restriction should be specifically handled
if a process has an explicit done state, i.e. the process is a invoker or is spe-
cified with a non-trivial termination condition. To this end, it is convenient to
utilise the extended reachability automaton as suggested in Remark 2.2.2.
In each state of the extended reachability automaton of S € SBDP, we
determine on a per-state basis the set of processes P C Processesg that
are currently busy (or possibly busy if it is a non-invoker process without
specified termination condition). Afterwards, for each n” € P, we activate
self-loops of events o, , ,, € X\,\g wheren € Processes®" with invoke(n) = ()
if (v,1) € CVariables(n”) and either of the two following conditions hold:

(WV1) n=n',or

(WV2) n # n’ and there exists some invocation sequence 5,5, --- S}, so that
n € Processesg ,n’ € Processesg and invoke(n’) = 5.

54

2.3 Extended semantics

In addition,

(WV3) self-loopsof o, ; ,, should be applied to the empty configuration state
in the extended reachability automaton of a non-root SBD S € SBDP.

Note that (WV3) is dedicated for such cases where there exists some process
n” € Processes®" — invokedBy(S) which accesses v when S is not activated.

Remark 2.3.2. To satisfy (77), it is possible that for some SBD S € SBDP,
there exists (v,) € CVariablesg so that v does not contribute to any conditions
guarding the behaviour of S. The corresponding variable event(s) o, ; ,, (where
(v,1) € CVariables(n)) of such a controlled variable will then only appear as
self-loops in the translation result, since they will not be considered when
constructing condition automata.

Remark 2.3.3. For a non-root SBD T' € SBDP, if CV C CVariables; is a set
of controlled variables that can be accessed only when T is active (i.e. the
corresponding variable events can be executed if and only if some processes
in T are active), we clearly do not need to handle self-loops w.r.t. (WV2) and
(WV3) in the extended reachability automaton of T.

We again consider the drill station example. Globally, we envisage that the
process GetObject performs some complicated control sequences, which
eventually rotate the robot arm to the south position. Thus, we globally
let WVariables®™ = {position}. Typically, as we may only wish to move the
robot arm in one direction, we let

CVariables (1) = {goS}; (80)

CVariables;(2) = CVariables(3) = CVariables(4) = 0, (81)
following which

CVariables, = CVariables(10) = CVariablesg = {goS} (82)

can be figured out easily. For the extended reachability automaton of 7' as
given in Figure 18, we append a self-loop of the event goS in the state [1]. Note
that from Remark 2.3.3, self-looping goS in the state || can be omitted for 7.
For S, we again follow Remark 2.3.3 in that we avoid self-looping goS in the
state [11] of the automaton depicted on the left side of Figure 15.

55

2 Sequential behaviour diagram

2.3.3 Immediate instructions

The access to writable variables generally constitutes control instructions
that a process potentially executes. Yet, as pointed out in Question 3, it is
sometimes undesired that these instructions are delayed arbitrarily when
a process becomes busy. To address this problem, we recall that a process
is started only if its precondition evaluates true. Thus, to answer Question
3, we optionally strengthen this semantic restriction so that some control
instructions of a process are executed before its precondition is invalidated.
Technically, for any process n € Processes, we optionally assign an integer
value, which is referred to the immediateness value, to its controlled variable
(v,1) € CVariables(n) through the function

immediate(v, [, n) € NU{0}. (83)

For immediate(v,/,n) € N, the process n should execute o,,, before
precond(n) is invalidated. We also stipulate that if immediate(v,l,n) <
immediate(v’, ', n), 0, ; , must beexecuted before s, ;s ,,. Ifimmediate(v, l, n)
= (), then no immediateness value is assigned to (v,l) € CVariables(n). For
convenience, we assume that for each process, the immediateness value of a
controlled variable, if defined, is unique. This allows us to generate a unique
event sequence P, € ¥y,,g which represents the instructions executed in a
desired order for each process n € Processes. Thus, as soon as 7 is switched
to the process state busy, we shall not allow invalidating precond(n) before
the execution of P, has been finished. This is realised by generating for each
process n the regular expression

(E;rio - Bn - Pn : E;;rio : In)* (84)
where ¥, C Yy /ar is defined by
Yoo =101, 04 1. | visutilised in precond(n)}

U{0y 10 | (v,1) € CVariables(n)}. (85)

Clearly, if X5 and ¥, are to omit as suggested in Remark 2.2.2, Bn and In in
(84) need to be substituted by ¥ TARGET and $5OURCE ‘regpectively.

Remark 2.3.4. Obviously, disallowing all variable events {o,,0,,,/ |vis
utilised in precond(n)} is not necessary for guaranteeing that precond(n) is
not invalidated. Alternatively, one could substitute this term in (85) by

{0, |executing o, invalidates precond(n)}. (86)

56

2.4 A practical example

SF2

SF1 CBlI CB2 RB XS

Figure 20: A production line example

However, the relative drawback of this alternative implementation is that if
precond(n) contains e.g. disjunction of equality propositions, then whether
executing any o,; € XVAR invalidates precond(n) depends on the current
variable evaluation, which is rather cumbersome to figure out and renders the
construction through (84) invalid.

For the drill station example, consider the process with ID = 4 which is dedi-
cated to activating the ventilator when the drill is operating. Note that
without specifying immediate instructions, we may even tolerate such cases
in which the ventilator activation is delayed until drilling has already finished.
To disallow such cases to happen, we can refine the SBD by e.g. introdu-
cing new variables drill and ventilator with range(drill) = range(ventilator) =
{on, off} to indicate whether the drill or the ventilator is currently working,
respectively. Afterwards, setting drill = off as precond(4) and assigning
immediate(4, ventilator, on) = 1 (or any arbitrary natural number value) effect-
ively restricts the SBD behaviour so that the ventilator must be turned on
before the drill is turned on.

2.4 A practical example

So far, SBD semantics has been completely introduced. In the following, we
design the control sequences of a production line through an SBD project
with modular and hierarchical structure.

The production line is graphically depicted in Figure 20 which, as the plant,
consists of two stack feeders (SFs), two conveyor belts (CBs), one processing
machine (PM), one rotary table (RB) and one exit slide (XS). Besides, two
operation buttons (OPs) are dedicated for user operations which are not

57

2 Sequential behaviour diagram

represented in Figure 20. In addition, the intended usage of the plant is to
transfer workpieces from SF1 and SF2 to XS. For the route from SF1 to XS,
a workpiece is first transported via CB1 to CB2, where the workpiece must
be processed by PM. Afterwards, the processed workpiece is sent to XS via
RB. Note that RB can be oriented in either the west-east or the north-south
orientation through rotation, and sending workpiece from CB2 to XS requires
RB being in the west-east orientation. On the other hand, the route from SF2
to XS simply gathers a workpiece from SF2 to the west-east oriented RB and
sends the workpiece to XS. Since multiple physical components are involved
in the plant, it is desired to design the control programme within a modular
and hierarchical structure. As illustrated in Figure 20, the plant is divided
into two main modules M1 and M2, marked by green rectangles, where M1
further consists of two sub-modules M1 — 1 and M1 — 2, marked by blue
rectangles. Note that both SFs are considered as being externally controlled
and thus excluded from the SBD design.

We first list all involved variables in Table 2, including the plant components
they belong to (comp.), possible values, variable descriptions and writability.
Note that there are two “intern” variables P and M2_BUSY which belong
to neither physical component. Instead, they are only internally utilised to
organise the interaction between M1 and M2. Besides, we take the following
conventions for brevity:

» Each unwritable variable corresponds to a sensor signal, indicating
whether a specific location is occupied (by e.g. a workpiece). 0 means
that the sensor is currently free, while 1 means being occupied.

» Each non-intern writable variable corresponds to an actuator signal.
Value = 0 or 1 indicates that the corresponding actuator is idle or turned
on, respectively. For those denoting a belt motor (*_BM as in Table 2),
turning on the motor always drives the belt from west to east or from
north to south.

» Each variable has a unique initial value, which is underlined.

By utilising the variables given in Table 2, five SBDs Sproc, Stakes Ssenps S1
and S, are constructed, which are depicted in Figures 21 and 22. For brevity,
we take the following conventions for the graphical illustrations of SBDs in
Figures 21and 22.

» [Ds of non-place nodes are hidden.

» All conditions are conjunction of equality propositions.

58

2.4 A practical example

Table 2: Variables list of the production line example

comp. variable values description wrt.
CB1 CB1_BM {0, 1} belt motor yes
CB1_WPS {0, 1} workpiece sensor no
CB2 CB2_BM {0, 1} belt motor yes
CB2_WPS {0, 1} workpiece sensor no
PM MM (1,0,1) pEUOMPETEE T e
PM_PS+ {0, 1} south position sensor no
PM_PS- {0,1} north position sensor no
PM_MOP {0,1} processing machine yes
PM_MRD {0, 1} ready to start processing machine no
OoP OP1,0P2 {0,1} operation button no
RB RB_BM {0, 1} belt motor yes
RB_WPS {0, 1} workpiece sensor no
rotation motor (1 = clockwise,
RB_RM =101 0 =stop, —1 = C(()unter—clockwise) yes
RB_SCW (01} oetion no
ro_scaw fo Sntion e o
XS XS_WPS {o, 1} workpiece sensor no
) 1 =PM has finished processing,
intern P o1 0 = otherwise ’ ° yes
M2_BUSY {0, 1} 1=M2 busy transporting yes

workpiece, 0 = otherwise

» Foreach SBD, itsassociated plant model and initial condition are directly
given at the top of each SBD. Note that since S; and S, are root SBDs,
their initial conditions are trivially true.

» A non-invoker process n has the controlled variable (v,) if and only if

“, »

v := [appears in postcond(n). For denoting equality propositions, “=
and “=” are semantically identical. Besides, all such controlled variables
are immediate instructions where the execution order complies with the

59

2 Sequential behaviour diagram

top-to-bottom order in the corresponding figure. Controlled variables
of an invoker process are never immediate instructions.

» For each non-invoker process n, we have postcond(n) = termcond(n).

SBDSrroc
PLANT: G,
PM_MOP=0
PM_PM=0
ID: 0
SBD: Stake
PLANT:G,.,
CB1_BM=0
- CB1_WPS=0
PM_DriveOut CB2_BM=0 SBD:Seenn
D1 CB2_WPS=0 PLANT:G,.,
PM_PM:=1 CB1_BM=0
ID: 10 CB1_WPS=0
¢ CB2_BM=0
CB2_WPS=1
PM_PS+=1
PM_Stop v v ID: 20
D: 2
PM_PM:=0
¢ CB1_On CB2_0On
ID: 11 ID: 13 CB2_0On
PM_MRD=1 CB1_BM:=1 CB2_BM:=1 ID: 21
PM_Operate ¢ ¢ CB2_BM:=1
ID: 3 ¢
PM_MOP:=1 CB2_WPS=1 CB2_WPS=1
¢ CB1_Off CB2_Off RB_WPS=1
ID: 12 ID: 14 CB2 Off
PM_MRD=0 CB1_BM:=0 CB2_BM:=0 D: 22
PM_DriveBack CB2_BM:=0
ID: 4 V "
PM_MOP: =0
PM_PM:=-1 é
PM_PS-=1 (c)
(b)
PM_Stop
ID: 5
PM_PM:=0
(@)

Figure 21: SBDs of modules M1 — 1 (a) and M1 — 2 (b,c)

60

2.4 A practical example

SBD:S, SBD:S,
PLANT: G, PLANT: G,
ID: 100

oP1=1
TakeWP [ELSE] Y
10: 101 M *Stake y opP2=1
- RB_ToSF2 Wait
% Wait ID: 202 ID: 206
ID: 201
RB_RM:=1
M2_BUSY:=1 M2_BUSY:=1
ProcessWP % +
ID: 102 Fh:SpRoC XS WPS=0
RB_SCW=1 —
RB_Send
¢ RB_TakeSF2 ID: 207
ID: 203
RB_RM:=0 RB_BM:=1
- RB_BM:=1
Wait — +
ID: 103 + XS_WPS=1
p:= RB_WPS=1 RB_Stop
¢ RB_ToPM ID: 208
0P2=0 ID: 204 RB_BM:=0
M2, BUSY=0 RB RMoo1 M2_BUSY:=0
SendWP RB_BM:=0 %
ID: 104 Fh:SSEND
0oP2=0
¢ RB_SCCW=1 Wait
RB_Stop ID: 209
ID: 205
Wait RB_RM:=0
ID: 105
P:=0 *

(a) (b)

Figure 22: SBDs of modules M1 (a) and M2 (b)

The overall structure of the closed-loop behaviour is demonstrated in Figure
23. Each module constitutes a plant model which communicates with its
associated SBD(s). Among all modules, the module M1 — 2 is associated with
two SBDs Stake and Ssenp, while each other model is associated with a single
SBD. In the following, we explain the detailed functionality of each module.
The corresponding plant models are given in Appendix A.

61

2 Sequential behaviour diagram

M1
||
Si
S
|
Sproc STAKE SSEND M2
RN
Mi1-1 M1-2

Figure 23: Structure of the modularised closed-loop behaviour

Module M1-1

Being associated with the SBD Spgqc, the module M1 — 1 is responsible for
workpiece processing. As shown in Figure 20, PM is initially located on the
north side of CB2. When a workpiece is correctly positioned at CB2, PM drives
out to the south position and positions the machine head above the workpiece.
Afterwards, the workpiece is processed for a few seconds. Finally, PM drives
back to the north position.

Module M1-2

Being associated with SBDs Stake and Sggpp, the module M1 — 2 handles
the workpiece transport from SF1 to RB. Once Stakg is activated, both CB1
and CB2 are turned on until a workpiece arrives at the workpiece sensor of
CB2. On the other hand, when Sgg\p is activated, only CB2 will be turned
on until RB receives the workpiece from CB2. Note that CB1_BM is also a
local variable of Sggyp, but not controlled by any processes in Sggyp- Besides,
activating Ssgyp requires that a workpiece is actually available at CB2, which
is indicated in its initial condition.

62

2.4 A practical example

Module M1

Being associated with the SBD S, the module M1 organises the cooperation
between M1 — 1 and M1 — 2. Generally, S, cyclically invokes SBDs Stake,
Sproc and Ssgyp when OP1 is pressed. In addition, after Sproc has finished,
the value of the internal variable P is set to 1 to indicate that a processed
workpiece is ready to be sent to RB. If the module M2 is currently not busy
with otherworkpiece transportation and OP2 is not pressed (indicating that no
workpieces from SF2 is waiting for transport via RB), the processed workpiece
will be transported through invoking Sseyp.

Module M2

Being associated with the SBD S,, the module M2 is responsible for transport-
ing workpieces from either CB2 or SF2 to XS via RB. To take a workpiece from
CB2, M2 passively reads the value of P from M1 (note that P is not controlled
in M2) and if P = 1, RB stays in the west-east orientation and transports a
(processed) workpiece from CB2 to XS. Otherwise, i.e. when P = 0, RB turns
clockwise to the north-south orientation whenever OP2 is pressed, indicating
that SF2 is attempting to send a workpiece. Entering either route will directly
set the internal variable M2_BUSY to 1, which forbids M1 to invoke Sggyp-
The value of M2_BUSY is then set to 0 if XS has successfully received the
workpiece. Note that since XS is designed to have maximal capacity, RB is
allowed to send workpieces to XS only if XS_WPS = 0, i.e. the workpiece
sensor at the entrance of XS is currently vacant.

Non-blockingness of SBDs

Following the translation procedure in Section 2.2, the global closed-loop
behaviour of the production line example is described by five automata result-
ing from the five SBDs in Figures 21 and 22. In the current example, the two
high-level SBDs S, and S, are cyclically structured with no terminal nodes util-
ised. In practice, it is important to ensure that both cyclic SBDs indeed repeat
the cyclic execution indefinitely, i.e. for each SBD, there exists the possibility
to proceed the execution at any state, i.e. to fire some subsequent hyper-edges.
Such properties can be conveniently expressed by non-blockingness. A non-
blocking system requires that in any reachable state, there exists the possibility
to attain desired configurations in the future, which are often denoted by a set
(or multiple sets) of marking states in the conventional automata and formal
language theory (Cassandras and Lafortune, 2008).

63

2 Sequential behaviour diagram

Unfortunately, non-blockingness is very expensive to verify for modular sys-
tems (Cassandras and Lafortune, 2008; Malik, Streader et al., 2004), since
conventionally, it again requires an explicit construction of the monolithic
representation of the entire system, whose state space is generally in the
exponential order w.r.t. the number of modules. To mitigate the high compu-
tational cost, one elegant approach is to utilise the so-called compositional
verification (Flordal and Malik, 2009) which attempts to reduce the state
space of each module before computing the overall composition. Recently,
various contributions (Flordal and Malik, 2009; Pilbrow and Malik, 2015; Su
et al., 2010; Ware and Malik, 2012) have utilised compositional verification
for non-blockingness check and shown convincing results. However, as far as
the author’s knowledge, they all assume that the automata are synchronised
through the ordinary synchronous composition (Cassandras and Lafortune,
2008; Milner, 1989). By referring to Section 2.2.4, this is unfortunately not
the case for our SBD translation procedure since the monolithic closed-loop
behaviour should be represented by the shaped synchronous composition of
all automata. In this situation, it can be shown that most of the available re-
sults w.r.t. compositional non-blockingness verification need to be modified,
which will be intensively discussed in the following chapter in detail.

Concluding remarks

To prepare for the formal verification of SBD projects, we have focused on
translating SBDs into finite automata based on formalising SBD semantics in
the current section. Basically, SBD semantics is represented by token propaga-
tion on an extended Petri-net in that processes in an SBD are referred to
as places and hyper-edges are considered as (Petri-net) transitions. Since
the state of a Petri-net is generally distributed over its current token config-
uration, it is natural to construct the reachability graph of an SBD so that
the configuration can be determined on a per-state basis. In this context,
the reachability graph is synonymous to an automaton whose transitions are
labelled by hyper-edges. Furthermore, SBDs carry some features in addition
to ordinary Petri-nets, i.e. guard conditions and process states, which restrict
the free propagation of tokens. These were correspondingly represented by a
set of constraint automata. Finally, by taking a plant model into consideration
as well, the local closed-loop behaviour can be constructed by taking their syn-
chronous composition. Fora complicated project consisting of multiple SBDs,
the translation procedure effectively generate for each SBD one automaton.

One specific feature of the translation result is that all events carry priority
attributes. Particularly, if a hyper-edge is considered fireable, it must be fired

64

2.4 A practical example

immediately without waiting for other events, especially those generated by
variable value changes. If the global behaviour is represented by a single au-
tomaton, since transitions with lower priority can be simply removed (which
is also referred to as shaping) if some high-priority events are active. After-
wards, properties such as non-blockingness can be easily verified through e.g.
enumeration-based reachability analysis. However, for complicated systems
with multiple SBDs, SBD semantics stipulates that the priorities have global
effects; namely, high-priority events in one module restrict the occurrence
of low-priority events in other modules. In this context, challenges will arise
when exploiting advanced verification techniques for modular systems, e.g.
compositional verification. In the following chapter, we address the problem
of compositional non-blockingness verification when events carry priority
attributes and show verification results of the production line example.

65

3 Compositional verification with prioritised
events

At the end of the last chapter, we briefly introduced the concept of non-
blockingness. Generally, the non-blockingness of a single automaton can be
simply verified by e.g. enumerating reachable states and check their backward
reachability from desired configurations (a.k.a. co-reachability). However,
when handling modular systems, we observe that non-blockingness generally
cannot be reasoned in a modular fashion. In particular, the synchronisation
of a family of non-blocking automata is not always non-blocking, which can
be seen from e.g. the well-known dining philosophers problem (E. Dijkstra,
1971). Thus, the straightforward way to verify the non-blockingness of a mod-
ular system is again to construct its monolithic representation, which suffers
from the notorious state explosion problem, i.e. the overall state count grows
exponentially w.r.t. the count of modules. One well-established approach
addressing this problem is the compositional verification (Flordal and Malik,
2009). Inspired by the testing theory (Brinksma et al., 1995; Natarajan and
Cleaveland, 1995) originating from process algebra (Milner, 1989), compos-
itional verification applies abstractions on each involved automaton in a
modular system, which reduces the state count of each module by typically
utilising their private events while preserving the property of interest, e.g.
non-blockingness (Malik, Streader et al., 2004), from a global perspective.
Afterwards, a strategically chosen set of automata are substituted by their
composition. This substitution potentially renders more events private, which
enables further applicability of abstractions. The abstraction-composition
cycle is thus iteratively performed until only one automaton is left, whose non-
blockingness coincides with that of the monolithic representation. Recently,
compositional verification has been successfully applied in various contribu-
tions addressing the non-blockingness verification problem; see e.g. (Flordal
and Malik, 2009; Malik, 2015; Pilbrow and Malik, 2015; Su et al., 2010; Ware and
Malik, 2012). Several other properties, e.g. controllability (Flordal and Malik,
2009) and opacity (Mohajerani and Lafortune, 2020), can be addressed by
compositional verification as well by converting them into non-blockingness
verification. Besides, (Malik and Leduc, 2013; Ware and Malik, 2013) utilised
compositional verification to check the generalised non-blockingness (Malik
and Leduc, 2008), which is a weaker variant of the ordinary non-blockingness,
and (Lennartson et al., 2020) showed the applicability of compositional veri-
fication to any temporal logical property within CTL*-X. On the other hand,

67

3 Compositional verification with prioritised events

it is worth mentioning that the idea of composition verification can be adap-
ted in the Supervisory Control Theory as well, where the non-blockingness
of the entire system is usually required; see e.g. (Malik and Teixeira, 2016;
Mohajerani, Malik et al., 2014; Mohajerani, Malik et al., 2017).

In the current chapter, we investigate the possibility to extend available results
w.r.t. compositional verification to the situation where events are all prioritised,
i.e. each event has a priority value. In any state, events with lower priority
are disabled if any event with higher priority is currently active, which is
referred to as preemption. In particular, we stipulate that event priorities
influence the global behaviour, i.e. high-priority events in one module also
preempt low-priority events in other modules. This kind of system set-up
was closely related to some variants of process algebra with prioritised events
(Cleaveland et al., 2007; Liittgen, 1998) and can be utilised to handle the
translation result of an SBD project; see Section 2.2.4. In fact, not only SBDs,
various other popular modelling languages, e.g. ADs (R. Eshuis, 2006) and
Grafcet (Provost, J.-M. Roussel et al., 2011), exhibit similar behaviour as well
in that upon qualifying some guard condition, the system shall proceed to
subsequent tasks immediately. In addition, another use-case where event
priority arises is when implementing modular automata synthesised by formal
methods as control programmes. This typically includes the following two
sub-cases: (i) at some state where multiple control instructions (or internal
operations) are active, the choice of the action to execute is sometimes not
fully random. Besides, (ii) when the execution of some instruction and the
occurrence of some sensor event are both possible in some state, the executor
typically takes the action immediately without “waiting” for the sensor event
(Qamsane et al., 2016). The latter one can be seen as a kind of weak timed
behaviour which is closely related to timed discrete event systems; see e.g.
(Brandin and W. M. Wonham, 1994).

The content of this section is extended from (Tang and Moor, 2024) in that
more technical details, such as algorithm complexity, is included. This section
is organised as follows. Preliminaries and notation conventions are clarified
in Section 3.1. Section 3.2 introduces the abstraction rules for compositional
non-blockingness verification when taking prioritised events into consid-
eration. The abstraction rules are applied to the complete compositional
verification procedure introduced in Section 3.3, which is tested by several
practical examples in the final section, including the SBD example constructed
previously in Section 2.4.

68

3.1 Preliminaries

3.1 Preliminaries

3.1.1 Prioritised events

Consider a universe of symbols € also referred to as events, which are the basic
elements to represent discrete-event dynamics. Besides, a string is a finite
sequence of events. The Kleene’s closure of a set of events A C € is denoted A*
which is the set of all strings constructed by events in A, including the empty
string € ¢ €. Note that es = s = se holds for any string s. In some contexts,
the notation (-)™ is utilised as well to conveniently exclude the empty string
from a Kleene’s closure, i.e. AT := A* — {e}. The concatenation of two strings
sand t is denoted st. Besides, for two strings s and r, s is considered a prefix of
7 if there exists some string ¢ so that » = st, denoted s < r. Besides, a priority
value is assigned to each event. This is a means of representing execution
semantics, e.g. when confronting a choice of executing either of two events
with different priority,' the executor should always choose the one with higher
priority. We also say that all events in the current framework are prioritised.
In this regard, the priority assignment function

prio: € — N (87)

is formally utilised to denote the priority of each event. In particular, priorities
are read as ordinal numbers, i.e. 1 € N is considered the first priority, 2 € N
the second priority, etc. As a greater ordinal number denotes a lower priority,
1 is the unique highest priority. Thus, when writing e.g. prio(c) < prio(p), we
intend to show that the priority of ¢ is higher than that of p. For convenience,
the following notations are used for any event set A C €:

o events with priority higher (or not lower) than n € N within A
A" :={a € A|prio(a) <n};
As":={a € A|prio(a) <n};
 events with priority higher (or not lower) than prio(«) for « € € within A
A<a .— A<prio(o¢);
Aga — Agprio(a);

 the lowest priority value within A
max{ prio(a) |a € A} if A+ 0;
lo(A) :=
1 if A=9.

' This does not necessarily indicate that the priority value of each event is unique.

69

3 Compositional verification with prioritised events

In process algebra, representing internal behaviour which are irrelevant to
the synchronisation with external systems is of particular interest, since it
enables various system abstraction techniques. Internal behaviour is tech-
nically represented by silent events Y C &. On the other hand, events in
¢ — T are considered regular and the terminology of alphabet is utilised to
denote any finite regular event set > C € — Y. While regular events are shown
explicitly to the external environment for synchronisation, silent events are
anonymous for the external environment. Regarding the priority assignment,
it suffices to let T be such that each priority value n € N is bijectively mapped
toone event in T in order to represent local behaviour with different priorities.
This motivates us to symbolically represent each silent event 7 € T where
prio(T) = n with

(88)

T = T(n)

and we have
Ti= {74 |neN} (89)

Most prominently, the current set-up of silent events guarantees that each
regular event has a counterpart silent event with the same priority, which is
one of the fundamental prerequisite for abstraction. Formally, a hiding map
hide : (¢ —Y) — T is defined by

hlde(U) = T(prio(o‘)) (90)

for each o € € — Y. This set-up is also utilised in (Liittgen, 1998) and con-
stitutes an extension of the more common single distinguished silent event
T = {7} in the ordinary context without prioritised events; see e.g. (Flordal
and Malik, 2009; Milner, 1989). In this regard, we utilise natural projec-
tion p : € — (& — T)* to remove all silent events from any string s € ¢*
(Cassandras and Lafortune, 2008). Formally, natural projection is iteratively
defined by

ple) = ¢ (91)

p(s) ifse & aecT;
p(sa) = , (92)
p(s)a ifse¢ ac€—-T.

3.1.2 Finite automata

Definition 3.1.1. A finite automaton is a tuple G = (Q, %, —, Q°, M) where

e () is the finite state set;

70

3.1 Preliminaries

e Y isthe alphabet;
e = C@Qx(XUT) x Q is the transition relation;
e ° C Q is the set of initial states;

o M C 2% is the marking set.

The marking set in theautomaton tuple is a generalisation of non-blockingness
and is similar to the so-called coloured marking in the multitasking supervisory
control theory (Hering de Queiroz et al., 2005); see Definition 3.1.2. Note
that silent events are not legit to carry marking information. Besides, in the
following, we utilise the notation A, := ¥ U T to denote the union of the
alphabet of G with the silent event set. The subscript (-), of A is omitted
if it is clear from the context. Finally, note that automata are not required
to be deterministic; namely, it is possible that for « € A and z,y,y" € Q
where y # y’, both (z, o, y) € — and (z, , y') € — hold. Generally, a control
system does behave deterministically, while abstraction may introduce non-
determinism.

We use the infix notation z — y todenote (z, o, y) € — and the inﬁx notation
is iteratively extended to string-valued labels; namely, (i) let x 5 z forall
x € Q and (11);1:—>zforallx Z2€Q,s EA*anda€A1fx—>yandy—>z
for some y € (). Moreover, we write X 2 Yfor X ,Y C () whenever there
existz € Xand y € Yso thatz > y. The set-theoretic complement of the

transition relation is denoted 4, i.e., X 7SL> Y'is interpreted as such that for
anyz € Xandy €Y, (z,s,y) € = holds. X 2 and G 3 stand for X 5 Q
and Q° > Q, respectively. For a state x in an automaton G, the set of active
events in x is given by

G(z)={acAlz S}, (93)

Finally, a trace is a sequence of alternating states and events, i.e. in the form
of

Qq] (9%

Ty —> Ty —> - —> Ty (94)
We again introduce several convenient notations for brevity.

e active events in state z with priority higher (or not lower) thann € N
G<"(x) :={a € G(z) | prio(a)) < n};
G="(x) :={a € G(x) | prio(a) < n};

« silentactive events in state x (with priority higher or not lower thann € N)
Gslnt(‘r) = G(.I) N T;

71

3 Compositional verification with prioritised events

G5l (z) =G (x)N'T;

sint

G5 (z) == G="(z) N Y;

snt

regular active events in state = (with priority higher than n € N)
Grglr('r) = G(.’L’) =71

Gign(x) = G"(z) = T;

Gognl@) := G="(a) = 15

abstract transition relation = C @ x ¥* x @

T = y for s € ¥* if and only if there exists s’ € A* so that p(s’) = s and

s

concatenation of different types of transitions

/ ’

s . . . s
T = y if and only if there exists some state z so that 2 zand 2z = .

Regarding the liveness property of an automaton, its non-blockingness is of
specific interest which states that desired system configurations are persist-
ently reachable in the future in any reachable state (Cassandras and Lafortune,
2008). Particularly for SBD verification, it is desired that each SBD has the
opportunity to proceed by e.g. firing some critical hyper-edges. This motivates
us to classify desired configurations into different categories and we require
that reaching each type of the desired configurations should be persistently
possible. This idea is comparable with the strong non-blockingness utilised in
the multitasking supervisory control theory (Hering de Queiroz et al., 2005).

Definition 3.1.2. Given an automaton G = (Q, %, —,Q°, M), a state z € Q

is reachable if there exists s € ¥* so that G = 1. Astate z € Q is co-reachable

ifforall 2 € M, thereexistst € ¥* andw € {2 so that x = Gis non-blocking

if all its reachable states are co-reachable.

Note that a regular event, say w € ¥, can appear in multiple event sets in
the marking set. If executing w is possible in the future, all event sets in
the marking set containing w are qualified to achieve the non-blockingness.
Consider the following example.

Figure 24: An example for non-blockingness

72

3.1 Preliminaries

Example 3.1.1. Consider the automaton G = (Q), X, —, Q°, M) given in Figure
24 with ¥ = {0, p,w}. In addition, two possibilities of defining the marking set
M are discussed: if M = {{o,w},{p,w}}, then G is non-blocking provided w
appears in both event sets of the marking set, and w is executable in the future
for both states. On the other hand, if M = {{o,w},{p}}, G turns out to be
blocking since p cannot be executed any more once state 1l is reached.

We now define how prioritised events influence the execution semantics of
automata. In any state with multiple active events, transitions labelled by
events with lower priority should be disabled. In this regard, we say the
lower-priority events are preempted. This is formally illustrated by shaping an
automaton with the shaping operator.

Definition 3.1.3. Given an automaton G = (Q, %, —,Q°, M), the shaping
operator §(-) is defined as such that §(G) = (Q, ¥, =%, Q°, M) where

x5Sy ifand only ifz = y and G=*(z) = 0. (95)

In any state of an automaton after shaping, only the transitions labelled by
events with the highest priority among all active events are preserved. Note
that after shaping an automaton, some states may become unreachable and
can be directly removed.

3.1.3 Synchronous composition and non-conflictingness

In practice, large-scale systems are commonly decomposed into modular
pieces. All modules are cooperatively operated under certain synchronisa-
tion semantics. Suppose two automata with respective alphabets ¥, and ¥,
are to synchronise. Their plain synchronised behaviour complies with their
synchronous composition (Milner, 1989). In particular, events in ¥, N X, are
shared which should be executed synchronously, while all other events in
¥, UX, UT are private which are asynchronously executed.

Definition 3.1.4. Given two automata G, = (Q,,%, —,Q3, M;) and G, =
(Qg,Xq, —9,Q5, M,), their synchronous composition is defined by

Gy || Gy ==(Q = Q1 XQy, X := X U%y, —,Q° := Q1 X Q3, M := MyUM,),
(96)
where — C @ x X x @ is defined by

« . « «@
(w1,25) = (21, 25) If a€XyNy, vy — @) and vy —4 T5; (97)

73

3 Compositional verification with prioritised events

(21,75) = (2], 2,) if @€ (% — %)UY andz, >y af; (98)
(1, 35) - (@, 23) If a€(Xy;—%,)UTandx, iQ 5. (99)

o . @ . . . o .
A transition (z,,z,) — (2, x4) is driven by G if z; —, x| in G;.

Clearly, since state names do not contribute to system behaviour, synchron-
ous composition is considered commutative and distributive, i.e. G, || G5
=G, | Gyand G, || (G4 || G3) = (G4 || G5) || G5. The synchronisation
of a family of automata (G,),.;<;, i.e. D = G, || G, || - || G,,, is com-
monly referred to as a modular system while each G, is referred to as a module.
From the ordinary context where event prioritising is not considered, the
non-blockingness of D is commonly referred to as the non-conflictingness of
all modules. At this stage, it is worth mentioning that the non-blockingness of
one module, or even each module, cannot imply non-conflictingness and vice
versa. Thus, the conventional approach to checking non-conflictingness is to
explicitly construct D, which is of exponential order w.r.t. the count of mod-
ules. This problem can be decently addressed by compositional verification.
The core of compositional verification is to apply suitable abstraction on each
module while the non-conflictingness is preserved. To this end, based on the
testing theory framework (Brinksma et al., 1995; Natarajan and Cleaveland,
1995), the concept of conflict equivalence was introduced in (Malik, Streader
et al., 2004) which sufficiently implies the preservation of non-conflictingness;
namely, substituting any module with its conflict equivalent abstraction does
not influence the non-conflictingness. After abstraction, the verification pro-
cedure alternates to the composition of a strategically chosen set of automata.
This procedure is then iteratively performed until only one automaton is
left, whose non-blockingness coincides with the non-conflictingness of the
original modular system D.

In the scope of the current dissertation, it is stipulated that event prioritising
influences the behaviour of the entire modular system, i.e. high-priority
events in one module preempt low-priority events in other modules as well.
In this context, the non-blockingness of the modular system after shaping,
i.e. (D), is of our interest and is exactly the property for which an efficient
verification procedure is desired.

Definition 3.1.5. A family (G;),-;<;, of automata is non-conflicting w.r.t.

prioritised events if and only if (G, || G, || -+ || G},) is non-blocking.

In the remainder of the current chapter, the terminology non-conflicting is
concisely utilised to denote non-conflicting w.r.t. prioritised events. At this

74

3.1 Preliminaries

stage, following the idea of compositional verification, we consider again the
entire modular system

S(Gy | Gyl 11 Gy)- (100)
=G =H

Since synchronous composition is commutative and distributive, we choose
G, =: G as the automaton to abstract. Correspondingly, H in (100) is also
referred to as the synchronisation rest part, or simply the rest part. Let G’
be an abstraction of GG, we obviously expect that §(G || H) is non-blocking if
and only if (G’ || H) is non-blocking.

One fundamental abstraction is provided by transition hiding, which is tech-
nically referred to as replacing a regular transition label by its silent counter-
part.

Definition 3.1.6. Let G = (Q,%, —,Q°, M) be an automaton and let t =
(z,0,y) € — be any transition in G. Hiding ¢ in G results in an automaton
G/, =(Q,%,—,,Q°, M) where

—, = (= —{t}) U{(x, hide(o),y)}. (101)

When synchronising an automaton G with another automaton H, we say
a transition ¢ in G is hidable w.r.t. H if hiding ¢ in G preserves the non-
conflictingness.

Definition 3.1.7. Let G = (Qg, X, — ¢, Ry, Mg) and H = (Qy, X, — g,
Q%, M) be two automata. A transitiont € —, in G is hidable w.r.t. H if and
only if

G and H are non-conflicting < G/, and H are non-conflicting. (102)

At a first glance, any transition labelled by a regular private event seem to be
hidable. However, special care should be taken to the marking set as it may
also include some private events. Hiding all transitions labelled by private
events carrying marking information is clearly not legit.

Proposition3.1.8. Let G = (Qq, X, — ¢, Ry, Mg) and H = (Qy, X, — g,
Q%y, My) be two automata and let t = (z,0,y) € — be a transition in G
where x,y € Qnando € X — Xy Ifforall Q. € Mg, 0 ¢ Q, thentis
hidable w.r.t. H.

Proposition 3.1.8 conservatively suggests that transitions labelled by events
with marking information should never be hidden. Nevertheless, some of

75

3 Compositional verification with prioritised events

such transitions are indeed hidable if their future behaviour is within some
specific structure. We resume to this topic later in Proposition 3.3.1 after a
deeper dive into synchronisation with prioritised events in the next section.

Note that hiding itself does not require an explicit representation or any
specific structure from the rest part, which is a prominent feature we shall
generally require for all abstraction rules. In particular, this concept can be
explicitly guaranteed from the definition of conflict equivalence w.r.t. priori-
tised events. This is inspired by the conflict equivalence in the ordinary context
(Malik, Streader et al., 2004) where automata are synchronised through the
ordinary synchronous composition.

Definition 3.1.9. Two automata G, and G, are conflict equivalent w.r.t. pri-
oritised events, denoted G| ~° G, if for any automaton T, it holds that

G, and T are non-conflicting < G, and T are non-conflicting.

In the remainder of this chapter, conflict equivalence concisely stands for
conflict equivalence w.r.t. prioritised events. In particular, an abstraction of G,
say (¢, is a conflict-preserving abstraction of G if G’ ~% (. Note that conflict
equivalence does not require any information about the rest part (even its
alphabet), which implies that substituting G in (100) by an automaton G’
with G’ ~% (3 indeed preserves the non-conflictingness, i.e.

S$(G || H) isnon-blocking < S(G’ || H) is non-blocking.

Finally, it is worth mentioning that there is no unique minimal conflict-
preserving abstraction of an arbitrarily given automaton. This can be seen
from (Flordal and Malik, 2006) where an example in the ordinary context is
given. This obviously applies to conflict equivalence (w.r.t. prioritised events)
as well by simply assuming that all events have the same priority. Hence,
developing conflict-preserving abstraction rules is valuable to address the
compositional non-blockingness verification problem w.r.t. prioritised events.

3.2 Conflict-preserving abstraction rules

In this section, various conflict-preserving abstraction rules are developed
for compositional verification. To this end, some specific definitions and
observations w.r.t. prioritised events are first to clarify. We begin with the
introduction of the Y-shaping operator.

76

3.2 Conflict-preserving abstraction rules

Definition 3.2.1. Given an automaton G = (Q, X, —, Q°, M), the Y-shaping
operator S~ (-) is defined by §+(G) := (Q, X, —5r, Q°) where

z 557 yifand only ifz = y and G2 (z) = 0. (103)

slnt

An automaton G is Y-shaped if and only if G = S+ (G).

Definition 3.2.1 introduces a “partial” shaping operator which only shapes
transitions using silent events. Generally, the normal shaping operation
does not commute with synchronous composition, i.e. we cannot shape an
individual module locally before the overall synchronous composition is con-
structed since a shared high-priority event in one module may be deactivated
by other modules. Nevertheless, we can always partially shape an automaton
using Y-shaping since silent events can never be disabled by synchronisation.
Thus, forany 7 € T and a € A so that z % and z 2 for some state z with
prio(T) < prio(«), the latter transition will never be executed as long as shap-
ing will eventually be performed, since each time when z is visited, either 7
or some event with priority higher than 7 must be active. This observation is
illustrated by the following lemma.

Lemma 3.2.2. For any two automata G, and G, it holds that

S(Gy || Ga) = S(S+(Gy) || Go). (104)

Since synchronous composition is commutative and associative, it follows
immediately that performing Y-shaped on any module beforehand does
not influence the monolithic representation of the entire system. This is a
simple yet powerful conflict-preserving abstraction rule as well. In addition,
Y-shaping is indeed conflict-preserving from Lemma 3.2.2. In the remainder
of this chapter, it is consistently assumed that the automaton to abstract is
Y-shaped, which simplifies many of the statements and definitions.

Remark 3.2.1. Obviously, if the alphabet of the rest part is available, Y-shaping
can more aggressively be uniformly substituted by “private shaping’, i.e. shaping
using all private events including those regular events not appearing in the rest
part. This substitution clearly yields a more remarkable state reduction. Note
that, similar to hiding, “private shaping” is not conflict-preserving as well, but
indeed preserves the non-conflictingness under a given rest part.

We now shift our focus to silent loops where all transitions leaving the loop
are labelled by regular events. Such silent loops are referred to as live-locks
and have specific semantic meaning when considering prioritised events.

77

3 Compositional verification with prioritised events

Definition 3.2.3. Given a Y-shaped automaton G = (Q,%, —,Q°, M), an
n-live-lock in G is a set of states X C () where forall x € X,

(L) Ggne(x) # 05

(L2) forallT € Gy, (), © 5 implies ©’ € X;

o (3] a3 A

(L3) forall z,y € X, there exists a trace 1 — ©; — Ty —> - T), — ¥,
wherez, € X, a; € Y foralli =1,2,...,k

and

(L4) |0<Uw’€XGslnt<'r/>) =n.

We also concisely write a-live-lock to denote prio(«)-live-lock where o € A.
Technically, a live-lock is a non-trivial (i.e. with at least one transition) silent
Strongly Connected Component (SCC) (Aho et al., 1974) where neither state
can leave this SCC through executing a silent transition. Due to prioritised
events, a live-lock may indefinitely trap the behaviour of the rest part, i.e.
when in some n-live-lock of an automaton, the rest part can never execute
any event with priority lower than n. Most prominently, the trapping effect
no longer exists when (L2) does not hold. Consider the following example.

Example 3.2.1. Let G, G’ and H be three automata as given in Figure 25. In
particular, {1,11} is a 2-live-lock in G. When G and H are synchronised, the
only transition in H, which is labelled by 73), can never be executed. On the
other hand, {I’, 11"} does not form any live-lock in G’ due to the invalidation of
(Lz2). By reaching 111, the trapping effect is released which allows H to proceed.

ii

e O

O,_..

I
@)

Figure 25: The trapping effect of a 2-live-lock

Note that for a T-shaped automaton, if both state sets X and Y are live-locks,
then either X = Yor X N Y = (). This implies that computing live-locks can
be easily accomplished by seeking maximal silent SCCs, since one state can
never be shared by two distinct live-locks.

With the notion of live-locks, we now discuss the construction of quotient
automata, which is a well-known approach that reduces the state space of a
given automaton by merging states according to proper partition of the state

78

3.2 Conflict-preserving abstraction rules

set. Given a set () and an equivalence relation ~ C @ x @ on @, we utilise
[z] :== {2’ € Q|(x,2") € ~} to denote the equivalence class which includes
the state z € @ w.r.t. ~ and give the definition of quotient automaton as
follows.

Definition 3.2.4. Given a T-shaped automaton G = (@, %, —,Q°, M) and
an equivalence relation ~ C @) x @, the quotient automaton G/~ of G w.r.t.

~is defined by G/~ = (Q/~, A, — , Q, M) where

Q/~={lz]|lzeQ}; (105)
Q= {[z]|2" € Q" }; (106)
— ={[z] > [y]|z >y}

T

—{[z] = [z]| 7 € T and for any X C [z],
X is not a T-live-lock in G }. (107)

Example 3.2.2. Consider the automaton G given in Figure 26. The state set
{L, 11} is a 2-live-lock and merging it results in a 7(5)-self-loop. On the other
hand, neither 111 nor 1V is in any live-lock. Merging them does not produce any
silent self-loop according to (107).

G I 1 U ¢ m - v G/~ o, [
_,OTO @, 00, q m _,U 2,0
T)

Figure 26: Quotient automaton

Comparing with the conventional quotient automaton construction (Flordal
and Malik, 2009), (107) additionally requires that any silent self-loop in the
quotient automaton which does not correspond to a live-lock in the original
automaton should be removed. This construction attempts to preserve the
trapping power after abstraction, which is crucial especially when an equi-
valence class includes acyclic silent event sequences. Obviously, (107) also
remove some silent self-loops which were existent before abstraction, e.g. con-

T1

sider some automaton with only two states = # y and two transitions x — =z
7-1« .
and z — y. Constructing its quotient automaton w.r.t. the trivial partition

.o, . Tl
removes the transition [z] — [z]. This constitutes a simple abstraction rule
as well which will be discussed later in Lemma 3.2.10. We now show some
useful properties of our quotient automaton construction.

Lemma 3.2.5. Given a Y-shaped automaton G = (@, %, —,Q°, M) and an
equivalence relation ~ C @ x @, it holds that

79

3 Compositional verification with prioritised events

(i) For any transition [z] iﬁ [y] in G/~, there exist ' € [x] and y" € [y] so
that 2/ — y' inG;
(ii)) IfG/~5"([z]) = 0in G/~ for some x € Q and n € N, then there exists

slnt

z’ € [z] so that G5".(x") = 0.

snt

Proof. (i) Note the special case of [z] ;N [z] for some 7 € Y. According to
the definition of 7-live-lock, since [z] includes all states of a 7-live-lock,
T
there must exist 2/, 2” € [z] so that 2" — z”.

(ii) Since G/~3"([z]) = 0, it follows that for any 2" € [z] and 7 € T<",

sInt

o/ = z implies # € [z]. Thus, if G5l (x") # 0 holds for each state
x’ € [z], there must exist some m-live-lock X C [z] so that m < n.
This contradicts G/~3" ([z]) = () through the construction of quotient

sint
automaton. O

Following Definition 3.1.9, various statements and their proofs in the remainder
of this chapter involve an automaton G to be abstracted and an arbitrary test
T. In such cases, we take the following conventions for brevity:

= Statesin G are always indicated withasubscript (-) 5, e.8. 24, 2, Yq, -
while states in 7"are always indicated with a subscript (+) .

» Subscripts (+) and (-),are omitted for transitions in G' and 7'since they

. . (¢4
can be read from the states of the transition, e.g. z, — y must bea
transition in G.

» Subscripts of transitions in G || T, S(G | T), G/~ || Tand S(G/~ || T)
are omitted as well. A statein G || T'or §(G || T') must take the form
() (+)p), whileastatein G/~ || Tor §(G/~ || T') must takes the form

([Oels C)r)-

» Since T'is arbitrary and may carry private marking information, we
aggressively assume that none of the transitions in 7'is silent (without
losing generality, this assumption is sometimes dropped in examples
since most examples utilise 7"to witness some undesired behaviour). In
addition, the notation of ¥ ;; := X1 — X, denotes the private event
set of T'where ¥ and X} are the alphabets of G and 7, respectively.
Notations

Toi(zp) :=={7 €Xpglazp— 1}

Towi(wp) = {7 € Ty (2g) [prio(r) <n}

8o

3.2 Conflict-preserving abstraction rules

are utilised to denote active private events (with priority higher than

n) in state x4, respectively. Note that, unlike what has been implicitly
assumed so far, 7,7/, --- will now range over Y U X1 ;, but the natural
projection will still only remove events in Y. Furthermore, a trace is
considered asynchronous if all event labels within this trace are from
TUXpg-

3.2.1 Prioritised weak bisimulation

Based on the conventional process algebra CCS (Milner, 1989), a new process
algebra CCS" which models concurrent systems with global event priority was
introduced in (Littgen, 1998). In fact, the semantics of a shaped automaton
in our framework is synonymous to the operational semantics of CCS". By
extending the well-known weak bisimulation (a.k.a. observational equivalence
in some contexts) from CCS, (Liittgen, 1998) defined the prioritised weak
bisimulation (PWB) as a CCS" reasoning framework. For brevity, the abbre-
viation PW-bisimilar is also utilised to refer to as prioritised weak bisimilar.
Following the convention in (Liittgen, 1998), several new types of transitions
are defined.

Definition 3.2.6. Given a Y-shaped automaton G = (Q, X, —, Q°, M), define
the following extended transition relations:

(T1) X—>CQ><A><Q x——>y1f:c—>yandGrglr(x) CA;
(T2) :>CQ><{6}><Q :z::>y1fx ; ; ATk y, k > 0 and

T T € (TS)%
T1 T2

(T3) :>CQ><{e}><Q :L':>y1fx—>—> —>y,k>0and71 T, €
(T2m)",

In the following, notations e and = for a € A are utilised to refer to

He%

as ——, = and =——, respectlvely Transition relations (T1) and
A:prio(ar) A:prio(a) prio(c)

(T2) are generally more difficult to be preempted — when being synchronised
with another automaton, we wish that preemption caused by shared high-
priority events shall not take place before the target state is reached. Thus,
in (T1) and (T2), the set of active regular high-priority events is restricted

in respective states. Also note that x :> y implies z => yforany A C €.

Furthermore, although (T1) generally can not be extended to string-valued
labels, we still stipulate that A—> x,x :> zand z :> x hold for any state

An

81

3 Compositional verification with prioritised events

x, any event set A and any priority value n. It is worth mentioning that in
these cases, there is in fact no restriction on the active event set in x. We are
now in the position to define PWB over automata as follows.

Definition3.2.7. Let G; = (Q, X, —1,Q5, M) and G, = (@4, X, —4, Q%, M)
be two Y-shaped automata. A relation =~ C @Q; x @, is a PWB between G,
and G, if forany x; € @, and x5 € Q, so that v, = x,, all the following
statements hold:

(P1) IfGTY,(z1) = 0 for somen € N, then there exists y, € Q, so that

Ty & Yy GohnW2) = 0, G314 (y2) € A and 2, == ¥ where A =

G1<7:glr()
(P2) Forany o € Aand yl € @, so that =, i>1 Yy, there exists y, € ()5 SO
pla) ¢

(P3) If Gy (zs) = @for some n € N, then there exists y, € @, so that
Ty & Yy, Gignwi) = 0, GTy(y1) € Aand zy %1 y,; where A =

1,rglr
2<7rlglr()
(P4) Forany a € Aandvy, € Q, so that z, i>2 Yy, there exists y, € @), so
p(@)
that y, = y, and x, % 7 6:1 y where A = G5 (25).

Two automata G, and G, are PW-bisimilar, denoted G| = G, if there exists
a PWB between G| and G, so that for each x| € @3, there exists x4 € 5 50
€
that G, =, x4 and x| & x4 and vice versa.
1

It has been shown in (Liittgen, 1998) that PWB is a congruence w.r.t. com-
position “|” and restriction “/L” in CCS". Thus, following the observation
in (Malik, Streader et al., 2004), it is not surprising that two PW-bisimilar
automata are conflict equivalent. In the following, we provide a brief proof
to show that two PW-bisimilar automata are also conflict equivalent from an
automata perspective.> In the following, the notation = is concisely utilised
to denote a PWB between two automata.

Proposition 3.2.8. Let G, = (Q, X5, —1,Q5, Ms) and Gy = (Qy, Xz, —9,
@5, M) be two Y-shaped automaton so that G, = G,. For any automaton

> Generally, combining the CCS®" composition combinator and restriction combinator results
in a binary operation which is synonymous to shaping the synchronous composition of two
automata in our framework. This was also mentioned in the original CCS (Milner, 1989),
where the composition of automata was referred to as conjunction.

82

3.2 Conflict-preserving abstraction rules

«

T = (Qr, X, =1, Q, M), any transition (zy,) —% (Y1, y7) inS(Gy || T)

p(a)

and any z, € Q, so that x, = x,, there exists y, € Q, so that (z,, 7)) ==
(42, y7) in8(Gy || T) and y, = y,.

Proof. There are two cases:

(Case1) Let (xy,xp) 58 (y1,yr) bedriven by G, in §(G, || T), i.e. x; i>1

€ _ p() _ €
y;. By (P2), forall z, so that z; = z,, we have z, 2Ty (2% T
oY He%
yp with A = GT%, (z) which drives the transition
€ _ p(a) _ €
(g, xp) = (T, 2p) — (Y2, Y1) = (Y2, Y1) (108)

in G, || T. We shall show that at least one trace in (108) will not be
influenced by shaping. This holds trivially for the last fragment (¥, y) =

(Y5, yp) by replacing it with (y,, y,) % (Y5, yp). For the rest part, note

that (z,,zp) 58 (y1,yp) in 8(Gy || T) implies that T'(z4) N (E:?(\J‘G U
€ p(a)

Gl tar(z1)) = 0. Thus from z, = T 7 Y5, we must have (z4, x)
’ He' oY%

€ _ p(ar) _)
=5 (Zg, xp) —° (Y, yp) In (G, || T).

(Case2) Let (zq,x &4s 11, y7) be not driven by G,. This implies that
1 &7 L Yr Yy Uy p

Glane(®1) =0. Let A = Gf’?glr(xl) and from (P1), forall z, € @, so that

Ty & T, there exists y, € Qy so that G55 (y,) = 0, G35, (y2) € Aand

€
$2 :>2 yQ' NOte that
A:in

(29, 27) ; (Yo, 1) i (Y2, Y1) (109)

in G, || T. We clearly can guarantee that (z,, z) =S (yy, xp) iIn S(Gy ||

T) from the proof of Case 1. In addition, from G359 . (y,) = 0 and

G5 (¥2) € A, we can also conclude that (y,, z7) 58 (g, yp) in S(G, ||

7). O

Theorem 3.2.9. Let Gl = <Q17 EG» 1 Q(i’ MG> and GQ = <Q2a ZG? 2
Q5, M) be two Y-shaped automata so that G| = G.. It holds that G, ~° G,.

Proof. LetT = (Qp, X¢, =7, @7, Mp) be any automaton. Suppose S(G; || T')
is non-blocking, we shall prove that §(G, || T') is non-blocking as well (The

33

3 Compositional verification with prioritised events

S
proof of the symmetric case is identical). Pickany y, € Q, sothat (z3, x5,) =%

(yy,yp) in (G, || T) for some s € (X5 U Xp)*, x5 € @3, o € Q:T and
yp € Qp. Since G| = (5, there must exist some x; € @, so that G, =1

and z, & x5, directly implying (G, || T') = (21, 7). Furthermore, from

Proposition 3.2.8, it follows from induction on concatenated transitions of
S

any trace in (x5, 2°7) = (y,, yr) that there exists y; € @ so that y; & y, and

(21, 25) 55 (y1,y7) in S(G, | T), iee. S(G, | T) 5 (3, yy). Moreover
since §(G, || T') is non-blocking, for each Q2 € M U M, there exists w € ()

so that (y,, yr) 28 in S(Gy || T) for somet € (X, U Xp)*. Again from

t
Proposition 3.2.8, we can conclude through induction that (y,, y;) =S in

8(G4 || T'), which closes the proof. O

In order to perform abstraction, given a T-shaped automaton, we are inter-
ested in how to construct a PW-bisimilar automaton. A first relative simple
observation is that removing any silent self-loop which does not form a com-
plete live-lock yields a PW-bisimilar automaton. Such silent self-loops are
considered redundant and are also implicitly removed by the quotient au-
tomaton construction.

Lemma 3.2.10. Let G = (Q, X, —,Q°, M) be such a Y-shaped automaton

that there exist x,y € Q and T € Y so that x # y, x Lrandz > y. Let
=(Q,%,— —{(z,7,2)},Q°, M). It holds that G = G".

Proof. The proof follows directly from (P1) and (P3). Note that G’ is T-shaped
as well. O

A more advanced way to construct a PW-bisimilar automaton is to construct
quotient automaton w.r.t. a slightly modified version of PWB.

Definition 3.2.11. Let G = (Q, X, —,Q°, M) be a YT-shaped automaton. A
symmetric relation ~ C @ x Q isa PWB on G if for any x,2" € @ so that
x ~ z’, the following two statements hold:

(Pr) IfG5"(z) = 0 for somen € N, then there exists y’ so that © ~ v/,

sint

G5 (y)=0,G*(y') C Aand x’ :>y where A = G i (2);

sint\Y rglr

(P2’) Foranyy € Q and a € A so that x R y, there exists iy’ € @ so that

€ p(a) e
y~ vy and x2’ :a>A—a>?>y where A = Grglr(x).

84

3.2 Conflict-preserving abstraction rules

Similar to (P3) and (P4), the symmetric part of Definition 3.2.11 can be supple-
mented directly and it is obvious that a PWB on an automaton G is an equi-
valence relation. At this stage, we intend to prove that a T-shaped automaton
and its PWB-quotient automaton are indeed PW-similar. To this end, we first
prove some useful properties, including showing that the Y-shapedness is
preserved in the PWB-quotient automaton.

Lemma 3.2.12. Let G = (Q, X, —,Q°, M) be a T-shaped automaton with a
PWB~C @ x QonG.

(i) Foranyx € Qandn € N, if G () = 0, then G/~ ([z]) = 0;
(i) G/=is Y-shaped;

(iii) Foranyz € Q andn € N, if G3 (x) = 0, then G/%fgﬁ([z]) = Gfgﬁ(z).

Proof. We prove all statements by contradiction:

(i) Suppose there exist x € @ and n > 1 so that G
exists 7 € G/~ ([z]). There are two possibilities:

" (z) = (but there also

slnt

(Case1) Suppose that there exists y €) — [x] so that [z] ;x [y]. In this case,
from Lemma 3.2.5.(i), there must exist some =’ € [z] and some y’ € [y]
sothat 2’ — y'. From (P2’) and = ~ 2/, there must exists some y” € [v]
so that z = 1, which contradicts G5 (z) = () since x # y” must hold

i sint
but prio(7) < n;

(Case2) Since Case 1does not hold, [z] lﬁ [x] must hold, implying that
there is some 7-live-lock X C [] in G. From the definition of live-lock,
for any ” € X, there does not exist any y € @ so that z” N y and
G5 (y) = 0 (recall that prio(7) < n). This is not allowed by (P1) since
x” ~ x shall hold.

(ii) Suppose G/~ is not Y-shaped, i.e. there exist € Q and o € G/~([z])

so that G//~3 ([z]) # 0. This implies that there must exist 2’ € [z] so that

a € G(z’) from Lemma 3.2.5.(i). Since G is Y-shaped, G (") = () must

hold, which contradicts G /~3¢. ([z]) # 0 from statement (i).

(iii) It suffices to prove the “C” part of the current statement as the “2” part

holds trivially. Suppose there exists 0 € G/ %fglr([x])— Gfgﬁ(x) forsomez € Q
and n € N. Then there must exist some z” € [z] so that o € Gy, (). Since
x ~ 2/, from (P2)), x :>—>:> must hold. This contradicts G (z) = () since

1
prio(c) < nbuto ¢ Grglr(x). O

85

3 Compositional verification with prioritised events

Proposition 3.2.13. Let G = (Q, %X, —,Q°, M) be a T-shaped automaton
witha PWB ~ C @ x Q on G. It holds that G = (G /~).

Proof. We shall first attempt to prove that the relation R := {(z, [z]) |z € Q}
is a PWB between G and G/~. Note that the equivalence class [-] is defined
by ~. We show that R satisfies all (P1)-(P4) in Definition 3.2.7:

(P1) Pickanyz € Q,n € Nsothat G5" (z) = (). Trivially, we have [x] iﬁ [x]

sint

in G/~. From Lemma 3.2.12.(i), G/~5"([z]) = 0 holds. Furthermore,

G/zfgﬁ([x]) - Gfgﬁ(x) holds as well from Lemma 3.2.12.(iii).

(P2) Pick any transition x 2 yinG. If a € T and z # y, or a € %, it holds
that [z] iﬂ [y] in G /~. Otherwise, i.e. « € T and x ~ y, we have trivially

[x] i>z [y]. It remains to show for both cases that G/~ ([z]) C G (@)

hold. This is true from Lemma 3.2.12.(iii) since x Ry y in G (which is
Y-shaped) implies G5% (z) = 0.

snt

(P3) Pickany z € @, n € N so that G/~3 ([z]) = 0. From Lemma
3.2.5.(ii), there exists x” € [z] so that G5" (z") = (). Let A" = Gl (27).

sint rglr
€

From (P1’), since x ~ x’/, there exists y € @ sothat 2’ ~ y, = — ¥,
G5™(y) = D and G="(y) C A’. Note that yR[y] and [y] = [z]. Finally,

slnt rglr

let A = G/~ ([x]). Since A’ C A, it follows directly that A:> yand

Gan(y) €A

(P4) Pick any transition [x] gs [y] in G/~. This implies that there exists

z’ € [zr]and y’ € [y] so that 2’ 2 v/ in G from Lemma 3.2.5.(i). Let A’ =
pla) ¢

Gfgﬁ(m’). From (P2’), there must exist y” € [y] so that = Z;—>A—>? y”.
’ ey /:a
By further letting A = G/ %fg‘fr([m}), it can be directly concluded that

e Pla) ¢ yo ,
r ———= 1" since A’ C A.
Ao A 1
The remaining step of the proof is to show that G & (G/~) by relating their
initial states:

(1) Pickanyz®° € Q°. G/~ % [2°] directly holds since [2°] € Q"

(2) Pick any [z] € Q°. There must exist some z° € [2] N Q° and G % x°
holds. O

86

3.2 Conflict-preserving abstraction rules

It is worth mentioning that (Liittgen, 1998) also introduced another identical
equivalence, the alternative prioritised weak bisimulation (APWB), to simplify
the computation of PWB. The definition of APWB is generally based on
expressing (P1’) and (P2’) using a single transition relation, which is given in
the following.

Definition 3.2.14. Given a Y-shaped automaton G = (Q,%,—,Q°, M),

define the extended transition relation = C Q x A x @) as such that x % yif
either of the following holds:

e pla) ¢
(i) prio(a) =1andx ===y or

(i) prio(a) > 1 and there exists z € Q so that G3%(z) = () and x %
e pla) ¢

2z ==——= ywhere A = G={(2) and n = prio(a) — 1.
Ao A 1 gir

We shall note that, unlike =, a =>-transition can be labelled by a silent event.

In addition, it is worth mentioning that (P1’) has been implicitly encoded in

the requirement (ii) of Definition 3.2.14, where “G3% (2) = 0" is stipulated.

T(n)
This implies that x = x generally does not hold for all z and n. For example,
we envisage that {z} is a 2-live-lock in a T-shaped automaton G, i.e. there
exists exactly one outgoing silent transition from x, which is = %, 2. Inthis
case, E x holds only for n = 1 or n = 2. With this notion, APWB is
defined as follows.

Definition 3.2.15. Let G = (Q, %X, —,Q°, M) be a Y-shaped automaton. A
symmetric relation ~* C @) x @ isan APWB on G if for any z, 2’ € @ so that
x &~* 2/, it holds that:

(AP1) Foranyy € Qand o € A so that x % y, there exists iy’ so that x’ % Y
and y ~* v/'.

Note that we have hidden the statement symmetric to (AP1) in Definition
3.2.15. It has been shown in (Liittgen, 1998, Theorem 2.4.22) that PWB and
APWSB are indeed identical.

Proposition 3.2.16. Let G = (Q, >, —,Q°, M) be a Y-shaped automaton. A
relation ~ C () x QQ on G is a PWB if and only if it is an APWB.

Based on Proposition 3.2.16, the computation of PWB can be equivalently
considered as the computation of APWB. As long as the transition relation

87

3 Compositional verification with prioritised events

= is available, APWB can be computed through any ordinary bisimulation
partition algorithms (Blom and Orzan, 2003; Fernandez, 1989; Paige and
Tarjan, 1987).

Complexity of the partition of APWB If = is available, the complexity
of computing APWB is O(|=| - log|Q|) based on the algorithm introduced
in (Fernandez, 1989). The relation = can be computed based on transition
saturation (Milner, 1989) where we additionally need to compare the active
regular event sets of the source state and target state of each transition before
saturation. Note that = generally has infinite transitions since for any state

T(n)
without outgoing silent transitions, x => x holds forall n € N. Nevertheless,
for state partition, we only need to consider silent events T<V*! where N
is the lowest priority Value appearing in this automaton. The reason is that,

T(N+1) T(M)

from Definition 3.2.14, A == Bifand only if A == Bwhere M > N + 1.
However, computing = is not a trivial task. In our current implementation,
we first compute a transition relation

3/:: {(xan7y) |TL =1V (TL > 1 T :> yand Gslnt() = (Z))} (110)

which has the worst case complexity of O(|Q|? - N). This is the first half of
the transition relation =-. Each tra(ni,ition in =’ is then a seed for transition
p(a
saturation, i.e. extended by A:>—>$ This means that each transition in
=" will be again maximally operated |A| - |Q| times where |[A| = |X| + N.
In each such operation, we need to compare the set of active high-priority
regular events. This comparison has the complexity of O(|X|). Thus, our
implementation of computing = is O(|Q|> - N - |A] - ||). This complexity
dominates the complexity of partitioning APWB, which is O(|=| - log|Q|) =
O(1QI* - |A] - logl@]). [

From Definition 3.2.11, we note that PWB is defined as such that if a regular
event o is to execute at some state, then an equivalent state must be able to
execute o either directly or after a delay of several silent steps with priority not
lower than o. The reason of this restriction can be seen from the following
example. For brevity of examples in the remainder, we take the convention
that, if not explicitly specified, the marking set of any automaton is {{w}}
with prio(w) = 1.

Example 3.2.3. Consider the automaton G given in Figure 27. It follows from
(Pr’) directly that 1 # 1. If 1and Il are merged through some equivalence
relation ~ which generates G /~, a counterexample T can be constructed as

88

3.2 Conflict-preserving abstraction rules

given in Figure 27 to witness that G %% (G /~), since §(G || T') is blocking while
S(G/~ | T) is not.

G I S I I G/~ I I
6.6 2.8 sy S0 M0

Wy

SGIT) ;| 1y
—> _— _—
“YOSG/~NIT) 4

Ue) -0

[111],11
) O -
w()

'e)) o) g 'e)
L,iii IL,iii II1,iv

Figure 27: Silent step with priority lower than its delayed regular event may not be mergable

Consider the automaton G given in Figure 27 again. The failure of the abstrac-
tion is in fact caused by the reachable state (1, i) in (G || T), since 7, in i
will not be preempted by the shared event o, whose priority is higher than 7).
However, this preemption indeed will happen in ([I],i) in §(G/~ || T') due
to the state merging. In this regard, our idea to ensure conflict equivalence
is to add further restriction on the automaton so that such “bad” states will
always be unreachable. As for GG in Figure 27, consider adding a new state IV

-
with a new transition IV — I. Furthermore, let IV be the only new initial
state. For such an automaton G’ as given in Figure 28, merging I and II does
yield a conflict-preserving abstraction. The intuition behind this modification
is that, in order to visit I under synchronisation, IV must be visited at first.

7(3)
However, when (IV, z) —® (I, z7) is executed for some z, the next step
7(2)
must be (I, z;) —® (II, z) since I cannot execute any synchronised event
and z; cannot execute any private event with priority higher than 3 either.
This observation motivates the definition of redundant silent step and it is

shown in the following that merging a redundant silent step, which is referred
to as the redundant silent step rule, is a conflict-preserving abstraction.

Definition 3.2.17. Let G = (Q, Y, —,Q°, M) be a Y-shaped automaton. A
transition x — 2’ with z,2’ € Q and T € Y is a redundant silent step if this is

89

3 Compositional verification with prioritised events

G v G/~ [IV]
-0 —0
e E:> 46)
0O T e g >OS O awm o
1 I I @ m 1] @)

Figure 28: Redundant silent step rule

the only transition outgoing from z, x ¢ Q° and y N x for any y € @ implies
a € T and prio(«) > prio(T). An equivalence ~ C @ x @ on G is induced by
the transition z — 2’ ifr ~x' andforally € Q — {x,z'}, [y] is a singleton
class.

From Definition 3.2.17, we note that a silent self-loop can never be a redundant
silent step. In addition, the definition of redundant silent step does not
specifically handle the existence of live-locks. The reason is that the active
event set of the target state of a redundant silent step can be completely
preserved in the quotient automaton. This is stated by the following lemma.

Lemma 3.2.18. Let G = (Q, X, —,Q°, M) be a Y-shaped automaton and the

equivalence ~ C @ x @ is induced by the redundant silent step x L 2. It holds
that G(z") = G/~([z])

/

Proof. It suffices to consider the case that [x] T—>~ [z] in G/~ forsome 7’ € T.
In this case, [x] contains a 7’-live-lock from G which is formed either by {z, 2’}
or solely by {2’} (solely by {z} is clearly impossible). The case of solely by

{2’} is rather trivial, while when {x, 2" } isa 7’-live-lock, we must have =’ Sz
since from the definition of redundant silent step, prio(7’) > prio(7) must
hold. O

Consider a redundant silent step z 5 ry in a Y-shaped automaton G
with some regular event o so that prio(c) < prio(7), 0 ¢ G(z) and o €
G(z(), we can assert that x; and x, are never PW-bisimilar. Intuitively, this
invalidates the property given in Proposition 3.2.8 if it is assumed that the
resulting quotient automaton and the original one are “equivalent”. More

precisely, for some state zin a testautomaton 7, if z - Zs forsome 7’ € Yra
where prio(7") < prio(7), we must have (x4, zp) 25 in 8(G | T), while
/

([zg], 1) 1y may not hold in §(G/~ || T') when ¢ € T'(x;) and prio(o) <
prio(7”). Interestingly, such (x, x) is never reachable in §(G || T').

90

3.2 Conflict-preserving abstraction rules

Proposition 3.2.19. Let G = (Qq, X, =g, Q, M) be a Y-shaped automa-
ton and the equivalence ~ C Q X Q is induced by the redundant silent step
Ta 5 Tg. Let T = (Qq, Xy, =1, Q7 Myp) be any automaton. Forall z € Q
so that TPSI.Q(QET) # 0, (2, xy) is not reachable in S(G || T).

Proof. We prove by contradiction. Pick any Z; € Qpso that T57, (z1) # 0. To
reach (z4, zp), one shall first reach some (y;, yp) where y € Qq, yr € Qp

so that y SN T with some 7 € Y. From Definition 3.2.17, it is clear that

/
T

prio(7") > n. This implies that (v, 77) -° (Z4, T7). With this observation,
we continue the proof by attempting to construct a trace from (y, y7) to
(Zg, Tp), which must fail. Consider the following cases:

(Case1) Tiov(yp) # 0. Let yp RN yp for some jp € Qpand 77 € T (yr).

Clearly, prio(7”) < prio(7"), and we concatenate //(yG, yr) L8 (e, Ur)
(without losing generality, we can assume that 757 (y7) = 0). If T30 (47)
() always holds for such concatenation, then the construction is trapped
in Case1and z; can never be visited. Otherwise, let Tpgr‘ft(ng) = (), which
leads to Case 2.

(Case 2) TPSWTt(yT) = (). From (yg,yr), since only private events can be

/7

executed, consider the possibility of concatenating (v, yr) 148 (Za, yr)
in §(G || T), since executing a private transition in 7'indeed rolls the
construction back to the beginning of either Case 1 or 2. However, if

/

(Yes yp) 1y (g, yp), it implies that the next transition which can be
concatenated must be (Z«, yp) 58 (%, y7) since prio(T) < prio(7") and
executing any shared event with priority higher than 7in (Z4, y;) is not
possible. Recall that y; # Z; due to Tiw (Z7) # 0, i.e. forany z; € Qp
so that (z, zp) is reachable in §(G || T), Tpgnft(éT) = () must hold. This
indeed closes the proof. O

When merging a redundant silent step, states characterised in Proposition
3.2.19 are exactly the “bad” states which potentially invalidate conflict equi-
valence. With this observation, the following proposition is derived which is
similar to Proposition 3.2.8.

Proposition 3.2.20. Let G = (Qg, g, — ¢, @Ry, Mg) be a Y-shaped automa-
ton and the equivalence ~ C Q X Q) is induced by the redundant silent step
e 5 Tg. Let T = (Qrp, Xp, =7, @, Mp) be any automaton.

g1

3 Compositional verification with prioritised events

(i) For any transition ([x], zp) 48 ([valsyp) in S(G/~ || T'), at least one
of the following two statements is true for any x, € [zs]:

p(a)
a) There exists some y/; € [ys] so that (v, x7) == (y5&,yr) inS(G ||

T), or
b) (z(,xy)is not reachablein (G || T').

(ii)) For any transition (z ¢,) 58 (Yo, yp) in S(G || T'), at least one of the
following two statements is true:
p(a) .
@) (gl zr) —* (lycl yr) in 8(G/~ || T), or

b) (xzg,xp)is not reachable in S(G || T).

Proof. (i) If [x] is a singleton, then statement a) holds trivially. Thus, we let
[c] = [Z]. In this case, note that if ([z4], 1) 48 ([ye]s yr) is not driven by
G, then statement a) must be true as well since either (7, z7) —° (T, yr)
or (Zg, 2y) =% (2, x7) —5 (24, yp) holds in 8(G || T) from Lemma 3.2.18.
Thus, let ([zs], zp) 48 ([yg], yr) be driven by G. This implies o € G(z(;)
due to Lemma 3.2.18 and we pick z(;, € [z]. There are two cases:

(Case1) z = z. We shall note that G(z;) = G/~([z]) from Lemma
3.2.18. Thus, in this case, statement a) must hold.

(Case2) xz = 5. We directly suppose that statement a) is not true,

) _ pla ,) , .
L. (0 0r) o? (yisyr) in S(G | T) forany yl; € [yg]. This

implies that 7,57 (x7) # 0, since otherwise, we must be able to execute
T

(g, xr) —° (T, xp), which leads to Case 1. Note that Tov(xy) # 0
implies 757 (27) # (. Thus, in this case, statement b) must hold from

Proposition 3.2.19.
(ii) Note that statement a) must hold if [z] is a singleton. In addition, state-
ment a) holds for z, = z(, as well from Lemma 3.218. Let z; = z4. If
(e,) &8 (Ye, yr) is driven by G, then y = 7, and statement a) holds
from a trivial transition ([z5], 27) — ([ya], #7). Let (2g, 27) —S (yg, yp) be
not driven by G. In this case, statement b) must hold from Proposition 3.2.19

since prio(«) < prio(7), i.e. a € Tpgnft(xT). O

In Proposition 3.2.20, both statements (i).a) and (ii).a) are synonymous to
Proposition 3.2.8. In fact, replacing the equivalence relation in Proposition

3.2.20 by PWB (on G) results in a true proposition as well where both a)

92

3.2 Conflict-preserving abstraction rules

statements are always true. We are now in the position to state the redundant
silent step rule as follows.

Theorem 3.2.21 (redundant silent step rule). Let G = (Q, %, —,Q°, M) be
a Y-shaped automaton and the equivalence ~ C @ x @ is induced by some
redundant silent step. It holds that G ~° (G /~).

Proof. The proof is indeed the same as the proof of Theorem 3.2.9 up to
uniform substitution of the equivalence relation. Note that for all states
reached by the induction, statements (i).a) and (ii).a) of Proposition 3.2.20
must hold. O

Complexity of the redundant silent step rule The redundant silent step
rule can be applied by checking whether all incoming transitions of a state are
silent (which is of order |@| in a T-shaped automaton since from one state,
there is maximally one silent transition to a given target state) and redirecting
these incoming transitions (which is again of order |@Q|, since all transitions
are silent). Since this procedure should be repeated for each state, the overall
complexity is O(|Q?). O

3.2.2 Abstraction rules based on incoming equivalence

In the ordinary context without prioritised events, (Flordal and Malik, 2009)
introduced several abstraction rules based on incoming equivalence. The
current section attempts to adapt these rules for prioritised events, which is
in general not as trivial as one might imagine.

The motivation of introducing incoming equivalence is to pre-partition states
that can be reached in the same way; namely, when a state can be reached
under synchronisation with some test, an incoming equivalent state must be
reachable under the synchronisation with the same test as well. Incoming
equivalence does not necessarily imply (ordinary) conflict equivalence, but
serves as a filter to enable two conflict-preserving abstraction rules, i.e. the
active events rule and the silent continuation rule. The key property of incom-
ing equivalence in the ordinary context is, all states in the same class can be
reached from the same state with a regular event, possibly with some silent
events before or after the regular event. Since this property is rather cumber-
some to achieve when considering prioritised events, a formal definition of
this property is first given and named as redirectability.

93

3 Compositional verification with prioritised events

Definition 3.2.22. Let G = (Qq, X, =g, Q4, M) be a Y-shaped automa-
ton. An equivalence ~C Q~ X @ is redirectable if and only if for any au-

tomaton T' = (Qp, Xp, =, Q7 My), Yo € Qg yr € Qrand sp € X7, g, the
following two statements hold:

o o ST .
(R1) (zg,zr) =5 =9 (Y yr) in S(G || T) forany ¢ € Qg, v1r € Qr
oS

and o € Y, implies that for all y, € [y, (g, vr) =% (y5,yr) in
S(G || T);

(R2) S(G || T) =5 (ye,yy) implies that for all yl; ~ ye» S(G || T) =5
(y/GayT>

It is to observe from Definition 3.2.22 that, for a redirectable equivalence
relation, the synchronised behaviour can choose any state in a class to proceed
if at least one state in the class can be reached by a regular event followed
by some private events (or the synchronised behaviour is currently in the
initial state). From this observation, redirectability can commonly be utilised
in such scenarios where a transition need to be redirected to a successor,
in which desired future behaviour is guaranteed. This feature is especially
useful when reasoning the original behaviour from the abstracted behaviour.
In this regard, we review Lemma 3.2.5.(i), which is a general property for
any arbitrary equivalence stating that a transition in the original behaviour
can always be reconstructed from the abstracted behaviour. Note that the
existence statement “there exists y* € [y]..” in Lemma 3.2.5 does not allow
concatenating multiple reconstructed transitions, i.e. we can not guarantee

’

thate.g. ([z¢], 27) —5 ([yel, yr) — ([2¢],) implies the existence of 2/, €
/ / / @ / a/ /

[zc), v € lye] and 2;; € [2¢] so that (x, 27) =% (yG yr) —° (26, 27)-

Nevertheless, this problem can be solved by requiring redirectability on an

equivalence if a trace begins with a regular event from G. This is stated by the
following proposition which is inspired by (Flordal and Malik, 2009, Lemma

2).

Proposition 3.2.23. Let G = (Qq, X, = ¢, Q4, M) be a Y-shaped automa-
ton with a redirectable equivalence ~C) x Q on G. For any automaton
T = (Qp, Xp, =, Q7 M), the following two statements hold:

(i) For any trace

([zgols 270) gs ([rg1]s 2p1) 25 ig (gl 27y) (m)

94

3.2 Conflict-preserving abstraction rules

inS(G/~ || T)wherek > 1, a; € Eyanda; € Ag U Apforalli €
{2, k}, there exist xy, € [vgo) and zy,, € [vg4] so that (xg, pg)

p(ory o)

— (T) INS(G || T);

(ii)) IfS(G/~ || T) =8 ([xa], xp) for some s € (X, U Xp)*, then there exists

), € 1] so that S(G | T) =5 (¢, z7).

Proof. (i) We prove by induction:
(Base case) For k = 1, it holds immediately that there exists z(,, € [z4,] and

Ty € [xgy] sothat (x5, 2rg) 8 (g, xp1) in 8(G || T) from Lemma
3.2.5.(i) since o; € X,

(Inductive step) Suppose the proposition holds for some k > 1, i.e. for some
trace o g @z o g
([zgols zr0) —° ([Zu), 201) —° -+ —° ([zawl 21i) (112)

inS(G/~ || T)wherea; € ¥,and a; € A U Apforalli € {2,...,k}, there
exist r, € [2go] and zg,, € [vg;] so that

, P(al“'ak> ,
(ZGo» T10) — (TGps Trk) (13)

in §(G || T'). From this hypothesis, we show that the proposition holds for
k + 1 as well. Consider any successive transition

QApi1

([rar) o) —° ([Tarial, Trasr) (114)

of trace (12). This indeed implies the existence of z(;,, € [z¢,] and z(,,, €

A

[2are] so that (2, 21y,) —° (2501, Trppr) I S(G || T) due to either
Lemma 3.2.5.(i) (if (114) is driven by G) or Lemma 3.2.5.(ii) (if (114) is not driven
by G). Now if [z,,] is a singleton, the proof closes directly since z(;, = z(,,.
Otherwise, from trace (112), we shall find the last regular transition driven by
G, i.e. we consider the trace fragment

Qg Qjp1 Qg

([£gial, xpia) —° (i), 2ps) ——° ([Tarl, 211, (115)

from (n12) whereo; € Ygand ;g - ay € (X gUY)". Let sy = p(a g -+ ay,).
From this and due to the inductive hypothesis, we can extract the fragment

Q; St

(Zg, Tp) —=° (TG, Ty (116)

95

3 Compositional verification with prioritised events

from (113) for some Z € Q and Z, € Q. Since ~ is redirectable, we have

;S

(Zg, Lp) == (T&py Try) (117)

X Qi1
from (R1), which can be concatenated by (27, 27y,) ——° (541 Trpst)-

(ii) We separate the proof into two cases:

(Case1) s € XSG This case holds directly from (R2). Note that we have
proven an even more general version of the current statement, i.e. the
statement holds for all states in [z] instead of the existence of some state
in [z], which will be utilised in the proof for the next case.

(Case2) s¢ G- Then let

S(GI~ | T) =5 (lyelyr) 2% ([2¢), 27) =5 (gl or) (u8)

where s € X7, 5, 0 € g andt € (Yg U Xp)" so that syot = s. From
S
Case1, forall y;, € [yo], S(G || T) =58 (Y¢, yr). From statement (i),

t
there exists y/, € [yo] and z;, € [z4] so that (y/, yr) =8 (xg, zp),
which closes the proof. O]

In order to achieve redirectability, we are going to define incoming equivalence
for prioritised events by adapting the ordinary version introduced in (Flordal

and Malik, 2009, Definition 7). From the notion of PWB, intuitively, the
p(e) .
transition relation %A—)% is tolerant against preemption and can possibly
He? e
be utilised for the definition of incoming equivalence w.r.t. prioritised events.
€
In particular, the execution of = cannot be disturbed by any rest part due

1
to preemption. In fact, this requirement can be relaxed when considering
redirectability. Consider some new transition relations as follows.

Definition 3.2.24. Given a Y-shaped automaton G = (Q,%X,—,Q°, M),
define the following extended transition relations:

(T4) —CQxYTxQ:a—yifr - yand Gy (x) = 0.
(T5) —=CQx{e} xQ:x Sy if either of the following holds:

(i) nzlandw%y,or

(i) n>2a—>=>—>yk>landlo({r,~7}) =n.

96

3.2 Conflict-preserving abstraction rules

Transition relations introduced in Definition 3.2.24 are generally more restrict-
ive than those in Definition 3.2.6 in that preemption through regular events
shall never take place on a <>-transition before the last state. Note that the
new transition symbol “—” is utilised intentionally to differ from — and =
since whenn > 2, x C% x generally does not hold for an arbitrary state z,

.o, € ., .
because at least one 7,,) transition must exist within —. Based on Definition

3.2.24, the adapted definition of incoming equivalencenis presented as follows.

Definition 3.2.25. Let G = (Q, X, —, Q°, M) be a T-shaped automaton. An
equivalence ~;,. C () x @ on G is an incoming equivalence if and only if for
any z,x’ € Q) so that x ~;,. x’, all the following statements hold:

(I) Foranyoc € ¥, n € Nandy € Q, yz%C—)x & y:>—>%x

< Ao Ao n A:c Aig n
e
where A = G{ (y);

(Iz) Foranyn € N, Q° S e Q° S 2
n n

(I3) Ifxz + 2/, then foranyy € Qandt €Y, y 55 zory 5= 2 implies
Gan(y) =0

Clearly, incoming equivalence distributes over arbitrary union. Hence, it is
legit to utilise ~;,. to denote the coarsest incoming equivalence of an automa-
ton. In addition, any equivalence finer as an incoming equivalence is an
incoming equivalence as well. Thus, the notation of ~ C ~; . is often utilised
to indicate that ~ is an incoming equivalence. Similar to the ordinary version
in (Flordal and Malik, 2009), Definition 3.2.25 attempts to equalise states
which can be reached in the same way, i.e. only the past of a state is con-
sidered and its future behaviour is totally ignored. However, such intuition is
inadequate when prioritised events are taken into consideration, since redir-
ectability requires that the same state y, from some test 7'should be reached
before and after abstraction. If no restrictions over the future behaviour of
incoming equivalent states are given, redirectability can be easily invalidated if
two equivalent states have different preemptive power. In addition, we notice
that when abstracting an automaton through quotient automaton construc-
tion, it is almost always required that the quotient automaton of a T-shaped
automaton shall be T-shaped as well, which can not be guaranteed solely
by incoming equivalence. To this end, we first introduce our definitions of
active-event equivalence and silent-continuation equivalence.

Definition 3.2.26. Let G = (Q,%,—,Q°, M) be a Y-shaped automaton.
An equivalence ~,, C) x @ on G is an active-event equivalence if for any
z,x’ € Qsothat x ~,, ' and x # 2/, the following two statements hold:

97

3 Compositional verification with prioritised events

(AEI) Gslnt (l’) = CTYslnt (‘T/) = ®;
(AE2) Grglr (x) = Grglr (IE/)

Definition 3.2.27. Let G = (Q, X, —, Q°, M) be a Y-shaped automaton. An
equivalence ~,. C (Q x @ on G is a silent-continuation equivalence if for any
z,x’" € @ sothat x ~,. x' and x # 2/, all the following statements hold for
someT € Y:

(SC1) 7€ G(x)NG(2);
(SC2) Grglr(x) =G () =0;

rglr
(SC3) Neither x nor 2’ is in any live-lock.

Similar to ~;,., we utilise ~_., ~. to denote the coarsest active-event equiva-
lence and silent-continuation equivalence and write ~ C ~_, or ~ C ~ to
denote that ~ is an equivalence of the corresponding type, respectively. By
combining ~;,. with either ~, or ~, the redirectability can be achieved.

sc?

Proposition 3.2.28. Let G = (Q,X,—,Q°, M) bea Y- shaped automaton
with an equivalence ~ C @ x @) on G be such that either ~C ~; . N ~,
~ C ~; N It holds that ~ is redirectable.

Before proceeding to prove Proposition 3.2.28, note that ~,, imposes a rela-
tively strong restriction on equivalent states that silent events are never active
on any state in a non-singleton class. Readers familiar with (Flordal and
Malik, 2009) may be curious about the possibility of relaxing Definition 3.2.26

to equate states with regular active events delayed by %, i.e., by defining

€ O
Ap(z) :={0c € Xz ?—>}, one may expect that z ~ 2’ when A, (z) =
A,.(z"). However, combining such a “relaxed” active-event equivalence with
incoming equivalence does not guarantee conflict equivalence. Consider the
following example:

Example 3.2.4. Consider automata G and T given in Figure 29. Note that
G is Y-shaped and 1 ~;,. IlI clearly holds since state 111 can be reached from
the initial state through 7(, . Furthermore, from A (z) = A, (2), we are
able to equate 1 and 111 which results in G/~. In this case, although ([I1],ii) is

reachable in §(G/~ || T (II,1i) is not reachable in §(G || T) since i i
cannot happen before 1 % I1I and the transition I —> Il is labelled by a shared

event 0. One observes that in this example, 1 —> Il somewhat “disables”
1511 although both events are with the same priority. In this case, equating

98

3.2 Conflict-preserving abstraction rules

G 1 11 G/~ 1 11
—>O g O / _»8 g b]
lT“) MA
g
O——>0>% (O]
11 v %o [IV] @m
T i T(2>
-0 — OfD
Ty, W)

SGIT 1; SG/~ 1T M), [1],ii [11],ii
>0 -0 —"2>3 720
17(1) N

72 [O)
O >0 >0 0>
111, 1L i IVii O [IV],ii D

Figure 29: Counterexample of equating incoming equivalent states with the same set of delayed
active events

I and 111 is unacceptable, especially when both states have different future
behaviour, e.g. one leads to a non- blockmgﬁlture while another blocks. Finally,

it is also worth noting that “preserving” 1 S Mintoa 7(1)-self-loop (which is
against the quotient automaton construction) in G /~ does not solve the issue,
since the trapping power is rendered inconsistent.

As a counterexample, Example 3.2.4 infers that for two incoming equivalent
states, additionally requiring them to have the same preemptive power is
essential to achieve redirectability. Otherwise, private transitions in 7'may
be inconsistently preempted. This can be guaranteed by ~,, or ~, as being
stated in the following lemma.

Lemma 3.2.29. Let G = (Qg, Xg, — ¢, @y, M) be a Y-shaped automaton.
Let ~ C @ X @ be an equivalence on G so that either ~ C ~, or ~ C ~_ holds.
For any automaton T = (Q¢, X1, =7, @7, M) and any trace

T1 T2

(rq, T7q) — (rg,xpy) —

Tk
S8 (rg,zpy) (119)

inS(G || T) where k > 0 and 7; € X\ foralli € {1,..., k}, it holds that for
any x, € [rg), a trace

T1 T2

(‘/E/vaTO) _>S (x/GaxT1> —

Tk

S8 (rg, 2y) (120)

99

3 Compositional verification with prioritised events

exists in S(G || T') as well.
Proof. The current statement is trivially true from (AE2), (SC1) and (SC2). O

Atthe current stage, the fundamental components forachieving redirectability
have indeed been collected. In fact, by strengthening Definition 3.2.25 as such
that

» all —-transitions are uniformly replaced by % (strengthens (I1) and
(I2)) and

= “implies Gr<ngr (y) = (" in (I3) is uniformly replaced by “implies 7 = Ty

(strengthens (I3)),

redirectability would be easily achieved by the conjunction of a strengthened
incoming equivalence with either ~,, or ~.. In particular, the strengthened
version only allows 7, to appear before reaching some state in a non-trivial
equivalence class. Consider the following example.

G 1 I G 1 Ir
-0 —2>0 -0 —2>0
(II ~ IV) lo'(l) Ir ~" 1V’) la'(l)
0—2»0 0—2>0
Il v g v’
T 1 0'(1) 11 T(l) lll
-0 ——0O @)
S@GI 216 o lléii T I[C,)iii SG || T_)»Id o :uc',)ii T =ll’éiii
am T
MLi O — 2> O IMLii I, i QO — 2> O 1T, iii
lT () le lm)
iO —2 > O 1V;iii O 1V, iii

Figure 30: The conjunction of a strengthened incoming equivalence and an active-event equiva-
lence is redirectable

Example 3.2.5. Consider automata G and T given in Figure 30. Note that in G,
states are partitioned by the equivalence ~ so that (II,IV) € ~ C ~; . N ~.. In

100

3.2 Conflict-preserving abstraction rules

this case, ~ is indeed redirectable, which can be “witnessed” by the automaton
T In particular, since state (11, 1i) is reachable, the reachability of state (IV, ii)
should be guaranteed as well to achieve redirectability since 11 ~ IV. This must
hold since the only silent predecessor of 1V, i.e. Il], reaches 1V via 7). Thus,
regardless the priority of successive transition in T, G can always execute all
its 7(y)-transitions first, then T executes its private transitions. However, this

.
is not the case if we replace the transition label of 111 v by e.g. 7(5), which
results in G’. The resulting equivalence relation ~" is no longer redirectable,
since (IV',ii) is rendered unreachable.

Despite the awareness that the strengthened incoming equivalence contrib-
utes to achieve redirectability, we are interested in a more relaxed definition,
i.e. utilising the original Definition 3.2.25. By reviewing Example 3.2.5, the
statement “G can always execute all its 7,)-transitions first, then T executes
its private transitions” can be relaxed by <>-transitions while still preserving
redirectability. In the following, we consider the properties of —-transitions
by mainly focusing on traces under synchronisation with only private events.
Such traces are referred to as asynchronous traces. Note that temporarily
in Lemma 3.2.30 and Proposition 3.2.31, we do not require either automaton
to be T-shaped since the discussed properties are stated for traces instead
of for automata. This benefits some proofs in that two traces from their
corresponding automata can be freely swapped.

Lemma 3.2.30. Let G = (Qq,Xq, —¢, Qu, Mg) and T = (Qp, X, =,
Q% M) be two arbitrary automata and

T1 T2

(zg, 1) —° (TG, Tpy) —

Tk Tk+1

5o =5 (xg xpr) —° (Yg, Top) (121)

be an asynchronous trace in §(G || T) so that k > 0 and for alli € {1,---, k},
(@G @p; 1) —5 (2g,aq;) is driven by Tand (26, w7y) ——5 (yg, @1y, is

driven by G. It holds that prio(1;, 1) > lo({7;, -, 7 }).

Proof. Note that forall i € {1, k}, (xq,p;) “YingG | T. Thus, the
current statement must hold as the trace is in a shaped automaton §(G ||
T). O

The statement of Lemma 3.2.30 may seem verbose at first glance. Never-
theless, it induces an interesting property of asynchronous traces in shaped
synchronous compositions: each time when the “transition-driving” automa-
ton alternates, the priority of the silent event on the next transition cannot

101

3 Compositional verification with prioritised events

Or ()
Xri— O30 =0
Xr j+1'_'; @)
T(m) TT(")
= OO0 =0
XTi — O
[R | o
XGi XGi+1 XGj XGj+l XGk

Figure 31: An asynchronous trace in shaped synchronous composition

elevate. Consider the sketch in Figure 31, where an asynchronous trace under
shaped synchronous composition is given in grid. Points on the horizontal
axis correspond to states in (), while those on the vertical axis correspond to
states in (). Consider those states at which the driving automaton alternates,
i.e. the “direction” of the trace changes. It is easy to conclude from Lemma
3.2.30 that m < n < r must hold. More importantly, if the trace ends with a
transition driven by G (this is indeed the case in Figure 31), it can be imme-
diately concluded that the last “T-state” of the last state (x;, in Figure 31)
cannot execute any private events whose priority is higher than any transition
in the trace. At the same time, the lowest priority of all transitions driven
by G cannot be higher than the lowest priority of any transition driven by 7.
These properties are formalised by the following proposition.

Proposition 3.2.31. Let G = (Qq,Xq, =g, Q4, Mg) and T = (Qr, X, =,
Q°r, Mp) be two arbitrary automata and

1 S Ty
(xG07xTO> — (mlele) —

Tk

S .58 (T Trr) (122)

be an asynchronous trace in S(G || T') where k > 1 and the last transition

Tk . .
(Tap_1,Trp_1) —° (o, Tpy) is driven by G.

(i) Letn =lo({ry,,7,}). It holds that T<" (xp,,) = 0;

prvt

(ii) If at least one transition in (122) is driven by T ,then n > n, where

ng =lo({7; | (rg;_1,77;i1) 2)5 (g, vp;) is driven by G'}); (123)

ny =lo({7; | (xgi_1,T7i1) — (zgi» T;) is driven by T'}). (124)

102

3.2 Conflict-preserving abstraction rules

Proof. Note that both statements hold trivially if all transitions in (122) are
driven by G. Thus, we assume that there exists at least one transition driven
by T'in (122).

(i) Let 7 € T}, (27,) and consider the trace fragment

Tit+1 T Tk

75 J+1
(TG Tp;) —8 . 8 (‘rGjaij) — . (Tap, Try) (125)

where 0 <4 < j < kand all transitions before (z;, z1;) are driven by T'while
all transitions after (2, vr,) are driven by G. It follows immediately that
prio(T) > lo{T;;q,, 7} > prio(7;,;). Furthermore, from Lemma 3.2.30,
we have prio(7;, ;) > lo{7; 4,,7;} > prio(7;,;). This is sufficient for an
induction to reason the entire trace.
Ti+1 Tk
(ii) Consider the trace fragment (z;, vp;) —° - —° (zgp, 27;) Wwhere
Ti

0 < i < kandall transitionsare driven by G but (v, 1, Ty 1) —° (Tgi» Try)
is driven by 7. The current statement is clearly true since prio(7; ;) > np
from statement (i) by swapping G and 7, and ng > prio(7;, ;) must hold as
well. O

Combining Proposition 3.2.31 and Lemma 3.2.29, we are now in the position

to conclude the following property. In particular, the statement (ii) of the
€

following proposition covers the =-transition in the strengthened incoming

1
equivalence as a special case which was mentioned in Example 3.2.5. Note
that we again require G to be Y-shaped from now on.

Proposition 3.2.32. Let G = (Qq, Y, =g, @4, M) be a Y-shaped automa-
ton and

T1 Tk

T2
(TGos T10) —° (Tg1,271) —° = =% (Tgp Ty) (126)
be an asynchronous trace in §(G || T') where k > 0. Let n = lo({7; | (zc;_1,

Tpi_q) A (xgi, xp;) is driven by G}) and

.
/ / /
Tog — Ty — = — Ty (127)

with k'> 0 be a trace in G so that all events on this trace are silent, lo({7y, -,
T,}) = nandforalli € {1, k'}, Gfngri (xg,_,) = 0. The following two
statements hold:

103

3 Compositional verification with prioritised events

(i) For (126), ifk > 1 and the last transition (zgy_1, Trp1) —5 (Tap T
p(ry-7)
is driven by G, then (x5, x7() — s (xgp o) inS(G || T') where

the last transition is driven by G;

(ii)) Let ~C Qg X Qg be an equivalence on G so that either ~ C ~_, or ~ C
P(T1Tk)
S .
~oee f gy ~ x5y, then (T, Tp) =7 (T, Tpy) INS(G || T).

Proof. Note that the restriction Gfgl:" (xg;) =0fori" € {1, k'} excludes
the possibility of preemption through regular events before reaching x,,.
For convenience, let n” = lo({r], -, 7}, }).

(i) It suffices to construct an asynchronous trace from (z (), T7q) to (x5, T7y,)
which will not be influenced by shaping and the last transition is driven
by G. Let i’ = j = 0 and we start the construction from the first state
(s 1) = (Tgo» Tro)- Note that due to Case 2 of Step 2 in the following, it
is not possible to reach x,,, before x,, is reached.

(Step1) Consider two possible cases:

(Case1) Only j = kholds, i.e. zp, is reached. Consider the trace given
in (126) and from Proposition 3.2.31.(i), it follows that T % (z1) =
(. Since n = n’ is required, we are able to directly complete the
construction by concatenating the remaining transitions driven by G

€
toreach z,,,, i.e. we must have (z/,;,, 27),) = (2, T1;) whereall

transitionsaredriven by Gin §(G || T'), since priority of all remaining
transitions driven by GG cannot be lower than any 7 € 7, (z7},) and
preemption through shared events is impossible. This terminates
the construction.

(Case2) Neitheri’ = £’ nor j = k holds. Proceed to Step 2.

(Step 2) Since preemption through shared prioritised events is not possible,
we can proceed from (z(,,,, 27;) with either one transition driven by G or
one driven by 7, or both. Consider the two possible cases:

T/,
(Case1) prio(7(,.,) #n'. Ther: concatenate either (zy,,, 1;) SESEN
(TGiri1,Trj) OF (T, Try) s (g5 T7j41) according to their
priority and update either i’ := i’ + 1 or j := j + 1, respectively.
Note that each time when the current case is met, we must have not
reached z(,,, yet since the transition with the lowest priority in (127)
has not been reached yet. Go back to Step 1.

104

3.2 Conflict-preserving abstraction rules

(Case2) prio(7,,;,,) =n'. Sincen = n’ was required, from Proposition
Ti

3.2.31.(ii), it follows that prio(7(,;, ;) =n>lo({7; | (gi_1, Tps_1) —°
(g, xp;) isdriven by T'}). Thus, we are able to concatenate the
remaining transitionsdriven by T'toreach z, i.e. we have (z¢,,/, v7;)

=8 (2, vpy) where all transitions are driven by 7'in §(G || T')

and s € Y is the remaining private event sequence in 7. Update
j := k and go to Step 1. We will be in Case 1 of Step 1.

(ii) The current statement holds trivially if all transitions in (126) are driven by
G. In addition, the current statement holds directly if all transitions in (126)
are driven by 7' from Lemma 3.2.29. Moreover, if the last transition in (126)
is driven by G, the current statement holds directly as well from statement
(i). The only remaining case is that (126) ends with such a trace fragment

Tit1 Tk . X ..
(g, xp;) ——S - —5 (xap, 2py) Withi € {1,~--,k—T.1}whereall transitions

aredriven by T'(i.e. z4; = xgy,) and (zg; 1, 2y 1) —S (g 2p;) is driven
pP(TyT;

by G. From statement (i), (25, 2rg) =——=° (2}, 2p;) in S(G || T)

holds. Furthermore, due to Lemma 3.2.29, we must be able to concatenate the

L. . X X P(Tip1Th)
remaining transitions driven by 7'to reach z,, i.e. (2, 27;) ==

(TG Trp)- O

S

Proposition 3.2.32.(ii) shows us an important property between asynchronous
traces when preemption through shared events is excluded: for two traces
with the same lowest priority and both final states are equivalent w.r.t. either
s» they can be utilised to synchronise the same private-event trace.
This matches the definition of <»-transition which is utilised in Definition
3.2.25. With all the preparation, we are now ready to prove that Proposition
3.2.28 is true.

Nae or ~

Proof of Proposition 3.2.28. We prove (R1) as follows: let (z, z) %8 (T, Tp)
ST

=% (yg,yr) in 8(G || T) for some T € Q and T, € Q. By (I3), we have
e < Yo in G with some n € N. From (In), for each y;; € [ys], we must

—, €8 %9 .8 = S . — (<o
have some z(; € Q so that z = 32" e 7 ¥ where A = G_7 (z¢).

Clearly, we directly have (z, z) =8 (Zg, 7). Inaddition, (g, z7) =8

(y¢:» yr) can also be guaranteed from Proposition 3.2.32.(ii) or directly from
Lemma 3.2.29. This indeed shows that (R1) of Definition 3.2.22 is fulfilled.

105

3 Compositional verification with prioritised events

STS

The proof for (R2) is similar by only considering (%, ;) =° (Y, yr) and
letting (Z, 1) be any initial state in (G || T'). O

With Proposition 3.2.28 being proved, the conjunction of ~;,. with either ~_,
or ~ guarantees that a trace in the original behaviour can be reconstructed
from a trace after abstraction. To imply conflict-equivalence (which is an
if-and-only-if statement), a similar property in the converse direction is to

clarify as well.

Proposition 3.2.33. Let G = (Qg, X g, — ¢, Qy, M) be a T-shaped automa-
ton with an equivalence ~ C Q. X Q- on G so that either ~ C ~,, or ~ C ~,

holds. For any automaton T' = (Qp, X1, =, QF, Myp) and any transition
« . . p(a) .
(g, 27) =° (yg,yr) in (G || T), it holds that ([z¢], 1) —° ([ys], yr) in

S(G/~ || T).

Proof. If v ~ Yo, o € T and (2, zp) 48 (Ye, yp) is driven by G, we will
have a trivial transition ([z¢], 27) —% ([yal, yr) = ([2g), 2p) in S(G/~ || T).
Otherwise, ([z4], z7) N (lye), yp) in G/~ || T. This transition will clearly
not be shaped due to the definition of ~_, and ~.. O

We are now in the position to state two conflict-preserving abstraction rules,
i.e. the active events rule and the silent continuation rule, in Theorems 3.2.35
and 3.2.36. For the active events rule, the following lemma is given to simplify
the proof.

Lemma 3.2.34. Let G = (Qg, Xq, — ¢, @y, M) be a T-shaped automaton

with an equivalence ~ C ~,. For any automaton T = (Qp, X1, —p, Qo My),
srp(c)

if ([vg], vp) == in 8(G/~ || T) for some x5 € Qg, T7 € Qp, S5 € G

sTp(a)
and o € Ag, then forall x, € [xg), (x¢, x7) S in SG || T).

Proof. Recall that for any non-singleton class [z], G
Consider two cases:

ant(To) = 0 must hold.
ST
Case1) « € Y. Ifthereissome tracein ([z], ;) =>¢ where all transitions
GhH 4T
are not driven by G, the current statement is directly true due to Lemma
3.2.29. Otherwise, let

(lea) 20) =% (lEa) vr) 5% (el yr) =5 (128)

106

3.2 Conflict-preserving abstraction rules

in 8§(G/~ || T) forsome T € Y, T, ya € Qg Yr € Qp tyup =

st ([Za), yr) L ([ya), yr) is driven by G and all transitions in the
u

fragment ([y:], yr) = are not driven by G. Note that all states on

(] ;ﬁ [Zg] in G/~ are singletons. Thus, there must exist y;, € [ys]
t
so that (z4,zp) =5 (ZTa,yr) 58 (Y, yr) in S(G || T). In addition,

(Y Yr) — in 8(G/~ || T') must hold due to Lemma 3.2.29.

(Case2) «a € X, ie. p(a) =caandwe have ([zs], z7) 5% iy S(G/~||

T). Following Case 1, if there exists a trace on the fragment ([x],) =8

where all transitions are not driven by G, then the current statement holds
directly in that forall z(; € [z4], o € G(z(;) holds. Otherwise, consider
concatenating an « transition at the end of (128), i.e.

tr

(lre) 20) =5 () vr) —° (el yr) =555 . (120)

S

Recall that all transitions on the fragment ([y], y7) —5 are not driven

by G, i.e. before executing the final S _transition, [ye] will not execute
t T
S

.o, . T -

any transition. Thus, from Lemma 3.2.29, (g, z7) =° (Tg,yr) —°
u

(Y yr) —5% for some Ye: € [yg| must hold. O

Theorem 3.2.35 (active events rule). Let G = (Qq, X, —q, Qy, M) be
a Y-shaped automaton with an equivalence ~ C ~,, N ~;.. on G. It holds

G~ (G/~).

Proof. Let T = (Qp, Xp, =, Q7 Mp) be any automaton:

(=) Suppose S(G || T) is non-blocking. Pick z € Qg, z7 € Qp and
s€ (EgUXp)*sothat S(G/~ || T) = ([z], z7). By Proposition 3.2.23.(ii),
there exists z, € [zs] sothat S(G || T) 5 (¢, zy) and due to the non-
blockingness of §(G || T'), for each Q € M U My, there exists w € 2 so that
(T, Tp) .5 in S(G || T) forsomet € (X, UXp)*". By Proposition 3.2.33, it
holds that ([z], #7) —=5.

(«<=) Suppose §(G/~ || T') is non-blocking and pick z € Q, 1 € Qpand
s€(EgUXp)*sothat S(G || T) =S (xq,xp). From Proposition 3.2.33 and

107

3 Compositional verification with prioritised events

the non-blockingness of §(G/~ || T'), for each Q € M U My, there exists

weQandt € (S, UX,)* sothat S(G/~ || T) =5 ([xg], wr) —>5. There
are two cases:

(Case1) te Yra This case holds directly from Lemma 3.2.34. Note that
the sub-case of w € ¥ ;; holds as well.

ST o

(Case2) Foranyt, Case1doesnot hold. Then we must have ([z4], z7) =—
forsome o € ¥ —and sy € X7, . By applying Lemma 3.2.34, we have

ST _ _ o
($G7$T> :>5 (xG>$T) _>5 (yG7yT) (130)

in (G || T) for some Z,ys € Q¢ and Tp,yp € Qp so that s;o <
t. From Proposmon 3.2.33 and the non-blockingness of S(G/~ || T),

([vals yr) 2.8 must hold forsome t’ ¢ € (XgUEp)*andw’ € Q. Consider

the following two sub-cases (which are comparable with Case 1and Case
2), i.e. either
t/ /

(i) t'w € E,}\G From Lemma 3.2.34, we directly have (y, yr) =5,
(ii) Case 2.(i) does not hold for any ¢'w’. By applying Proposition 3.2.33
and then Lemma 3.2.34 again, we have altogether

ST o olr o’

(zg, xp) = (Tg, Tp) =°=° (Yg, p) —° (131)

in (G || T) for some yg € Qg, Y € Qp tp € X gand o’ €
Y. From Proposition 3.2.33, Proposition 3.2.23.(i) and the non-
blockingness of §(G/~ || T'), there exists y., € [yg], w” € Q2 and

u € (Xg U Xp)* so that (yg, yr) =5 and 0’ < uw”. Note that

o tT

(g, Zr) =°=° (Y, y7). From Proposition 3.2.28, ~ isredirectable

UtT uw” s

and we thus have (Z, 7)) = (¥, yr) =°. O

Example 3.2.6. Consider the automaton G given in Figure 32. 1 ~;,. IIl must
hold since they both are initial states and can be reached from 1V via p. Besides,
since they cannot execute silent events and they have the same set of active
regular events, I ~, IIl holds. Thus, I and I1I can be merged through the active
events rule which results in the conflict equivalent G /~.

108

3.2 Conflict-preserving abstraction rules

(1]

[0) G/~
—> —»
O w(l) Wy
PQ) ‘ ga)
(Tm — g
—
e w [P v

Figure 32: Active events rule

Theorem 3.2.36 (silent continuation rule). Let G = (Qg, Yo e Ry Mg)
be a Y-shaped automaton with an equivalence ~ C ~;,. N ~.. It holds G ~4

(G/~)

Proof. Let T = (Qp, Xp, =, Q7 Mp) be any automaton:

(=) Same as the proof of Theorem 3.2.35

(<) Suppose §(G/~ || T) is non-blocking. Pick 2 € Q4 and x4 € Qp so
that S(G || T) = (g, zp) forsome s € (¥ ,UX,)*. From Proposition 3.2.33
and the non-blockingness of §(G/~ || T), forall Q € M, U M, there exists
te(EgUXp) andw € Qsothat S(G/~ || T) = ([xa], zp) 2.8 Consider
three cases:

t
(Case1) [z] is a singleton and there exists some trace in ([z4], zp) =8

which begins with ([z], z1) 2 for some o € Y. From Propositions
3.2.28, ~ is redirectable. Thus, this case is directly true from 3.2.23.(i).

(Case2) [z(]is nota singleton. Since z is not in any live-lock but there
exists 7 € Gy, (), there must exist some y, € Q. so that = Yo
and Gy, (yo) = 0 in G. There are two further possibilities:

(i) There exists some sy € X7 5, Y € Qpand o € X so that (zg, zp)
ST

—5 (ya,yp) =% in 8(G || T). Note that ([ys], y;) must be co-

reachable since from Proposition 3.2.33, ([y], y7) is reachable in
S8(G/~ || T) which is non-blocking. In addition, since G, (y) = 0,
[y] must be a singleton. Thus we have reached a Case 1 situation.

(ii) If Casez2.(i) doesnothold, then thereexist z; € Qo — {yG} zT € Qr
tr
and iy € X7, so that (rg,zp) =° (26, 27) and zg SN ye for

some 7’ € Y. In addition, the execution of z. —>5 in (zq, zp) is
disallowed. This could be caused by

109

3 Compositional verification with prioritised events

a) (z2g,27) =%in 8(G | T) for some o € S so that prio(a) <
prio(7”). This again implies that [z.] is a singleton state from
(SC1) and (SC2), i.e. a Case 1 situation is reached; or

b) zpis in some n-live-lock3 in T'with n < prio(7’). Note that
([2¢], z7) must be co-reachable since from Proposition 3.2.33,
([2c], z7) is reachable in §(G/~ || T') which is non-blocking. In
this situation, [z] cannot execute any transition driven by G in
S(G/~ || T) as well (this is clear if [z] is a singleton; otherwise
[2¢] is not a singleton, then from (SC2), all its active events are
not executable due to the n-live-lock in 7, which includes z;).
This implies M, = (). In addition, ([z4], z7) is co-reachable in
S8(G/~ || T) implies that (z, zp) is co-reachable in §(G || T').

Note that we do not need to take special care to the situation where

/
the execution of z S in (za, zp) is preempted by a private active
event in z, whose priority is higher than 7’. This situation must lead
to either (i), (ii).a) or (ii).b) in the current case.

(Case3) [z.]isa singleton and all traces in ([zs], zp) s begin with an

. . tw
event o ¢ Y. If there exists some trace in ([z.], z) =° where each

state consists of a singleton state from () /~, the current statement is
trivially true. Otherwise, let

g 3]

([rglxr) = ([xgo)s Tro) — ([xg1)s p1) —¢
-5 (gl mrn) ——% (o) Trpsn) —® o (132)

beatracein ([zg], zp) ~2.S where k > 0, [zgp41) is not a singleton and
all [z,;] with i € {0, ..., k} are singletons. Clearly, ([xg], 271) SN

([zGpi1)s rpy) is driven by G/~ since [z ;] is a singleton while [z, , 1]
Ayl

is not. Clearly, there exists x| € [Tggy1] S0 that (g, 2pp) —
(TGpi1s Trpy1) i S(G || T'). This indicates that Case 3 always reaches a
Case 2 situation if at least one non-singleton state is visited in ([z4], 1)

tw
:}5_ D

Example 3.2.7. Consider the automaton G given in Figure 33. Clearly, I ~;,.

[T holds. In addition, 7(5) € G (IN) NGy (1) while G 23 (1) = G7 (1) = 0.

3 Here, we slightly abuse the definition of live-lock in 7"in that we uniformly substitute all
Gy, With T, . in Definition 3.2.3.

sint prvt

110

3.2 Conflict-preserving abstraction rules

This implies that 11 ~,. 11l and merging Il and 111 yields a conflict-preserving
abstraction.

G I 0'(1) II G/~ [I] o [H]
-0 P O -0 e
O'(])l l‘f(g) l‘r(z)
250)
O———>0 @)
I vV @ (V] @0

Figure 33: Silent continuation rule

€ . . o, .
Remark 3.2.2. Recall that — requires for n > 2 at least one silent transition

with priority n. This require?nent can be implicitly fulfilled by adding redun-
dant silent self-loops, which is a PW-bisimilar operation from Lemma 3.2.10.
Consider the automaton G given in Figure 34. At first glance, 11 ;. Il
since I 5<5 11 holds but 1 Zs<5 111 does not hold. Nevertheless, the latter

2 2

can be rendered valid through appending a 75)-self-loop in 1II, which is a

redundant silent self-loop. This operation enables merging Il and 111 through

silent continuation rule. Thus, when computing the set of —-transitions, we
T(n)

€ . ’

always have x — z if © — and no reqgular event with priority higher than n
n

is active in x.

G G G/;[CI)J o %]

1 1I ! 1 1I
—-0—%50 —-0—2>0

T T
O—(”l) ”l E> o-ml) 721 T2),P2)
@ o)

P e Pe)
O——0> SO——0> (o>
it vV @0 1 vV @ [IV] @

Figure 34: Combining silent continuation rule with redundant silent self-loops

Remark 3.2.3 (A discussion on relaxing <). At the end of this subsection,
we provide a short discussion on the possibility of relaxing the definition of
<, from which Definition 3.2.25 can potentially be relaxed while the redirect-
ability is still preserved. In particular, —-transitions exclude the possibility
of preemption through regular events, which is required in Proposition 3.2.32
where we attempted to equate traces that can be synchronised with a same
trace from a test. Nevertheless, an obvious situation which is not covered by
Proposition 3.2.32 achieves the same goal. We consider the automaton frag-
ment G given in Figure 35, where Il and 11l are not incoming equivalent from

m

3 Compositional verification with prioritised events

Lo 4

G'(I)l &‘

@)
1l

Figure 35: A case of redirectable equivalence which is not strictly incoming equivalent

(I3) since Gfgfr

obviously redirectable (if there are no other incoming transitions in Il and 11I),
T(2) T(2)

since traces | — 1l and I — 111 are “the same’; not only because their lengths

and the silent events on both transitions are the same, but also because the set

of active regular events with priority higher than the silent event to execute in

(I) # (. Nevertheless, an equivalence only equating II and 111 is

T o
each state is the same. In other words, traces | L) Il and 1 i M1 qualify the
property stated in Proposition 3.2.32 as well. This observation indeed extends
active events rule and silent continuation rule, where the latter one will be
exploited in the only silent out going rule below; see Definition 3.2.38.

At the current stage, one may be interested in finding a general relaxation of
Definition 3.2.25 which considers preemption through regular events while still
achieves redirectability. We believe, however, that such a relaxation is with

relatively few practical value. Consider the automaton fragment G given in
Figure 36. Consider the trace | 2 I1 E) Il in G where Gfgi(l) = {o} and
Gfgi(ll) = {p} hold. In this regard, one asks whether an equivalence equating
I1I and V1 s redirectable. In particular, the trace IV L) \% 2) VI results from
swapping states I and 11 in | L 11 ﬂ 111, including their set of active regular

events. Unfortunately, even such a conservative approach cannot achieve
redirectability, which can be witnessed by the trace in T'as shown in Figure 36. In

| T,
T

il
—-0 &,O

Figure 36: Invalidating redirectability through preemption

112

3.2 Conflict-preserving abstraction rules

-
particular, when considering the trace I\% % v VI, preemption through o
can be avoided by first executing i —> ii in T, while this preemption is inevitable
in state (1,1). We observe from this example that when preemption through
regular events is accounted, the order of the silent transitions is relevant, which
in addition requires recording all active regular events in each state on the
trace. Recall that given a target state, one only needs to record one incoming
<»-transition through its source state and the lowest priority value among
all silent transitions on it. However, allowing preemption through regular
events requires recording each silent transition with preemption possibility
through regular events explicitly. This drastically enlarges the set of incoming
transitions required to compute incoming equivalence. This is from a practical
perspective an obvious drawback and thus abandoned in the scope of the current
dissertation.

Complexity of the partition of incoming equivalence From the observa-
tion in (Flordal and Malik, 2009), the complexity of computing an incoming
equivalence is the same as the complexity of computing the entire incoming
transition set, which in our case is the transition relation ==——<>. Thus,

Ao Aioc n
the overall complexity of computing an incoming equivalence is O(|Q]2]Z|2

N),where |Q|?-|3|- Nis the maximal size of the transition relation =75

Aic Ao n
and is multiplied by |X| for the active regular event set comparison. O

Complexity of the partition of active-event equivalence The worst case
of computing an active-event equivalence is O(|Q| - |X]), i.e. we shall record
the set of active regular events for each state. O

Complexity of the partition of silent-continuation equivalence As
required in (SC3), we first compute all silent SCCs of the automaton which has
the complexityof O(| —|) = O(|Q|*+|X|) based on Tarjan’s algorithm (Tarjan,
1972a). This dominates the complexity of comparing whether two states both
have outgoing silent transitions, which has the complexity of O(|Q|). Thus,
the overall complexity of computing an silent-continuation equivalence is
O(|Q|* - |X]). Note that — has at most |Q|? - (|| + 1) transitions (instead of
|Q| - |A|) in a Y-shaped-automaton. O

3.2.3 Further abstraction rules

In this subsection, we extend and modify further abstraction rules introduced
in (Flordal and Malik, 2009). First, two abstraction rules resulting from

13

3 Compositional verification with prioritised events

G 1 11 G 1¥ 11 Ta)
-0 e o) —-0 o) O
w W, = N N
oo|lwa Wy oo)||wa W
Ta)
O T ®) '®) T O ®)
III v 111 v v’
G/~ (1 oo
—- O +—=0>
T 0]
Wy
[I11]
Figure 37: Only silent incoming rule
Wy, T<2>
G 1 il X II"
-0 W, TR) | O wu),T(z)
T T T,
wq) “ T W) / /
O W1y O wW(1)
111 v III
G/~ (1
— O
w W)
(1)> T(2)
W

O——O
(I11] [1V]

Figure 38: Only silent outgoing rule

combining PWB and the silent continuation rule are to address, i.e. the only
silent incoming rule and the only silent outgoing rule. The idea of modifying

the former rule can be illustrated by the following example.

Example 3.2.8. Consider the automaton G given in Figure 37, from which
we construct G’ by splitting the state IV into two states IV’ and IV”. It holds

14

3.2 Conflict-preserving abstraction rules

that G =~ G’'. Afterwards, Il and IV’ as well as 11l and IV” qualify the silent
continuation rule. Merging both classes results in G’ /~.

The observation in the above example inspires the following theorem. The
proof is synonymous to that of (Flordal and Malik, 2009, Proposition 2).

Theorem 3.2.37 (only silent incoming rule). Let G = (Q, %X, —,Q°, M) bea
T-shaped automaton and let & € () be such that & is not in any live-lock, 7}, €
G(x)andy 5 implies v = 7y). For the automaton G’ = (Q, %, =/, Q°, M)
with

—'={(z,a,y) |z S yandy # 7} U {(z,0,) |z > & >y}, (133)

it holds that G ~° G".

Note that the silent event utilised to enable the only silent incoming rule must
be 7(;,. As for G’ in Figure 37, this ensures that Il ~;,. IV’ (and IIT ~;,, IV").

mc mc
Replacing e.g. all transition labels 7, with 7(5) in G” results in a situation

where II <—z> I but I <7ii> IV’, which invalidates the incoming equivalence. In

addition, it is worth mentioning that in Theorem 3.2.37, it suffices to check
that z is not in any live-lock, since this implies that none of its predecessors is
in any live-lock.

Complexity of the only silent incoming rule The only silent incoming
rule can be implemented as such that for each state, we first check whether
all its incoming transitions are labelled by 7(;) and redirect all its outgoing
transitions to its predecessor states. The operations for a single state has thus
the complexity of O(|Q|? - |A]), which implies that the overall complexity of
the current implementation is O(|Q|? - |A|). O

We now consider the only silent outgoing rule, which first conversely applies
thesilent continuation rule, then utilises PWB. Consider the following example.

Example 3.2.9. Consider the automaton G given in Figure 37. By conversely
applying the silent continuation rule, state 1l is split into two states II" and 11"
in G’ so that 11" and 11" qualify the silent continuation rule. Note that 11" and
11" are not strictly incoming equivalent from Definition 3.2.25. Nevertheless,
silent continuation rule can still be applied through the observation in Remark
3.2.3 and Figure 35. Afterwards, a PWB ~ on G’ can be found where 11" ~ 111
and I1” ~ V. By constructing the quotient automaton of G’ w.r.t. ~, G’ /~ is
obtained.

115

3 Compositional verification with prioritised events

The observation in the above example inspires the following theorem. Its
proof is synonymous to that of (Flordal and Malik, 2009, Proposition 3).

Theorem 3.2.38 (only silent outgoing rule). Let G = (Q, %, —,Q°, M) be a
Y-shaped automaton and let x € () be such that x is not in any live-lock and
= S _ T / = / o/
G(@) ={ry}. LetQ :={y € Q|7 — y} and G' = (Q—{z}, %, =", Q", M)
with
0 {Q° ifE¢Q
(@ —{ThuQ ifreq
= ={(z,a.y) [z > yand 7 ¢ {z,y}} U {(z,0,y) |& = Tand y € Q}.
(135)

(134)

It holds that G ~° G’.

Note that in Theorem 3.2.38, again, all outgoing transitions of a state for
applying the only silent outgoing rule must be 7,). This is caused by the

€ o .
1i—fragment in transitions defining PWB; see Definition 3.2.7.

Complexity of the only silent outgoing rule Similar to the only silent
incoming rule, the only silent outgoing rule can be implemented as such that
for each state, we check whether all its outgoing transitions are labelled by
7(1) and redirect all its incoming transitions to its successor states. The overall
complexity of the current implementation is thus O(|Q|® - |A|) aswell. O

Another powerful conflict-preserving abstraction rule is the certain conflicts
rule. Basically, if only the non-blockingness is to check, the exact structure
of the blocking part of the automaton is not of our interest and thus can
be merged into a single blocking state. In addition, upon reaching some
co-reachable states, blockage under synchronisation is inevitable. Outgoing
transitions from such states are thus (partially) removed. Consider the follow-
ing two examples.

Example 3.2.10. Consider the automaton G given in Figure 39, where 11l is a
blocking state while all other states are non-blocking. For any automaton T'
so that (G || T') can reach 1l in G, p in Il must be executable in order to let
S(G || T) be non-blocking. However, in this case, 75 must be executable in
the same state as well, which leads to the blocking state I11. Thus, reaching 11
under shaped synchronous composition certainly leads to a blocking situation.
We thus remove all outgoing transitions from Il which renders 11 blocking and

16

3.2 Conflict-preserving abstraction rules

subsequently renders I blocking as well. By merging all blocking states, G’ is
constructed.

RN

G’ 1
T‘(/ lﬁm m —0

@) o>
111 v @

Figure 39: Blocking silent transition

Example 3.2.11. Consider the automaton G given in Figure 40, where Il is
blocking state while all other states are non-blocking. For any automaton T’
so that (G || T') can reach 1l in G, p in Il must be executable in order to let
S(G || T') be non-blocking by reaching IV. However, in this case, the blocking
I1I can be reached by p as well. Thus, the transition 11 25 IV does not contribute
to the non-conflictingness and could be removed.

G G

! 1 I
_,O&,O

|

1 i
S0-L2 .05

i/ lp@’mz) o i 11 blocks ‘i/ .
@) O>® @) O>®
i WARZD) i WARZD)

Figure 40: Blocking non-deterministic regular transitions

The above two examples are inspired by the limited certain conflicts rule intro-
duced in (Malik and Ware, 2020), which motivates the following statement.
Note that merging blocking states is omitted for brevity.

Theorem 3.2.39 (certain conflicts rule). Let G = (Q, %, —,Q°, M) bea Y-
shaped automaton. Let (). C () be the set of co-reachable states in G and
Que = Q — Q. the set of non-co-reachable states in G. Define two transition
sets as

—qi= {xiy\xé@c,aeA,yeQand

W EQuTET.Gif(x)=0Az >y} (136)
—yi={z 5 y|lr€Q.o T,y Q,Gl(x) =0and Iy € Que.x > y'}
(137)

and let G" = <Q7 27 i <_>1 U _>2)7 QD, M> It holds that G ~ G'.

uy

3 Compositional verification with prioritised events

It is worth mentioning that the certain conflicts rule as suggested in Theorem
3.2.39 abstracts an automaton through transition removal, which may render
co-reachable states non-co-reachable. Thus, the certain conflicts rule can
be iteratively applied until reaching the fix-point, as the transition removal
operation in Theorem 3.2.39 is obviously monotonic.

Complexity of the certain conflicts rule The transition removal is based
on finding blocking states in an automaton. This can be achieved by a back-
ward depth-first search on states marked by each marking set, which has the
complexity of O(| — | - |M]) = O(|Q|? - |¥| - |M]). In addition, the tran-
sition removal can be iteratively performed. In the worst case, each iteration
renders one co-reachable state un-co-reachable, which leads to maximally
|Q| iterations. Thus, the overall complexity of the certain conflicts rule is
O(1QP - |5 - |M]). =

3.3 Compositional verification

With the abstraction rules developed in the previous section, we are now in
the position to perform compositional non-blockingness verification w.r.t.
prioritised events. Recall that given a family of automata (G,), ; -, the global
behaviour amounts to G := 8(G, || G, || - || G,), where each G, is to
abstract through the developed abstraction rules. Afterwards, by iteratively
choosing modules to compose and perform abstraction on the composed
automaton, only one automaton lefts, whose non-blockingness coincides with
the non-conflictingness of the input family of automata. Following (Pilbrow
and Malik, 2015, Algorithm 1), this procedure is illustrated by pseudo codes
in Algorithm 2 where the main function ISNONCONFLICTING performs the
compositional verification procedure and invokes the function CONFLICTPRE-
SERVINGABSTRACTION to apply individual abstraction rules. In the following,
we clarify Algorithm 2 in detail.

The main function ISNONCONFLICTING takes a family of automata & =
{G4, ..., G} whose non-conflictingness is to check. For at least two auto-
mata in &, each G € & is abstracted through conflict-preserving abstractions,
which is addressed by the for-loop in Line 3. To introduce silent events, recall
from Definition 3.1.6 that transition hiding is to perform. In addition, the
automaton to abstract should be in T-shaped form. To achieve these two pre-
requisites, the set of private events IT (which includes silent events) is figured
out. From Remark 3.2.1, we can shape w.r.t. private events, which not only
implies YT-shapedness but also renders more states unreachable. This shaping
operation is performed by the §;(-)-operator in Line 5, whose definition can

18

3.3 Compositional verification

Algorithm 2 Compositional non-blockingness verification

1.

-
e

21
22:
23:
24:

25:
26:

27:
28:

PN R wWN

function ISNONCONFLICTING(®)
if |&| > 1 then
forall G € & do
II + {a € €|« is private in G w.r.t. &}
G + Sp(G) [> Shape w.r.t. to private events
G < Hipg(G,II)
G < CONFILCTPRESERVINGABSTRACTION(G)
end for
while |6| > 1do
pick G;,G; € &andlet H = G, || G; [> Strategically choose
modules to compose
IT + {a € ¢|aisprivatein Hw.rt. & — {G,;,G;} }
H + Sy(H)
H «+ Hipe(H,1I)
H < CONFILCTPRESERVINGABSTRACTION(H)
6« (6 —{G,,G;}) U{H}
end while
end if
let G be the only automaton left in &
return ISNONBLOCKING(S(G))

. end function

function CONFILCTPRESERVINGABSTRACTION(G)

G < CERTAINCONFLICTSRULE(G)

G < REDUNDANTSILENTSTEP(G)

G <—ONLYSILENTRULES(G) [> only silent incoming and outgoing
rules

G <PRIORITISEDWEAKBISIMULATION(G)

G < INCOMINGEQUIVALENCERULES(G) [> active event rule and silent
continuation rule

return GG
end function

be synonymously obtained from Definition 3.2.1 through uniform substitu-
tions. Afterwards, transition hiding is performed through the function HiDE.
Note that since Sy has been performed, hiding any private regular transition
into a silent transition preserves T-shapedness.

19

3 Compositional verification with prioritised events

At this stage, we shall take a deeper look into the transition hiding operation.
Generally, function HIDE shall iterate over all transitions and check whether
it is hidable; see Definition 3.1.7. To this end, Proposition 3.1.8 suggested that
transitions labelled by private regular events not carrying marking information
can be hidden. This conservative statement can be relaxed by analysing the
following example.

Example 3.3.1. Consider the automaton G given in Figure 41 and suppose that
the event w, which carries marking information, is private w.r.t. some given

rest part H in a modular system. In this circumstance, hiding | S 1linG
preserves the non-conflictingness with H. If S(G || H) is non-blocking, then
upon reaching I in G, executing w in | must be possible under synchronisation.
If this is possible, then since w is private in G, subsequently executing w in 11

w
must be possible as well. Thus, transition 11 — Il is sufficient for reasoning

non-conflictingness from any state being in 1, indicating that | 2 1 can be
hidden. Indeed, 1 and 11 in G’ can be merged through e.g. PWB, which was not
possible in G.

G 1 wy I w, W G 1 7y 0wy I
007520 -0 —">0#5=0
Figure 41: Hiding private transition with marking information

From the above example, it can be concluded that for a private marking
transition, it can be hidden if it is ensured that in the future, another private
marking transition (within the same marking set) can be reached. Thisrequire-
ment can be fulfilled by the %—transition, which motivates the following
proposition. "

Proposition 3.3.1. Let G = (Qg, Xq, — ¢, @y, M) be a Y-shaped auto-
matonand H = (Q 1, X1, — i1, @y, M) be an automaton. Lett = (2, 0,Yq)
€ =g witho € ¥ — X be such that for all Q. € M, so that o € Q, there
exists o’ € Q0 — X so that the following two statements hold:

(i) prio(c”) < prio(o);
(i) yq % Za AU—>for some zg € Qg — {Zg} and A = X(z).
Hod s
It holds that t is hidable w.r.t. H.
Proof. Since the (<) case is trivial, we only prove the (=) case, i.e. we assume

that (G || H) is non-blocking and attempt to prove that §(G/, || H) is non-
blocking. Note that §(G || H) and §(G/, || H) have the same set of reachable

120

3.3 Compositional verification

states. Let 25 € Qg and z € Qp be such that (24, zy) is reachable in
S8(G/, || H). Obviously, (z,xy) is reachable in §(G || H) as well. For all
Qg € Mg sothat o € Q0 and

(:Z:GVTH) :>5 (£G7£H> _>5 (gG7£H) (138)

inS(G || H) forsome z; € Qand s € (X5 U X)%, we must have

_ _ T _ _ € _ _ 0'/
(Tg, Tp) —5 (Yo, Tg) =5 (Zg» Tpr) —5

(139)
in §(G/, || H) where 7 = hide(c). Note that (Z ., Z) can be reached from
(xg,zpy)inS(G/, || H) as well. O

Complexity of searching hidable transitions For each transition, all its
multi-step silent successor states are to determine (maximally |Q|) where
a comparison of the active regular event set is necessary (with complexity
O(|X])). For each furthest silent successor, one check for each marking set
(maximally | M |) whether some private active regular event is in this marking
set (with the complexity O(|X]|)). The overall complexity of transition hiding
is thus O(|Q| - || - [Z12 - [M]) = O(|QP - [- [M]). 0

Note that Proposition 3.3.1 covers Proposition 3.1.8, i.e. it includes the trivial
case where the transition to hide is irrelevant to marking. In addition, in (ii)

of Proposition 3.3.1, z # T ensures that z ., and T 5 Y must be two
distinct transitions. With the help of Proposition 3.3.1, we are now able to
achieve more abstraction possibilities due to the potentially enlarged set of
silent transitions.

We now resume the clarification of Algorithm 2. After hiding in Line 6, G
can be abstracted by applying abstraction rules developed in Section 3.2. This
invokes the function CONFLICTPRESERVINGABSTRACTION in Line 21 which
performs individual abstraction rules in a strategical order. After all automata
have been abstracted, the while-loop in Line g is entered. The loop start with
the composition of a strategically picked pair of modules, which may drastic-
ally influence the verification performance. In the context with prioritised
events, it is heuristically preferred that choosing the modules shall render as
many regular events private as possible. The reason for applying this strategy
is such that this benefits the Sj;-shaping operation, which itself is very effi-
cient to perform (with the complexity O(|Q| - |A])). After composing the
chosen modules G; and G into H, private events in H are figured out and the
abstraction procedure is applied to H again. Overall, the while-loop in Line 9

121

3 Compositional verification with prioritised events

reduces the size of ® by one in each iteration. Finally, only one automaton
is left in &, say G. The non-conflictingness of the input & coincides with
the non-blockingness of §(G), which is returned as the result of the entire
algorithm.

3.4 Casestudies

In this section, two typical use-cases are considered where the behaviour of
a modular discrete event system is restricted by prioritised events. The first
case addresses the SBD verification problem, where the model established
in Section 2.4 is utilised. The second case handles the problem of mim-
icking executor semantics, where an executor always discards low-priority
events when other high-priority events are active. For relevant performance
evaluations where the computation duration is mentioned, the verification
algorithm is implemented and tested on an office computer with an Intel Core
i7-10510U 2.30 GHz CPU and 16 GB RAM within the C++ framework of the
libFAUDES library (Moor, Schmidt et al., 2008).

3.4.1 Synchronised SBDs

We recall the example modelled in Section 2.4 where five (partially) nested
SBDs describe the control sequences of a modular system. Following the
translation procedure in Section 2.2, the global closed-loop behaviour is
represented by five automata, whose non-conflictingness is to verify. The five
automata translated from the five SBDs Sproc, Stakes Ssenps S1 and S, are
named Fproc, Frake, Fsenp, £ and F,, respectively. By recalling Sections
2.2.3and 2.3.1, it is clear that for the current example, all hyper-edge events
and done events are with the highest priority 1 while all other events (i.e.
variable events) are with priority 2; see Table 3.

Table 3: Priority assignment of the SBD example

events priority

Yok 1
net 1
“Var_ 2

To verify the non-conflictingness, the marking set of each automaton is first to
determine. From a practical perspective, it is to expect that each SBD always
has the opportunity to proceed, i.e. firing hyper-edges is always possible in

122

3.4 Case studies

the future. This motivates the following marking set assignment of Fprqc,
Fraxer Fsenp, F1 and F,, respectively:

Mproc = Mrake = Msenp = ; (140)
M, = {{ HE[S[101]T[102] } }; (141)
M, = { {HE[S[201]T[206] }, { HE[S[205]T[206] } }. (142)

Note that it is safe to aggressively let Mproc = Myake = Msenp = 0. If their
invokers can be reached indefinitely in the root SBD S, then each non-root
SBD can be indefinitely started as well. On the other hand, the termination of
all non-root SBDs is necessary for S; to proceed. Besides, for S, it suffices
to choose any hyper-edge in the sole loop for an event set in the marking set
M;, e.g. HE[S[101]T[102]. However, this is not the case for SBD S,, since it
contains two branching loops. To guarantee that both loops can be entered
in the future, it is necessary to assign two event sets in the marking set),
where each event set corresponds to one branch. In addition, recall from Line
10 of Algorithm 2 that a wise choice of composing modules may drastically
influence the duration of verification. In particular, we shall attempt to render
as much regular events private as possible. To this end, we arrange all input
automata in a given sequential order and implement Line 10 of Algorithm 2
as such that always the first two automata of the sequence are composed. In
addition, Line 15 always pushes the newly composed abstracted automaton to
the first position of the sequence. In this regard, we arrange the five automata
in the order of

Fy, Fproc, Frakes Fsenps Fo- (143)

This order attempts to handle M1 and its submodules first, which will effi-
ciently render events in M1 private. Under the current set-up, the verification
terminates in 1.03s, which shows that the global closed-loop behaviour is in
fact blocking.

Toanalyse how blocking states are reached, it is sometimes desired to construct
a trace as a counterexample to show how blocking states can be reached. Note
that the final automaton resulting from the compositional verification is
normally much smaller than the explicit monolithic representation. Thus,
computing counterexample based on the final automaton only results in a too
abstract trace, which is difficult for the user to diagnose how blocking states
are reached, since such an abstract counterexample cannot be executed in the
monolithic representation. To this end, we experimentally implement the
State Merging Expansion (SME) algorithm introduced in (Malik and Ware,
2020) to compute a trace that reaches some blocking state in the monolithic

123

3 Compositional verification with prioritised events

HE[S[10]T[11, 13]]
—0= =0

cb1_ar

Figure 42: Hypothesis which resolves the blockage

representation.* From the resulting counterexample, it can be diagnosed
that the blockage can be caused by lacking preconditions for CB1 to take a
workpiece. From the plant model in Appendix A, especially G, _, , in Figure
59, CB1 can receive a workpiece as long as no workpiece is currently available
at the workpiece sensor of CB1 and the motor of CB1 is off. This indicates
the possibility that, when SBD Sy, is active with the token configuration
[11,13], more than one workpiece can pass through CB1. This contradicts the
design purpose, since it is intended that each time when Sy g is invoked,
only one workpiece is transported from SF1 to CB2. To solve the issue, consider
the hypothesis illustrated in Figure 42, which sets firing HE[S[10]T[11, 13]]
as a precondition for CB1 to receive a workpiece. This requirement can be
realised by externally restricting the behaviour of SF1. By considering the
automaton in Figure 42 as an additional plant component when translating
Stake, the global behaviour turns out to be non-conflicting.

Table 4: Verification duration of the SBD example

orig. order, full abst. orig. order, shape only bad order, full abst.

1.03s 10.40s 20.75s

To evaluate the performance of compositional verification, we consider two
suboptimal configurations for the compositional verification of the current
example. Note that the troubleshooting automaton in Figure 42 is not taken
into consideration. The resulting verification durations are recorded in Table 4.

4 If only state-merging abstraction rules (i.e. all abstraction rules introduced in Section
3.2.1, 3.2.2 and 3.2.3 except the certain conflicts rule) are considered, we could utilise SME
to expand a counterexample: suppose a Si;-shaped automaton G is abstracted into G,
and the rest part of the synchronisation is H. If a counterexample in §(G’ || H) is given,
SME expands the counterexample so that it can be executed in S(G || H). Technically, by
performing A*-search (Hart et al., 1968), SME searches successors within each equivalence
class, which were merged into a single state in the abstract counterexample. Meanwhile,
reaching the silent successor should also be allowed by the rest part H. In this regard, SME
effectively unfolds each equivalence class so that abstracted information (such as merged
non-deterministic choices and merged silent sequences) are reconstructed.

124

3.4 Case studies

» Skip the function CONFLICTPRESERVINGABSTRACTION in Algorithm 2,
i.e. we only utilise §};-shaping as a naive abstraction rule. In this situ-
ation, the monolithic global behaviour is indeed explicitly constructed
and the verification procedure takes 10.40s to terminate.

» All abstraction steps are executed, but the input order of automata is
rearranged by

Fy, Fy, Fproc, Frake Fsenp- (144)

Conceivably, this sequence is ratherinefficient in that the local behaviour
in M1, i.e. taking and sending workpieces from M1 which are specified
in Frake and Fgpyp, comes at the end of the sequence. In this case, the
verification procedure takes 20.75s to terminate.

3.4.2 Priority in control hardware

In this subsection, we investigate the scenarios when finite automata are imple-
mented as control programmes in hardware; see e.g. (Fabian and Hellgren,
1998; Moor, 2022). In particular, we focus on the choice of simultaneously
activated events, i.e. at some state in an automaton, multiple outgoing tran-
sitions labelled by different events can be executed. We envisage the following
cases:

» Considerimplementing a finite automaton as the controller of a conveyor
belt (see Figure 20). In particular, the user may wish to stop the conveyor
belt whenever a workpiece arrives. Figure 43 shows a fragment of the
controlled behaviour, where events ar, lv and off denote the arrival /
departure of the workpiece at / from the workpiece sensor and turning
off the conveyor belt motor, respectively. Note that ar and Iv correspond
to the behaviour of the workpiece sensor, while off is associated with
some control instruction. In fact, similar concept of “writable variables”
was proposed for SBDs in Section 2.3.2 as well. At the current stage, one
may ask why event lv is active at state II while event off is active. This

Figure 43: A fragment of the controlled behaviour of a conveyor belt

125

3 Compositional verification with prioritised events

can be caused by the synthesis rule of the controller, e.g. in Supervisory
Control Theory, sensor events are generally not allowed to be disabled. In
particular, if other automata are to synchronously operate the conveyor
belt, off may be disabled by other modules in the state II, which possibly
need to be verified. To this end, it is natural to propose that control
instructions shall have higher priority over sensor events (Qamsane
et al., 2016). This can indeed be considered as an assumption over the
timed behaviour of the automata (Brandin and W. M. Wonham, 1994),
i.e. control instructions are always taken sufficiently rapidly without
“waiting” for subsequent sensor events.

In addition to the above situation, one may also expect to assign differ-
ent priorities to different instructions. This enables more flexibility in
expressing the control specification as well.

SF CBI1 CBk XS

Figure 44: Concatenated conveyor belts

Similar to Figure 20, we consider another practical use-case as depicted in
Figure 44 where workpieces are transported from a stack feeder (SF) on the
left to an exit slide (XS) on the right via & concatenated conveyor belts (CB:).
Each component is equipped with a sensor to indicate the availability of a
workpiece, while each CB is driven by a motor. The plant behaviour of each
conveyor belt is described by G, in Figure 45, where C; additionally describes

Table 5: Events in the conveyor belts example

126

event description priority
on; turn on the motor of CB: 2
off; turn off the motor of CBi 2
ar. workpiece arrival at the sensor of CB: 3
g (i = 0 for SF, i = k + 1 for XS)
v workpiece departure from the sensor of CBi 3

‘ (i = 0 for SF, i = k + 1 for XS)

sd; send workpiece from CBi to CBi + 1 (: = 0 for SF) 1

3.4 Case studies

G, off; on; on; off; Fo
’_ ¥ ar, ¥ off; ¥ -0 50 sdo '®)
—-0+=—=0+—F—=0+=——=0
ff, v, on; Ak Vo J

Fi (Al 1

—>0==0—">0 —»0-¥>020 O

ariyg
t IVk+| J

H; off;
sd;

Sd,;l‘o on;

ar; off; sd; on; ar,
—-0 oO— 00— 0 —>0—>0—/—0
ar; ar; ar; ar; ar; ar;
. . 1 .
ariq l ar,:,,; ari ar’«+; ari+; aris ar; ari+;

Figure 45: Automata of the conveyor belts example

the coupling between CBi and CBi + 1. To control each conveyor belt CBi in a
modular fashion, a modular controller H, for each CBi is given in Figure 45
as well. In particular, the event sd,_; constitutes an internal synchronisation
instruction, by executing which a workpiece is sent from CBi to CBi + 1. Each
modular controller H, cyclically

(i) takesaworkpiece from CBi — 1 (or SF as CB0) by turning on the motor;

(ii) when a workpiece arrives, either proceeds sending the workpiece to
CBi + 1 (or XS as CBk + 1) by directly executing sd;, or stops CBi until
sd; becomes executable, and

(iii) stops CBi after CBi has received the workpiece.>

It is worth mentioning that the event sd; appears both in H; and H, ;. Thus,
sd, in H; may be deactivated by H,,, i.e. CBi + 1 is not ready to receive
a workpiece. It is of course safe to always first execute off;, then wait until
sd; becomes executable. However, this implementation causes a “stutter” if
CBi + i is indeed directly ready for receiving, i.e. the motor of CBi is turned
off and then immediately turned on. To solve this issue, the user can specify
that the priority of sd, is higher than that of off,, i.e. if sd, is executable, the
possibility of executing off; should be discarded. Finally, we note that each

5 A branching similar to (ii) can be realised here as well, which is omitted for simplicity.

127

3 Compositional verification with prioritised events

controller H, rejects all unexpected occurrence of sensor events, which lead
to a dedicated blocking state.

With all the events appearing in the current example listed in Table 5, we are
in the position to consider their priority assignment. As discussed above, we
assume that the controller always reacts immediately upon the occurrence of
sensor events. This motivates us to set sensor events with the lowest priority.
Furthermore, we assume that the controller always prefer internal instructions
(sd;) to actuator manipulations (on;, off;), indicating that sd; are assigned
with the highest priority. In addition, each conveyor belt CBi, 1 < i < k forms
a local closed-loop

Fo=G; || H;. (145)

Besides, SF and XS in Figure 44 are considered being controlled externally
which result in individual local closed loops |, and £}, in Figure 45, respect-
ively. In this regard, the overall closed-loop behaviour with k conveyor belts
complies with

Fi=8|lociciE11C) | Fipa | » (146)
—_ S—— ——
Ei Ek+1

whose non-blockingness is to verify.

Again, to prepare for the verification, we shall first determine the marking
set of each input automaton. From (146), it is considered that k£ + 2 automa-

ta £y, £y, ..., E, ., are available as input for the compositional verification.
These are assigned with marking sets
M; = {{ar;}} (147)

foralli € {0,1,...,k 4+ 1}. In addition, the input order of the automata for
the verification is
Ey,E\,....,E ;. (148)

This order iteratively packs the left side of the plant into a single module
and localises all plant events in the left most module. The elapsed time
for verification as well as the final state count are listed in Table 6, where
the first column shows the count of conveyor belts and the second column
shows the state count of the monolithic behaviour. Column “mono time”
lists the elapsed time for compositional verification in second if only Sy;-
shaping is applied as the single abstraction rule, while the entire function
CONFLICTPRESERVINGABSTRACTION in Algorithm 2 is skipped. In this case,
the complete monolithic behaviour is indeed constructed at the end. It can
be observed that both the second and the third column grow exponentially

128

3.4 Case studies

Table 6: State count and elapsed time

k mono. state cnt. mono. time abst. state cnt. abst. time

5 3.4x10° 0.28s 35 0.06s
6 9.9 x 10° 0.81s 40 0.09s
7 2.8 x10* 2.79s 45 0.12s
8 7.7x10% 8.60s 50 0.17s
9 2.1x10° 26.23s 55 0.22s

w.r.t. to the count of conveyor belts. Contrarily, the last two columns show the
information when the entire Algorithm 2 is applied, i.e. we do not skip the
function CONFLICTPRESERVINGABSTRACTION. The fourth column shows the
state count in the final automaton while the last column shows the elapsed
time for the entire verification procedure. We observe that, when all available
abstraction rules are applied, the state count of the final automata (as well as
the elapsed time) grows linearly, which is caused by the fact that the global
behaviour only depends on the availability of a workpiece at each sensor. In
addition, a significant reduction of computational cost can be observed as well
by comparing the third and the fifth column. Finally, it is worth mentioning
that assigning the marking sets as

My = {{aro}}; (149)
M, =My=- =M., =0 (150)

is indeed reasonable for the current example, since if SF never receives a
workpiece any more, all subsequent CBs will eventually block due to the
lack of workpiece supply; on the other hand, if any CB jams, all preceding
CBs will eventually jam as well, which prevents SF to take a new workpiece.
In this situation, if all available abstraction rules are applied and the input
order suggested in (148) is adopted, the final state count of the abstraction is
constantly 10 for any £ € N. The reason is that the global behaviour now only
depends on whether CB1 currently owns a workpiece (w.r.t. to the marking
requirement) and the subsystem consisting of all components from CB2 to XS
behaves equivalently to a single XS. In other words, due to relaxed marking
requirements, more transitions are hidable in this situation.

129

3 Compositional verification with prioritised events

Concluding remarks

In this section, the compositional non-blockingness verification problem w.r.t.
prioritised events has been addressed. To verify the non-conflictingness of a
modular system, compositional verification iteratively alternates between per-
forming conflict-preserving abstractions and composing strategically chosen
modules until there is only one module left, whose non-blockingness is essen-
tially the non-conflictingness of the original modular system. Although this
framework has been intensively studied in recent years, the available results
do not consider prioritised events, which is not only essential for SBD models,
but also useful in other general application scenarios. In this context, we have
extended and modified existing abstraction rules in the current chapter to
adapt the semantic restriction imposed by prioritised events. Afterwards, the
new abstraction rules have applied to various practical examples, where the
entire state space as well as the time need for verification have been successfully
reduced.

130

4 Sequential function chart

In industrial manufacturing, a great number of logic control programmes
are implemented in programmable logical controllers (PLCs), which is a type
of computer specialised in reliable operation in industrial environments. In
particular, the IEC 61131 — 3 standard defines five programming languages
for control programmes in PLCs, among which the Sequential Function Chart
(SFC) is specifically of our interest due to its similarity to SBD. Basically, both
SFC and SBD are structured based on Petri-nets. In addition, various concepts
in SBDs, e.g. hyper-edges, conditions, writable variables, have corresponding
similar counterparts in SFCs as well. These observations naturally raise the
question of whether the compositional verification procedure developed so
far in Chapter 3 can be applied to verify modular SFC programmes as well.

Similar to Chapter 2, we first consider the problem of formalizing SFC se-
mantics. This has been addressed in various articles (Bauer, Engell et al.,
2004; Bauer, Huuck et al., 2004; Blech and Ould Biha, 2011; Stursberg et al.,
2005) since the original IEC 61131 — 3 standard does not sufficiently formalise
SFC semantics. Generally, as a programming language designed for a specific
platform, the formal semantics of SFCs strongly rely on the operation rules of
PLCs. By cyclically reading input from the plant, manipulating actions, firing
enabled SFC transitions and bringing values to outputs, SFC dynamics is cycle-
triggered (Stursberg et al., 2005) and runs over the physical time axis. However,
the compositional verification method introduced in Chapter 3 is based on
finite automata which suits event-based models. To minimise this gap, we
attempt to interpret the cycle-triggered SFC semantics over the dense logic
time axis, which is the first major challenge to handle in the current chapter.
Technically, this is achieved by taking several reasonable assumptions, from
which explicit enumeration of PLC cycles can be avoided while critical logical
structures of SFCs are still preserved.

With SFC semantics over the dense time axis, a modular SFC programme can
be translated into a collection of synchronised finite automata. However, the
compositional verification approach introduced in Chapter 3 turns out to
be not directly applicable due to issues with the priority assignment. Recall
that in each PLC cycle, a PLC always first manipulates all executable actions
and then fire all enabled transitions afterwards. By following the idea in
Section 2.2, we consider each action execution and SFC transition as an event.
Besides, action execution events are with higher priorities than transition
events. However, this approach is problematic if multiple SFC transitions, say

131

4 Sequential function chart

Transl and Trans2, are to fire in the same PLC cycle. Recall from Section 2.2
that firing multiple enabled transitions is modelled as alternative interleaving
sequences in finite automata. In this regard, if e.g. Transl is fired first,
some subsequent action execution events (which are in the subsequent PLC
cycle) may preempt Trans2 (which is still to fire in the current PLC cycle). To
prevent any event from happening before all enabled SFC transitions are fired,
we introduce the unification operator U (-) on an automaton which unifies
alternative interleaving sequences into a single simultaneous transition. In
this context, the global monolithic behaviour is not solely restricted by §(+),
but by §((-)). Nevertheless, the introduction of the unification operator also
indicates that the compositional verification procedure introduced in Chapter
3 needs careful revision. Fortunately, all results in Chapter 3 are either directly
applicable or only need subtle changes.

The current chapter is organised as follows: in Section 4.1, we clarify SFC
semantics over the dense time axis, based on which the closed-loop behaviour
of a system controlled by a modular SFC programme can be translated into
finite automata utilising the translation procedure for SBDs. At the end of
Section 4.1, we formally introduce the unification operator, which is necessary
to illustrate the global closed-loop behaviour. In Section 4.2, we revisit the
results in Chapter 3 to show that the compositional verification method is
applicable for modular SFC programmes as well, where the global behaviour
is restricted by §(U(-)) instead of S(-). The current chapter is closed by a case
study in Section 4.3 with some concluding remarks.

41 Correlating SFCs with SBDs

To apply compositional non-blockingness verification to modular SFC pro-
grammes, in this section, we exploit the SBD semantics introduced in Chapter
2 to interpret SFC semantics, which lays the foundation of translating SFCs
into finite automata. In particular, through syntax mapping from SFCs to
SBDs and comparing the subtle differences between their semantics, SFC
translation can be handled by modifying and extending the translation pro-
cedure for SBD introduced in Section 2.2. This procedure is represented in
detail in the following.

411 Syntax mapping from SFCs to SBDs

Generally, SFCs are syntactically extended from Petri-nets where firing tran-
sitions are guarded by specified conditions and each place, a.k.a. step in an

132

4.1 Correlating SFCs with SBDs

SFC, specifies a sequence of actions to execute. Thus, to semantically interpret
an SFC as an SBD, we first briefly introduce the syntactic elements in SFC and
introduce their intended semantics by mapping them into SBD components.
Before starting, we shall first mention that hierarchical structures similar to
invocation in SBDs are not defined for SFCs. Although the terminology of
“hierarchical SFC” is utilised in some contexts, e.g. in (Bauer, Huuck et al.,
2004), this is in fact more closely related to activation, i.e. an SFC step can
activate another programme, which may again be an SFC. The difference
between invocation and activation is that the step which activates another
SFC simply proceeds its operation or token propagation without waiting for
the termination of the activated programme. This is beyond the scope of the
current thesis and we only consider modular SFCs in the following.

initial step Stepl
) | |motort Stepl
ID: 1
gU§rd . button = 0
.. transition
£ T
button = 0 == Transi V
Step2
step
“.. | R [motor1 Step2
A .
S |motor2 ID: 2
button = 1
button = 1 wemmm Trans2 V
action qualifier Step3 action name
R [motor1 =] “ctionblock Step3
R |motor2 * ID: 3

_l_mnsg é

‘&

* sequence end

Figure 46: Syntactic interpretation of an SFC (left) as an SBD (right)

In Figure 46, a compact example SFC is given on the left side where most basic
SFC elements are illustrated. The SBD resulting from the syntax mapping is
demonstrated on the right side of Figure 46. By taking the convention that
tokens generally propagate from top to bottom in an SFC, arrows are omitted
in SFCs. In the following, we briefly introduce the syntax mapping of each
component demonstrated in Figure 46.

133

4 Sequential function chart

Steps and transitions Basically, an SFC consists of alternatively connected

steps and transitions, which are synonymous to places and transitions
from a Petri-net perspective. Thus, it is natural to map an SFC step into
an SBD process. Besides, each SFC transition corresponds to an SBD
hyper-edge. For the situation in Figure 46, each SFC transition is directly
mapped into a single SBD edge since no branching structures are present.

Initial step Each SFC can define a unique initial step, in which a token is

placed when the SFC programme is activated. We can indeed match
an SFC initial step analogously into an SBD initial process, which is a
dedicated SBD process owning a token upon activation and can have
zero or one predecessor. In Figure 46, the initial step Stepl of the SFC
is mapped into an initial process Stepl with ID = 1 in the SBD, which,
similar to an initial step, is denoted with a doubled contour.

Sequence ends Some SFC derivatives also suggest terminals for SFCs which

eliminate tokens, e.g. sequence end as in GRAPH from Siemens TIA. Such
elements can be directly mapped into SBD terminal nodes.

Guards For each SFC transition, a guard is specified (which can be trivially

true) so that the transition can fire only if its guard evaluates true. An SFC
guard can either be mapped to the precondition or the postcondition of an
SBD process, since they both guards the firing of hyper-edges. Technically,
we choose to map an SFC guard into the postcondition of the preceding
SBD process, which benefits handling merged flows, as we will see in
the following. As for the case in Figure 46, the guard of the transition
Transl is mapped into the postcondition of the SBD process Stepl in the
resulting SBD.

Actions Foreach SFC step, alist of actions this step executes is specified. Each

134

action is given in the form of an action block which typically consists of an
action qualifier and an action name. The action name of an action block
specifies the variable which should be manipulated, typically an output
bit or a memory bit. On the other hand, the action qualifier specifies
the type of the action. For simplicity, we assume that an action name
always refers to a binary variable, while only the two most basic qualifiers
are considered, namely S for “setting a bit to 1” and R for “resetting a
bit to 0”. Basically, actions associated with a step are executed from top
to bottom. This can be reflected in an SBD by assigning immediate
instructions introduced in Section 2.3.3. As for the SBD in Figure 46, a
possible assignment is

immediate(1, motorl, 1) = 1;

4.1 Correlating SFCs with SBDs

immediate(2, motorl, 0

) =1
2, motor2,1) =2
3, motorl, 1) = 1;

) =2

immediate

immediate

immediate(3, motor2, 0

A~ I~ /—~

Step1l
Stepl
guardl
guard] e Trans1
le——— Trans2
Step2
Step2

guard2

guard2 %Transz
4 ' Step2

jump

Figure 47: Mapping a jump with a preceding transition

We now consider further essential SFC components SFC which are not involved
in Figure 46.

Sequence loops To realise cyclic executions, SFC supports looping structures
which is the only situation that a token can be propagated from bottom
to top. This is also referred to as a jump in GRAPH, as we can specify
a transition to jump to an arbitrary target step. If the target step does
not have any preceding transition (i.e. an initial step), such a jump can
directly be mapped to an SBD edge; otherwise, a merge is necessary before
the SBD process mapped from the target step; see Figure 47.

Divergences and convergences SFC divergences and convergences are syn-
onymous to branches and merges in SBDs, respectively. Note that for
an SFC divergence, guards of all successive transitions are mapped to
the corresponding branch condition (instead of postcondition of some
preceding process) in the resulting SBD; see Figure 48.

Simultaneous divergences and simultaneous convergences SFC simultan-
eous divergences and simultaneous convergences are synonymous to forks

135

4 Sequential function chart

,- divergence

5 [guard2]
guardl mmmmTransl guard2 s Trans2 [guard1] Y
Step1l Step2
Stepl Step2
guard3 guard4
guard3 mmmm Trans3 guard4 = Trans4
>,
convergence
Figure 48: Mapping a divergence and a convergence
guard mem Trans1 - simultaneous divergence Y
a
Y Y
Stepl Step2
Stepl Step2
guard2 guard2
v ' Y \
guard? s Trans2 ", simultancous convergence
Y

Figure 49: Mapping a simultaneous divergence and a simultaneous convergence

and joins in SBDs, respectively. Note that for a simultaneous convergence,
if only one successive transition exists, its guard is copied to the post-
condition of all preceding SBD processes; see Figure 49. Otherwise, the
simultaneous convergence must be followed directly by a divergence, in
which situation we shall map successive guards into SBD branch condi-
tions.

4.1.2 Dense-time SFC semantics

Based on the syntax mapping, we attempt to translate a given modular SFC
programme into finite automata by properly extending and modifying the

136

4.1 Correlating SFCs with SBDs

translation procedure for SBDs introduced in Section 2.2. This requires a
careful discussion of the subtle semantic differences between SFCs and SBDs.
As clarified in Section 2.1.2, SBD semantics is based on the discrete dense
time axis N x N, (which can also be simplified to the one-dimensional logic
time axis IN;). Reaction upon the occurrence of any input event is assumed
instantaneous, which leads to the following two relevant effects:

(F1) Token propagation (i.e. firing hyper-edges) must happen immediately
as soon as it becomes possible;

(F2) Token propagation is triggered by events.

In comparison with SBDs, SFCs are defined specifically for PLCs which is
operated over the physical time axis. In particular, the operation of PLCs follow
the so-called PLC-cycle which must last for a positive duration of physical
time.! In each PLC-cycle, the following four procedures are sequentially
executed:

(C1) Read values of PLC inputs;

(C2) Execute all specified actions in all active steps;

(C3) Figure out the set of enabled SFC transitions® and fire these transitions;
(C4) Setvalues to PLC outputs.

Note that the above cycle applies to a family of modular SFCs as well, i.e. for
multiple SFCs running in parallel, a PLC cycle will first execute actions in all
SFCs, then fire enabled transitions in all SFCs.

Consider the situation illustrated in Figure 50, where we focus on the system
behaviour over PLC cycles based on the physical time axis. In particular, the
topmost axis includes a complete PLC cycle lasting from ¢, to ¢;. Ideally, the
value of t; — ¢, should be as low as possible in a high-performance PLC, but
can never be reduced to zero. Most prominently, after all input values have
been read, the PLC becomes somewhat “blind” until the beginning of the next
PLC-cycle. Consider the value changes of three binary sensors as illustrated in
Figure 50, where we interpret each positive or negative edge in input bits as an
event. This indicates that four events iny, in,, ing and in, sequentially happen
in the same PLC cycle. In this case, although the occurrence of in, at ¢; may
enable some transitions, such transitions cannot be fired at ¢, since the input

' Asimilar issue exists when comparing SFC with Grafcet defined in the IEC 60848 standard
as well; see also (Provost, J.-M. Roussel et al., 2011).

2 An SFC transition is enabled if all its preceding steps are currently active and its guard
evaluates true

137

4 Sequential function chart

i-th PLC cycle

' A A
----- | read inputs | execute actions | fire transitions | setoutputs | read inputs |
I T T T T I
Lo 1A 1%} It3
_| sensor 1 ! ! !

in;

Ly Ls

in4

T T
I I
I I
l l
I I
I I
I I
| 4 sensor 2 : :
I I
I I
1 1
i i
I I
I I
I I

14 sensor 3

iny in;

Figure 50: PLC cycles on the physical time axis

value change of sensor 1 can only be detected after ¢, i.e. the start of the next
PLC-cycle. In addition, the input event in,, which occurs in the current PLC
cycle as well, may also disable such transitions. Moreover, for sensor 3, the
positive edge in, and the negative edge in; occur in the same PLC cycle. In this
situation, since the bit value of sensor 3 appears the same at the beginning
and end of this PLC cycle, both events in, and in5 will be missed by the PLC.

In order to adopt SBD semantics as a framework to formalise SFC semantics,
we recall the two-dimensional dense time axis N, x N, from Section 2.1.2,
where we utilised the horizontal axis N, to represent the progress in physical
time while the vertical axis N, enables finitely stacking ordered sequences of
events that occur at the same physical time instance. To abstractly describe
the behaviour of an SFC over the dense time axis, we impose the following
two assumptions considering the horizontal progress on the dense time axis:

(A1) PLC operations are instantaneous, i.e. upon detecting any input event,
procedures (C2) - (C4) all take place at the same physical time instance;

(A2) Ineach PLC cycle, at most one input event can happen.

By assuming that PLCs react sufficiently rapidly upon the occurrence of any
sensor event, assumption (A1) enables stacking (finitely many) PLC cycles
vertically on the dense time axis. This is a reasonable simplification since the

138

4.1 Correlating SFCs with SBDs

in,‘

PLC cycle 1 execute actions - 1
fire transitions - 1
set outputs - 1

execute actions - 2
PLC cycle 2 fire transitions - 2
set outputs - 2 in;

T T -

Lo 4

Figure 51: PLC cycles on the dense time axis

actual duration of a PLC cycle is generally available a-priori. This information
can be utilised to validate that the additional delay of action manipulation
will not affect the operation of the physical plant. For relatively simple plants,
assumption (A2) is proposed from a similar motivation: since input events can
generally be seen as a physical consequence of some preceding output edges, a
minimum positive duration in between is conceivable (which can be checked
a-priori as well). This can be further compared with the duration of a PLC
cycle to validate whether (Az2) is fulfilled. Indeed, for some large-scale systems,
this assumption is somewhat vulnerable if multiple independent input events
await. This situation is beyond the scope of the current dissertation.

We are now in the position to take a deeper look into vertical event stacks on
the dense time axis, where we specifically mentioned that only a finite stack
is allowed. Figure 51 illustrates the behaviour of some closed-loop systems
controlled by SFCs with the dense-time interpretation, where assumptions
(A1) and (A2) are already taken into consideration. As for (A2), the two input
eventsin; and in; occurat different physical time instances ¢, and ;. Moreover,
upon the occurrence of in;, internal actions involved in possibly multiple PLC
cycles are vertically stacked below in,. However, for the vertical line-up, an
infinite number of cycles need to be stacked from (A1). Technically, a infinite
stack can be avoided by requiring SFCs to always attain stable states after a
finite count of transitions, i.e. states in which only input events cause changes
in token configurations and/or variable evaluations. This can be guaranteed
by assuming the following:

139

4 Sequential function chart

(A3) Given the set of active steps in an SFC and the corresponding variable
evaluation, executing the actions in active steps always results in the
same subsequent variable evaluation;

(A4) There is a finite upper bound of the number of SFC transitions that can
be fired without any changes of input variables.

Assumption (A3) effectively allows us to avoid repetition of action executions
in a stable state, i.e. when in a stable state, repeating action executions in
subsequent PLC cycles does not change the evaluation of variables (unless
some input event occurs) and thus can be ignored. This is a commonly
assumed prerequisite for logic control programmes, which is comparable
with determinism in (Bauer, Huuck et al., 2004). Furthermore, together with
assumption (A4), only a finite number of transitions and action executions will
be stacked on any physical time instance in the dense time axis. In particular,
at the end of each stack, a stable state is reached.

Remark 4.1.1. Typically, a PLC has a set of specific internal memory locations
which are associated with the output bits. Within one PLC cycle, different values
may be assigned to the memory multiple times while only the final value will
be actually brought to the output bit. Nevertheless, this feature is irrelevant to
non-blockingness verification of the closed-loop behaviour, thus not explicitly
reflected in our model.

Remark 4.1.2. For a more detailed SFC semantics, one may be interested
in the order of action execution (if multiple steps are currently active) and
transition firing within each PLC cycle. Since the action execution order is not
addressed by the original IEC 61131, we envisage that actions are executed in a
shuffled order (which preserves the “local order” of each step), i.e. we consider
all possible resulting variable evaluations. From this perspective, all events
corresponding to action executions can be assigned with the same priority.
As for diverging transitions, IEC 61131 stipulated that transitions sharing a
same preceding step shall have different priorities, i.e. if multiple diverging
transitions are enabled, the PLC shall deterministically choose one of them to
fire. This feature can easily be reflected, as we will see below in Section 4.1.3.

4.1.3 Translating SFCs into automata

With the dense-time SFC semantics as well as the syntax mapping, we are in
the position to translate SFCs into finite automata. By exploiting the trans-
lation procedure for SBDs introduced in Section 2.2 and 2.3, a modular SFC
programme can be translated into synchronised finite automata where several
modifications and extensions due to the semantic features carried by PLC

140

4.1 Correlating SFCs with SBDs

cycles are necessary. In particular, since SFC steps do not have process states
as in SBDs, translation procedures concerning process states are generally
discarded.

We recall from Figure 1 that the local closed-loop behaviour of an SBD is
constructed by synchronising (through synchronous composition) a couple
of automata. In the following, we concisely introduce the construction of the
automata to synchronise when translating an SBD mapped from an SFC:

Reachability automaton extended with controlled variables ~ The construc-
tion of a reachability automaton remains unchanged as introduced in
Section 2.2.1. In particular, since the concept of SBD process states is
dropped for SFCs, the extension regarding termination flags as mentioned
in Remark 2.2.2 is ignored. Nevertheless, we still need the concept of
controlled variables, i.e. in each state, self-loops of actions specified in
active steps are appended.

Constraint automata The construction of condition automata remains un-
changed as introduced in Section 2.2.2 by interpreting each input bit,
memory bit and output bit as a binary variable. Particularly, the modified
construction of variable automata suggested in Figure 19 is adopted as
well. Since process states are not considered, the concept of termination
condition is dropped in the translation and process state automata are
not constructed either.

Immediate instructions As proposed in Section 4.1.1, actions assigned to a
step are mapped into immediate instructions of an SBD process. The
representation of immediate instructions mapped from an SFC is slightly
simplified from (84) in Section 2.3.3, i.e. for each SBD process n, we
generate

(3

TARGET SOURCE \x*
prio'zn Pnzn)

(151)

Two details in (151) are worth noting:

(i) Recallfrom (85)that %, := {0, ;,0,,, |visutilised in precond(n)}
U{0,.1n | (v,1) € CVariables(n)}. Since syntax mapping never gener-
ates precondition for any process, it is equivalent to write

Yorio = {0y.1.0 | (v,1) € CVariables(n)}. (152)

prio
(ii)) Comparing with the original construction in (84), (151) removes the
3, term after P,. The reason for this adjustment is that action
execution is explicit in SFCs, i.e. instead of “having the access to do
so”, an SFC step “explicitly does so”. This adjustment guarantees that

141

4 Sequential function chart

the guard evaluation afterwards indeed evaluates variables after the
action sequence.

By constructing the above three types of automata as well as plant automata,
we are in the position to review Section 2.2.3, i.e. the synchronous composition
of all constructed automata is to perform. This results in an intermediate
translation result with three classes of events, i.e. action events (resulting from
output/memory manipulation) X5, transition events (resulting from firing
transitions) Xtgrans and sensor events (resulting from input bit edges) Xggy.-
Furthermore, a subtle post-processing is necessary regarding the priority of
diverging transitions (similar to branches in SBDs). Recall from Remark 4.1.2
that diverging transitions must have specified priority so that a deterministic
choice among simultaneously enabled diverging transitions can always be
taken. Since transition events are all private (as hierarchy is not considered),
this feature can be conveniently reflected by removing lower-priority transition
events in the composition, which is clearly legit following the intuition of
Lemma 3.2.2.

Regarding the priority assignment, we recall that upon the occurrence of some
sensor event, before a subsequent sensor event occurs, the current PLC cycle
will first execute all necessary actions and then fire all enabled transitions.
With this notion, we propose that

prio(oact) < prio(otrans) < Prio(osgy) (153)

holds for any oact € XacT, O1rANS € LTrRANs @D Oseny € Lsep, Tespectively.
In particular, from Remark 4.1.2, we globally let all action events to have the
same priority. In addition, we propose that all transition events have the
same priority as well. Note that transition divergence has already locally been
resolved in the previous step. Thus, the global order of firing transitions is
inessential for the system dynamics. By also letting all sensor events to have
the same priority, at the current stage, the suggested priority assignment is
well functional if at most one transition is enabled in each PLC cycle. However,
if multiple transitions are enabled in one PLC cycle, critical errors may occur
w.r.t. the higher priority of action events over transition events. This issue is
discussed in detail in the following.

We now consider describing the global closed-loop behaviour by recalling
Section 2.2.4. As an example, we translate the two SFCs depicted in Figure 52
into G, and GG, as shown in Figure 53 with the translation procedure suggested
so far. The value of the output bit motor, whose initial value is 0, is set to 1
and 0 by executing events on and off, respectively. Since none of the processes

142

4.1 Correlating SFCs with SBDs

Stepl Step3
motor = 0 wemm Trans1 motor = 0 %TransB
Step2
S [motor

%Transz

Figure 52: Two SFCs with simultaneously enabled transitions

G v G G=G G |

iii

(off disabled) () off g Oe===OSon (offdisabled) 10
off
Trans1 TransSl Trary \'I'{alns3
N
no offc;Q<OTrf]_f>Qj>on ILiO . LiO
ii iv N
N\ Irans3
on‘ onl RN Anﬁ
moO mLiiQ ILiO
Trans2 Transzl onl
y
VO ViiQ IMLviO
Trans2l
VviO

Figure 53: Intermediate translation results G, and G, (the transition (II, i) Trers, (11, ii) will
be removed in $(G; || G5))

is specified with an action block R — motor, the event off is globally disabled.
At the current stage, by letting G = GG, || G,, we may expect that the global
closed-loop behaviour complies with §(G), which contradicts the definition
of PLC cycles. In the first PLC cycle, both transitions Transl and Trans2 are
enabled and should be fired in the current PLC cycle, while in the next PLC

cycle, on should be executed since Step2 has become active. However, if the
.. ., Transl . - .. .
transition (I,i) —— (II, 1) is executed, the subsequent transition event, i.e.

143

4 Sequential function chart

UG)
(off, {Trans1}, {Trans3}, {Trans1, Trans2},
{Trans2, Trans3}, {Trans1, Trans2, Trans3} disabled)

'
LiO

{Trans1, Trans3}
y

ILiiQ

on
y

1LiiQ

{Trans2}

\
viiO

Figure 54: Unifying transition labels Transl and Trans3 through the unification operator 2((-)
(unreachable states are removed)

Trans3, will be preempted by the action event on according to the priority
assignment suggested in (153). Note that by executing on, the value of motor is
set to 1 which invalidates the guard of Transl. This issue motivates us to unify
the transition labels Transl and Trans3 into a single event {Transl, Trans3},
by executing which state (11, ii) is directly reached; see Figure 54.

Technically, transition unification is achieved by applying the unification
operator U (-) which unifies the active transitions labelled by unifiable events.
We first consider all SFC transitions as a set of unifiable symbols il. By recalling
the notation of the event universe &, we propose that

dUne =0 (154)

shall hold. The set of all unifiable events ¥ C ¢ — T is obtained through
excluding the empty set from the power set of 4, i.e.

¥ =24 —{(}, (155)

where we additionally require a specific priority value u € N so that for any
ce¢—-T,
cev¥ < prio(o)=u. (156)

As for the =-part of the above requirement, all unifiable events shall have the
same priority, which is reasonable since unifying any unifiable events should
result in a new event with the same priority. For the <=-part, no non-unifiable
event shall be at priority u, which is an acceptable restriction from (153) in the

144

4.1 Correlating SFCs with SBDs

context of SFC verification. In addition, we introduce the following notations
for brevity:

¢ unifiable events within some alphabet 3
Yi=YnNy;

e augmentation of an alphabet ¥ through event unification
aug(X) ==X U{Y € V|3P C X" ¢ =U,c00};

e active unifiable event set in the state x of an automaton G
G(z) :=G(x)N .

The set of unifiable symbols corresponds to the set of all SFC transitions. In
comparison, we modify the set of transition events as such that X1gang € ¥
holds, i.e. each transition event corresponds to firing a set of SFC transitions.
From this set-up, we recall the slight abuse of the unifiable symbols Transl
and Trans?2 as translation labels in Figure 53, which should have been replaced
by singletons {Trans1} and {Trans2}.

With the notion of unifiable events, we are now in the position to formally
introduce the unification operator.

Definition 4.1.1. Let G = (@, X, —,Q°, M) be an arbitrary automaton. The
unification operator 2 (-) is defined as such that U(G) = (Q,aug(X), =Y,
Q°, M¥) where

MY = {3 € 22e®) |30 € M.aug(Q) = X'} (157)

and z Y y if and only if either of the following statements holds:

(i) aEA—\Ilanda:iy,or

h1thaiby
(i) G%(x) # 0, a = Uyegupnh, G*(y) N G¥(x) = 0 and ————— y where

{¢1a 1/)2, ﬂrzjk} = Gu(x)

In the unified automaton %/ (G), the alphabet is augmented as such that all
possible unified transition labels are considered. The marking set is extended
in the same fashion. Thisguarantees thatifany € X" appearsinsome2 € 1/,
then executing any unifiable event containing 1) is counted as executing .
Consider the following example.

Example 4.1.1. Consider the automaton G given in Figure 52 again. The
alphabet as well as the marking set of G are

Y. = {on,off, {Transl}, {Trans2}, {Trans3} } (158)

145

4 Sequential function chart

and

M = {{on,{Transl}},
{{Trans2}} }, (159)

respectively. By applying the unification operator on G, the alphabet and the
marking set of U(G) are

aug(X) = { on, off,
{Transl}, {Trans2}, {Trans3},
{Transl, Trans2}, {Transl, Trans3}, {Trans2, Trans3},
{Transl, Trans2, Trans3} } (160)

and

MY = {{on,{Transl}, {Transl, Trans2}, {Transl, Trans3},
{Transl, Trans2, Trans3}},
{{Trans2},{Transl, Trans2}, {Trans2, Trans3}, { Transl,
Trans2, Trans3}} }, (161)

respectively.

Remark 4.1.3. Although the alphabet after unification is of exponential order,
most of the unified events are unnecessary to be maintained in the alphabet
if they only contain private unifiable events (which is indeed the case of SFC
translations) and do not label any transition in the current automaton.

As for the unified transition relation —¥, active unifiable events in each state
(which correspond to all enabled SFC transitions in one PLC cycle) is unified
into a single transition. Note that SFC transitions which potentially become
enabled in the subsequent PLC cycle are not unified. Consider the following
example.

Example 4.1.2. Consider the automaton G given in Figure 55, which results
from translating both SFCs in Figure 52 while ignoring all actions and guards.
By Definition 4.1.1, we shall only unify both active unifiable events {Transl}
and {Trans3} in state I, while {Trans2} should be excluded since Trans2 can
only be fired in the next PLC cycle. Note that there is no transition from I to
Il in U(G) since G*(I) N G*(II) # 0. This indicates that 11 is unreachable in
UG).

146

4.2 Compositional verification of modular SFC programmes

G | UG) V
10 10

{Traniy wjnss}

i(@) mo {Trans1, Trans3}
{Trans3}

o] N |
vO IVO VO
{Trans% l{TranSZ} {Trans2}

y
VIO VIO

Figure 55: Unifying active unifiable events in one state (disabled events in &/ (G) are dropped)

With the unification operator, we are finally in the position to describe the
global closed-loop behaviour of a system controlled by a modular SFC pro-
gramme. For k£ SFCs which are correspondingly translated into G, G, ..., G},
the global closed-loop behaviour can be monolithically represented by

Su(Gy 1 G2 [l Gy) (162)

where we concisely write §,,(G) := S(U(G)).

4.2 Compositional verification of modular SFC
programmes

With the translation procedure clarified, the non-blockingness verification
problem of modular SFC programmes is addressed in the current section by
exploiting the compositional verification approach introduced in Chapter 3.
A major technical change comparing with Chapter 3 is that, instead of §(+),
the global closed-loop behaviour of a modular system is now organised by the
operator §;,(-), i.e. foramodularsystem whose global behaviour is represented
by 8;,(G; || G5 || -+ || G}), we are interested in properly abstracting e.g. G,
into G so that

8, (G1 || Go || -+ || G},) is non-blocking
< 8, (G1 || Gy || -+ || G},) is non-blocking.

This subtle change in the problem statement first motivates us to adjust the
definition of non-conflictingness, as given in Definition 3.1.5, into non-U-
conflictingness.

147

4 Sequential function chart

Definition 4.2.1 (adjusted from Definition 3.1.5). A family (G;),-;; of au-
tomata is non-U-conflicting if and only if §;,(G, || G5 || - || G}) is non-
blocking.

By revisiting Section 3.1.3, we first handle transition hiding through adjusting
the definition of hidable transition, which was given in Definition 3.1.7, to
adapt the definition of I/ -conflictingness.

Definition 4.2.2 (adjusted from Definition 3.1.7). Let G = (Qa, X, — ¢,
Qu, Mg)and H = (Qy, X5, = i, Qyy, My) be two automata. A transition
t € = in G is U-hidable w.r.t. H if and only if

G and H are non-U-conflicting < G/, and H are non-U-conflicting.
(163)

With Definition 4.2.2, we figure out the set of Z/-hidable transitions of a
given automaton by revisiting Proposition 3.3.1 in the following. Particularly,
we assert that transitions labelled by a unifiable event should be excluded
from transition hiding, although, in the context of SFC verification, unifiable
events must be private. The reason for this assertion is that a unifiable event
potentially causes a synchronous step in a synchronous composition after
unification, i.e. (G || H) for some automata G and H. More precisely,
suppose no silent transitions exist in G and H, executing a private unifiable
event in G also potentially causes H to change its state, while the key property
of a silent transition is that executing a silent transition will not change the
state of the rest part. Consider the situation in Figures 53 and 54 again. For the
Transl
transition | —— Il in G, although it is labelled by a private event Trans1

. {Transl,Trans3}
(w.r.t. G,), it still results in a synchronous transition (I,i) —————¥

(IL,ii) in U (G, || G5) where a transition from G, is taken synchronously.
Recall from (156) that only unifiable events are at priority u. Thus, we assume
that, in the scope of the current section, the silent event Th) should never
appear as transition label in any automaton.

Assumption 1. For any automaton G = (Q,%,—,Q°, M) in the current
«
section, x — y implies o # 7).

With the assumption above, we adapt Proposition 3.3.1 as follows.

Proposition 4.2.3 (adjusted from Proposition 3.3.1). Let G = (Q¢, X, —)
Q%, Mg) be a T-shaped automaton and H = (Q, Xy, =y, @y, M) be an
arbitrary automaton. Lett = (zq,0,yg) € =g witho € ¥ — 37 — U be

148

4.2 Compositional verification of modular SFC programmes

such that for all 0, € M, so that o € Q, there exists 0’ € Qg — X — ¥ so
that the following two statements hold:

(i) prio(c”) < prio(o);
(i) Yo % Za f—ﬁforsome Za € Qg —{zg} and A = X(z).

It holds that t is U -hidable w.r.t. H.

Proof. By uniformly replacing each shaping operator §(-) with the shaped
unification operator &, (-) and replacing each transition superscript (-)® with
(-)%« (which denotes the existence of a transition in 8, (G) for some automaton
G), the proof of Proposition 3.3.1 applies to the current proposition. O

Based on transition hiding, we define the U/-conflict equivalence which is
modified from Definition 3.1.9.

Definition 4.2.4 (adjusted from Definition 3.1.9). Two automata G, and G,
are U{-conflict equivalent, denoted G| ~5v G, if for any automaton T, it holds
that

G, and T are non-U-conflicting < G, and T are non-U-conflicting.

With the notion of ¥/-conflict equivalence, we say an abstraction of G, say
G’, is a U-conflict-preserving abstraction of G if G’ ~5u G. In the following,
we explore whether the abstraction rules developed in Section 3.2 are all
U-conflict preserving and revisit the compositional verification procedure
introduced in Section 3.3.

U-conflict preserving abstraction rules

To review the abstraction rules introduced in Section 3.2, we first recall that
all abstraction rules require that the automaton to abstract must be pre-
processed by Y-shaping, which itself is conflict-preserving. In order to apply
U-conflict-preserving abstractions on a Y-shaped automaton, we shall first
discuss whether Y-shaping is &/ -conflict-preserving. Obviously, this is indeed
the case from Lemma 3.2.2.

Lemma 4.2.5 (adjusted from Lemma 3.2.2). For any two automata G, and
G, it holds that

5U(G1 | G3) = SU(ST(G1> | Gs)- (164)

149

4 Sequential function chart

Based on Lemma 4.2.5, weare in the position to discuss whether the abstraction
rules introduced in Section 3.2 are all Z/-conflict-preserving. Fortunately, the
result turns out to be positive and most relevant statements with their proofs
only need straightforward uniform substitutions. Thus, an explicit review of
the contents in Section 3.2 is moved to Appendix B.

Compositional verification

At the end of the current section, we briefly introduce the complete com-
positional verification procedure for modular SFC programmes by revisit-
ing Algorithm 2. Generally, since all abstraction rules introduced in Sec-
tion 3.2 are U/-conflict-preserving, Algorithm 2 can directly be utilised to
check non-%/-conflictingness by only replacing ISNONBLOCKING(S(G)) with
ISNONBLOCKING(S8;,(G)) in Line 19 (note that transition hiding is now per-
formed by checking Proposition 4.2.3 instead of Proposition 3.3.1). Neverthe-
less, a conceivable improvement w.r.t. the unification operator can be applied
due to the fact that for SFC translation results, unifiable events in all automata
are private. Thus, similar to the S (-)-operation in Algorithm 2, transition
unification through %/ (-) can be performed locally as well.

Lemma 4.2.6. Let Gl — <Q1, 217 _>1, Qci, M1> Clnd G2 — <Q2, 22, _>2, Q%,
M,) be two automata so that ¥} N X5 = (. It holds that

Su(Gy || Go) = Sy (U(GH) || Go)- (165)

From Lemma 4.2.6, we can insert G <— U(G) and H «+ U(H) after Lines 5
and 12 in Algorithm 2, respectively.

4.3 Casestudy

In this section, we envisage a use-case similar to that in Figure 44 where k
conveyor belts (CB) and an exit slide (XS) are concatenated after an stack feeder
(SF). Each CBi, 1 < i < k as well as the SF (i.e. CBO) is controlled by a single
SFC; see Figure 56, where WPSi and BMs are input/output bits corresponding
the workpiece sensor and the belt motor of CBi, respectively. XS (i.e. CBk + 1)
is not controlled by any SFC and is not equipped with a belt motor. Thus, for
the SFC controlling CBE, the equality proposition BMk+1 = 0 in the guard of
Transk_3 should be removed. Besides, similar to the “send event” in Figure 45,
we utilise a memory bit Sendi to synchronise the workpiece delivery from CBi
to CBi + 1. More precisely, CBi sets Sendi (to 1) to start the delivery, while
CBi+1 resets Sendi (to 0) to terminate the delivery. We also associate each SFC

150

4.3 Case study

Step0_1 Stepi_1
WPSO = 1 WPSi-1 = 1
WPS1 = 0 =mmmTransO_1 BMi-1 =1 wmmmTrans;_1
BM1=0 |l Trans0_3 Sendi-1 =1 l—Transi_5
Step0_2 Stepi_2
BMO S | BMi
S | Nolnput
Send0
WPS1 = 1 mmmmTrans0_2 WPSi =1 wmmmTransi_2
Step0_3 Stepi_3
R | BMO R | BMi
R | Nolnput R | Sendi-1
WPSO = 1
WPS1 = 0 Trans0_3 WPSi+1 =0 ;
BM1 = 0 - BMi+1 =10 e Transi_3
Step0_2
Stepi_4
BMi
S | Sendi

WPSi+1 = | mmmm Transi_4

Stepi_5

R | BMi

WPSi-1 = 1
BMi-1 =1 Transi_5
Sendi-1 =1

Stepi_2

Figure 56: SFCs controlling CBO (left) and CB: for 1 < ¢ < k (right)

with a plant model. As for 1 < i < k, the corresponding plant model for CBi is
the synchronous composition of GG, and C, given in Figure 45 where the event
ar; (or lv;) corresponds to a positive (or negative) edge in the input bit WPS:
while the event on; (or off,) sets (or resets) the output bit BMi, respectively.
For CBO, we utilise an output bit Nolnput to block the reception of a workpiece
at CBO when set to 1. This restriction is considered as a plant feature which

151

4 Sequential function chart

ary
H in noin
0 v noin v
—-QO+——=0

n

Figure 57: Workpiece input block when Nolnput = 0

is represented by the automaton H,, in Figure 57, where events noin and in
denote the positive and negative edge of Nolnput, respectively. Composing
H, in Figure 57 with G, and C|, in Figure 45 yields the plant model for CBO.
Note that an explicit plant model for XS, i.e. CBk + 1, is unnecessary, since XS
only has a workpiece sensor whose behaviour is already included in C.

With & + 1 SFCs, the global closed-loop behaviour is represented by & + 1
automata E, F, ..., E}.. To apply compositional verification as suggested in
Section 4.2, we take the following conventions:

= All transition events in each £, are renamed to the same event name,
e.g. t; for all transition events in F,. This is legit since all transition
events are private and, as will be shown below, we do not put transition
events into marking sets.

» Based on the event renaming above, the marking set of each E; is set to

M; = {{t;}} (166)

foralli € {0,1, ..., k}. In addition, the input order of the automata for
the verification is
E07E17”'7Ek' (167)

= As for the function CONFLICTPRESERVINGABSTRACTION in Algorithm 2,
we only utilise PWB as the single abstraction rule and skip all other rules.
From various tests of different rule combinations, the special structure
of SFCs leads to only minor state reduction from other abstraction rules.
In other words, the state reduction resulting from abstraction rules other
than PWB does not pay off the cost of computing the abstraction.

Similar to Section 3.4.2, we apply compositional verification for closed-loop
systems with different conveyor belt counts. The state count as well as the
elapsed time for verification are listed in Table 7. It can be observed that
compared with the monolithic construction of the entire system (where we still
iteratively shape and unify w.r.t. local events), compositional verification does
generally reduce the overall state space and the time needed for verification.

152

4.3 Case study

Table 7: State count and elapsed time (SFC verification)

k mono. state cnt. mono. time abst. state cnt. abst. time
5 4.8 x 103 9.3s 1.2 x 103 8.3s

6 1.3 x10* 29.9s 2.6 x 103 21.9s

7 3.6 x10% 92.3s 5.7 x 103 61.5s

8 9.6 x 10* 309.9s 1.2 x 10% 167.1s

9 2.5x10° 857.1s 2.6 x 104 463.9s

However, drastic reduction as in Section 3.4.2 unfortunately does not apply to
the case of SFC verification. The major reason is that transitions labelled by
unifiable events, i.e. SFC transition events, are not hidable. This implicates
that the synchronous composition of reachability automata of all SFCs is
completely preserved in each iteration. Thus, the overall exponential growth
of the total state count cannot be avoided.

Concluding remarks

In the current chapter, we have exploited SBD semantics and the compos-
itional verification approach introduced in Chapters 2 and 3 to address the
non-blockingness verification problem of modular SFC programmes. The
physical-time based SFC semantics has been adapted onto the dense logic time
axis, which has enabled us to represent SFCs as finite automata. Particularly,
the semantic features carried by PLC cycles bring out the challenge that
simply restricting the global behaviour by the shaping operator does not
yield a faithful representation of the global behaviour. In this context, the
unification operator has been introduced which solves this issue by unifying
simultaneously enabled transition events into a single event. This again allows
us to apply compositional verification to modular SFC programmes. However,
comparing with former results in Section 3.4.2, the state reduction resulting
from compositional verification is relatively mild for SFC verification. This is
majorly caused by the fact that transition events are never hidable, since they
potentially synchronise transition events from other modules even when they
are private.

153

5 Conclusions and future prospects

In the current dissertation, we have formally addressed the non-blockingness
verification problem of manufacturing systems represented by finite automa-
ta. Generally, when the system behaviour is represented monolithically by a
single automaton, its non-blockingness can be checked by directly performing
backward reachability search. However, when the system is represented by
a family of synchronised automata, such an approach is normally infeasible
since the state space of the monolithic representation of a modular system
grows exponentially w.r.t. the count of modules. To mitigate this issue, in
the current dissertation, we exploited the approach of compositional veri-
fication for the non-blockingness verification problem. The basic idea is to
iteratively (i) perform conflict-preserving abstractions on each module and
(ii) compose strategically chosen modules to form a subsystem. The iteration
terminates when there is only one module left, which typically has fewer
states compared with the monolithic representation of the original modular
systems. In addition, since all applied abstractions are conflict-preserving,
verifying the non-blockingness of the final module is equivalent to verifying
the non-blockingness of the monolithic representation. In the current disser-
tation, we have attempted to apply the compositional verification approach
to verify large-scale systems controlled by SBDs and SFCs. However, existing
results w.r.t. compositional verification are not directly applicable, since the
global behaviour in our use-cases are additionally restricted by event priorities
and transition unifications. Thus, various modifications and extensions w.r.t.
the framework of compositional verification as well as individual abstraction
methods have been investigated and tested on different examples.

One major open research topic in the future is the automatic plant model
generation. As we envisage the scenarios where engineers directly utilise
either SBD or SFC to construct control programmes (which can be directly
translated into automata), plant models should still be pre-designed by experts
specialised in discrete event system modelling. To further automate the
verification procedure, directly generating plant automata from some abstract
model is of great practical value. One possible way to address this problem
is to exploit the other two types of diagrams defined in IML, namely the
Functional Structure (which organises the hierarchy of system functions and
the hardware realising the functions) and the Interaction Structure (which
describes the interaction between hardware components). In this regard,

155

5 Conclusions and future prospects

we expect that IML has the potential to enable fully automated closed-loop
behaviour verification.

156

Bibliography

Aho, A., J. Hopcroft, J. Ullman (1974): The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company.

Akers, S. (1978): Binary Decision Diagrams. In: IEEE Transactions on Com-
puters C-27.6, 509-516.

Alpern, B., F. Schneider (1985): Defining liveness. In: Information Processing
Letters 21.4, 181-185.

- (1987): Recognizing Safety and Liveness. In: Distributed Computing 2, 17—
126.

Baeten, J., J. Bergstra, J. Klop (1986): Syntax and defining equations for an
interrupt mechanism in process algebra. In: Fundamenta Informaticae 9.2,
127-168.

Bauer, N, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Pereira Remelhe,
O. Stursberg (2004): Verification of PLC Programs Given as Sequential
Function Charts. In: Integration of Software Specification Techniques for
Applications in Engineering 3147, 517-540.

Bauer, N., R. Huuck, B. Lukoschus, S. Engell (2004): A Unifying Semantics
for Sequential Function Charts. In: Integration of Software Specification
Techniques for Applications in Engineering: Priority Program SoftSpez of
the German Research Foundation (DFG), Final Report, 400-418.

Blech, J. O., S. Ould Biha (20m1): Verification of PLC Properties Based on Formal
Semantics in Coq. In: Software Engineering and Formal Methods, 58-73.
Blom, S., S. Orzan (2003): Distributed State Space Minimization. In: Electronic

Notes in Theoretical Computer Science 80, 109-123.

Brandin, B., W. M. Wonham (1994): Supervisory control of timed discrete-
event systems. In: IEEE Transactions on Automatic Control 39 (2), 329
342.

Brecher, C., M. Obdenbusch, D. Ozdemir, J. Flender, A. R. Weber, L. Jordan, M.
Witte (2016): Interdisciplinary Specification of Functional Structurres for
Machine Design. In: IEEE International Symposium on Systems Engineering
(ISSE).

Brinksma, H., A. Rensink, W. Vogler (1995): Fair Testing. In: CONCUR’95
Concurrency Theory, 313-327.

Buzhinsky, 1., V. Vyatkin (2017): Automatic Inference of Finite-State Plant
Models From Traces and Temporal Properties. In: IEEE Transactions on
Industrial Informatics 13.4, 1521-1530.

Cassandras, C. G., S. Lafortune (2008): Introduction to Discrete Event Systems.
Second. Springer.

157

Bibliography

Clarke, E. M., O. Grumberg, D. A. Peled: (2001): Model Checking. MIT Press.

Clarke, E., D. Long, K. McMillan (1989): Compositional model checking. In:
Proceedings of the Fourth Annual Symposium on Logic in Computer Science,
353-3062.

Cleaveland, R., G. Liittgen, V. Natarajan (2007): Priority and abstraction in
process algebra. In: Information and Computation 205.9, 1426-1458.

Daniele, M., F. Giunchiglia, M. Y. Vardi (1999): Improved Automata Generation
for Linear Temporal Logic. In: Computer Aided Verification, 249-260.

Daw, Z., R. Cleaveland (2015a): An Extensible Operational Semantics for UML
Activity Diagrams. In: Software Engineering and Formal Methods, 360-368.

De Giacomo, G., M. Vardi (2013): Linear temporal logic and Linear Dynamic
Logic on finite traces. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, 854-860.

Dijkstra, E. (1971): Hierarchical ordering of sequential processes. In: Acta
Informatica 1, 15-138.

Eker, J., J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, Y.
Xiong (2003): Taming heterogeneity - the Ptolemy approach. In: Proceedings
of the IEEE 91.1, 127-144.

Eshuis, H. (2002): Semantics and verification of UML activity diagrams for
workflow modelling. PhD thesis. University of Twente.

Eshuis, R., R. Wieringa (2003): Comparing Petri Net and Activity Diagram
Variants for Workflow Modelling — A Quest for Reactive Petri Nets. In: Petri
Net Technology for Communication-Based Systems 2472, 321-351.

Eshuis, R. (2006): Symbolic model checking of UML activity diagrams. In:
ACM Transactions on Software Engineering and Methodology (TOSEM) 15,
1-38.

Fabian, M., A. Hellgren (1998): PLC-based implementation of supervisory con-
trol for discrete event systems. In: Proceedings of the 37th IEEE Conference
on Decision and Control 3, 3305-3310.

Fanti, M. P, G. lacobellis, G. Rotunno, W. Ukovich (2013): A simulation based
analysis of production scheduling in a steelmaking and continuous casting
plant. In: 2013 IEEE International Conference on Automation Science and
Engineering (CASE), 150-155.

Fernandez, J.-C. (1989): An implementation of an efficient algorithm for
bisimulation equivalence. In: Science of Computer Programming 13, 13-
219.

Flender, J., S. Storms, W. Herfs, M. Witte (2019): Model-based Engineering
of modern Automation Structures with the Interdisciplinary Modeling Lan-
guage (IML). In: 2019 IEEE International Systems Conference (SysCon), 1-
8.

158

Bibliography

Flordal, H., R. Malik (2006): Modular nonblocking verification using conflict
equivalence. In: 2006 8th International Workshop on Discrete Event Systems,
100-106.

- (2009): Compositional Verification in Supervisory Control. In: SIAM Journal
on Control and Optimization 48, 1914-1938.

Gerber, C., S. Preufe, H.-M. Hanisch (2010): A complete framework for control-
ler verification in manufacturing. In: 2010 IEEE 15th Conference on Emerging
Technologies & Factory Automation (ETFA 2010), 1-9.

Harel, D., A. Naamad (1996): The STATEMATE semantics of statecharts. In:
ACM Transactions on Software Engineering and Methodology 5, 293-333.
Hart, P. E., N. J. Nilsson, B. Raphael (1968): A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. In: IEEE Transactions on Systems

Science and Cybernetics 4.2, 100-107.

Herfs, W.,]. Flender, S. Storms, M. Witte (2018): Data-Consistent Toolchain
for a Requirements-Based Specification with the Interdisciplinary Modeling
Language (IML). In: 2018 IEEE 22nd International Conference on Intelligent
Engineering Systems (INES), 219-224.

Hering de Queiroz, M., J. Cury, W. Wonham (2005): Multitasking Supervisory
Control of Discrete-Event Systems. In: Discrete Event Dynamic Systems 15,
375-395.

Jarraya, Y., M. Debbabi, J. Bentahar (2009): On the Meaning of SysML Activity
Diagrams. In: 2009 16th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems, 95-105.

Kimura, S., E. Clarke (1990): A parallel algorithm for constructing binary
decision diagrams. In: Proceedings., 1990 IEEE International Conference on
Computer Design: VLSI in Computers and Processors, 220-223.

Kohler, H., U. Nickel, J. Niere, A. Ziindorf (2000): Integrating UML diagrams
for production control systems. In: Proceedings of the 2000 International
Conference on Software Engineering. ICSE 2000 the New Millennium, 241—
251.

Leduc, R. (2002a): Hierarchical Interface-based Supervisory Control. PhD
thesis. Department of Electrical and Computer Engineering, University of
Toronto.

Lennartson, B., X. Liang, M. Noori-Hosseini (2020): Efficient Temporal Logic
Verification by Incremental Abstraction. In: 2020 IEEE 16th International
Conference on Automation Science and Engineering (CASE), 894-899.

Lima, L., A. Didier, M. Cornélio (2013): A Formal Semantics for SysML Activity
Diagrams. In: Formal Methods: Foundations and Applications, 179-194.

Liu, Y., P. Irudayaraj, F. Zhou, R. J. Jiao, J. N. Goodman (2014): SysML-based
Model Driven Discrete-Event Simulation. In: Moving Integrated Product

159

Bibliography

Development to Service Clouds in the Global Economy - Proceedings of the
21st ISPE Inc. International Conference on Concurrent Engineering. Vol. 1,
617-626.

Littgen, G. (1998): Pre-emptive Modeling of Concurrent and Distributed
Systems. PhD thesis. Universitdt Passau.

Malik, R., D. Streader, S. Reeves (2004): Fair Testing Revisited: A Process-
Algebraic Characterisation of Conflicts. In: Automated Technology for Veri-
fication and Analysis, 120-134.

Malik, R. (2015): Advanced selfloop removal in compositional nonblocking
verification of discrete event systems. In: 2015 IEEE International Conference
on Automation Science and Engineering (CASE), 819-824.

Malik, R., R. Leduc (2008): Generalised nonblocking. In: 2008 gth International
Workshop on Discrete Event Systems, 340-345.

- (2013): Compositional Nonblocking Verification Using Generalized Non-
blocking Abstractions. In: IEEE Transactions on Automatic Control 58.8,
1891-1903.

Malik, R., M. Teixeira (2016): Modular supervisor synthesis for extended finite-
state machines subject to controllability. In: 2016 13th International Work-
shop on Discrete Event Systems, 91-96.

Malik, R., S. Ware (2020): On the computation of counterexamples in com-
positional nonblocking verification. In: Discrete Event Dynamic Systems
30, 301-334.

Michon, J.-F., J.-M. Champarnaud (1998): Automata and binary decision dia-
grams. In: International Workshop on Implementing Automata. Springer,
178-182.

Milner, R. (1989): Communication and Concurrency. Prentice-Hall, Inc.

Mohajerani, S., S. Lafortune (2020): Transforming Opacity Verification to
Nonblocking Verification in Modular Systems. In: IEEE Transactions on
Automatic Control 65.4, 1739-1746.

Mohajerani, S., R. Malik, M. Fabian (2014): A Framework for Compositional
Synthesis of Modular Nonblocking Supervisors. In: IEEE Transactions on
Automatic Control 59.1, 150-162.

- (2016): A framework for compositional nonblocking verification of extended
finite-state machines. In: Discrete Event Dynamic Systems 26, 33-84.

- (2017): Compositional synthesis of supervisors in the form of state machines
and state maps. In: Automatica 76, 277-281.

Moor, T. (2022): CompileDES: Executable-Code Generation from Synchron-
ised libFAUDES Automata. In: https://fgdes.tf.fau.de/compiledes, Accessed:
27.06.2022.

160

Bibliography

Moor, T., K. Schmidt, S. Perk (2008): libFAUDES — An open source C++ library
for discrete event systems. In: 2008 gth International Workshop on Discrete
Event Systems, 125-130.

Natarajan, V., R. Cleaveland (1995): Divergence and fair testing. In: Proceed-
ings of the 22nd International Colloquium on Automata, Languages and
Programming, 648-659.

Object Management Group (2017a): OMG System Modeling Language. An
OMG Systems Modeling Language™ Publication.

- (2017b): OMG Unified Modeling Language. An OMG Unified Modeling
Language™ Publication.

Paige, R., R. Tarjan (1987): Three Partition Refinement Algorithms. In: SIAM
Journal on Computing 16, 973-989.

Pilbrow, C., R. Malik (2015): An algorithm for compositional nonblocking
verification using special events. In: Science of Computer Programming 113,
119-148.

Preufle, S., H.-C. Lapp, H.-M. Hanisch (2012): Closed-loop system modeling,
validation, and verification. In: Proceedings of 2012 IEEE 17th International
Conference on Emerging Technologies & Factory Automation (ETFA 2012),
1-8.

Provost, J., J.-M. Roussel,].-M. Faure (2011): A formal semantics for Grafcet
specifications. In: 2011 IEEE International Conference on Automation Science
and Engineering, 488-494.

Qamsane, Y., T. Abdelouahed, A. Philippot (2016): A synthesis approach to
distributed supervisory control design for manufacturing systems with
Grafcet implementation. In: International Journal of Production Research
55, 1-21.

Ramadge, P., W. Wonham (1989): The control of discrete event systems. In:
Proceedings of the IEEE 77.1, 81-98.

Ramadge, P., W. Wonham (1987): Supervisory control of a class of discrete
event systems. In: SIAM Journal on Control and Optimization 25, 206-230.

Schmidt, K., M. H. de Queiroz, J. E. R. Cury (2007): Hierarchical and decent-
ralized multitasking control of discrete event systems. In: 2007 46th IEEE
Conference on Decision and Control, 5936-5941.

Storrle, H. (2004): Semantics of Control-Flow in UML 2.0 Activities. In: 2004
IEEE Symposium on Visual Languages - Human Centric Computing, 235-
242.

Stursberg, O., S. Lohmann, S. Engell (2005): Improving Dependability of Logic
Controllers by Algorithmic Verification. In: IFAC Proceedings Volumes 38.1,
104-109.

161

Bibliography

Su, R.,J. H.van Schuppen, J. E. Rooda, A. T. Hofkamp (2010): Nonconflict check
by using sequential automaton abstractions based on weak observation
equivalence. In: Automatica 46.6, 968-978.

Tabuada, P. (2009): Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer US.

Tang, Y., T. Moor (2024): Compositional non-blockingness verification of
finite automata with prioritised events. In: Discrete Event Dynamic Systems
34, 1-37.

Tarjan, R. (1972a): Depth-First Search and Linear Graph Algorithms. In: SIAM
Journal on Computing 1, 146-160.

Vardi, M. Y. (1996): An automata-theoretic approach to linear temporal logic.
In: Proceedings of the VIII Banff Higher Order Workshop Conference on
Logics for Concurrency, 238-266.

Ware, S., R. Malik (2012): Conflict-preserving abstraction of discrete event
systems using annotated automata. In: Discrete Event Dynamic Systems 22,
451-477.

Ware, S., R. Malik (2013): Compositional verification of the generalized non-
blocking property using abstraction and canonical automata. In: Inter-
national Journal of Foundations of Computer Science 24, 183-1208.

Own Publications

Tang, Y., T. Moor (2021): Compositional Verification of Finite Automata under
Event Preemption. In: 2021 6oth IEEE Conference on Decision and Control
(CDC), 301-308.

- (2022): Compositional Verification of Non-Blockingness with Prioritised
Events. In: 16th I[FAC Workshop on Discrete Event Systems (WODES) 55.28,
236-243.

- (2024): Compositional non-blockingness verification of finite automata
with prioritised events. In: Discrete Event Dynamic Systems 34, 1-37.

Student Works

Li, Z. (2019): Fallstudie zur Spezifikation einer Automatisierungseinrichtung
durch Sequential Behavior Diagrams. MA thesis. Lehrstuhl fiir Regelungs-
technik, FAU Erlangen-Niirnberg.

Lu, Z. (2020): Effiziente Verifikation durch Komposition und Abstraktion.
Research internship. Lehrstuhl fiir Regelungstechnik, FAU Erlangen-
Nirnberg.

162

Appendix

A Plant models of the production line example

In this section, plant models utilised in the SBD example in Section 2.4 are
introduced. Recall from Figure 23 that for the four modules M1 — 1, M1 — 2
M1 and M2, four automata G,_,, G,_,, G; and G, are respectively required
as plant models to describe the global closed-loop behaviour. We first list
all events utilised in the plant automata in Table 8, which are based on SBD
variables introduced in Section 2.4 (internal variables are considered irrelevant
to plant models). For each variable in Table 8, events and their corresponding
target values are arranged in the same order, e.g. for the variable CB1_BM,
cb1_off is the event which changes its value to 0.

Module M1-1

The plant behaviour of this module is represented by the synchronous compos-
ition of the three automata in Figure 58. In particular, G, , ; indicates that
the positioning motor can only move between the south most and the north
most position by turning on the motor. In addition, G;_; , is redundant in
that a same copy will be generated while translating the corresponding SBD;
see Section 2.2.2.

Module M1-2

The plant behaviour of this module is represented by the synchronous compos-
ition of the three automata in Figure 59, where G,_, ; and G;_, , synonym-
ously describe the behaviour of each conveyor belt. Besides, G, , 5 describes
the physical coupling between CB1 and CB2, which essentially specifies that
CB2 can get a workpiece only if CB1 has sent one to it. In addition, G;_5 5
also illustrates that sending more than one workpiece from CB1 without CB2
having received one in between is considered illegal. This is indicated by a
dedicated blocking state which can be reached by e.g. the illegal sequence
cbl _Iv-cbl Iv.

Module M1

This is a high-level module which coordinates M1 — 1 and M1 — 2. Thus,
low-level behaviour is omitted in this module and only the button represents
the plant behaviour, as being depicted in Figure 6o0.

163

Appendix

Table 8: Variable list of the production line example with event names

variable description values events
CB1_BM belt motor {0, 1} {cb1_off, cbl_on}
CB1_WPS workpiece sensor {o, 1} {cbl_lv, cbl_ar}
CB2_BM belt motor {0, 1} {cb2_off, cb2_on}
CB2_WPS workpiece sensor {0, 1} {cb2_lv, cb2_ar}
PM_PM positioning motor (1 = tos., (1,0 1} {pm_p-, pm_p0,
0 = stop, —1 = ton.) pm_p-+}
PM_PS+ south position sensor {o, 1} {pm_Iv+, pm_ar+}
PM_PS- north position sensor {0, 1} {pm_Iv-, pm_ar-}
PM_MOP processing machine {0, 1} {pm_stp, pm_op}
ready to start processing
PM_MRD machine {0,1} {pm_bs, pm_rd}
OP1 operation button {0, 1} {opl_rl, op1l_pr}
OP2 operation button {0, 1} {op2_rl, op2_pr}
RB_BM belt motor {0, 1} {rb_off, rb_on}
RB_WPS workpiece sensor {0, 1} {rb_lv, rb_ar}
rotation motor {rb_r-, rb_rO0,
RB_RM (1 =cw, 0 =stop, —1 = ccw.) 1,01} rb_r+}
orientation sensor,
RB_SCW north-south position 0.1} {rb_lvit, rb_ar+}
RB_SCCw Orientation senson 0,1} {rb_Iv- rb_ar-}
west-east position
XS_WPS workpiece sensor {0, 1} {xs_lv, xs_ar}
Module M2

The plant behaviour of this module is represented by the synchronous com-
position of the six automata in Figure 61. The rotation of RB (described by
G,) is similar to the positioning motor in Module M1 — 1, i.e. RB can only
rotate 90° between both orientations. As the behaviour represented by G, ,
and G, j is relatively clear, special care should be taken to G, 4, and G, 5,
which are intended to describe the coupling between RB and XS as well as

CB2 and RB.

Similar to G, _, 3, G, 4 specifies that XS can only receive a workpiece if RB
has sent one, while sending a workpiece from RB is disallowed if XS has not

164

A Plant models of the production line example

received the former one yet. In addition, rb_Iv shall not happen as well if
RB is not in the west-east orientation; see Figure 20 in Section 2.4. To reject
such undesired behaviour, we set a dedicated blocking state which can be
reached by executing e.g. rb_Ilv—-rb_Iv. Similarly, the sequence rb_Iv-rb_Iv—is
undesired as well since RB shall not rotate if RB has sent a workpiece but XS has
not received it yet. Besides, GG, ; is intended to specify the coupling between
CB2 and RB.' There are two possible cases for RB to receive a workpiece, i.e.
either from CB2 or from SF2. Both cases correspond to the two orientations of
RB, respectively. Clearly, sending a workpiece from CB2 when RB is not in the
west-east orientation is illegal and thus leads to the dedicated blocking state.

' Indeed, CB2 does not belong to module M2. Thus, as few events from CB2 as possible
should be utilised in the plant model of M2 from a design perspective.

165

Appendix

pm_p+ pm_p+ pm_p+
11 v 11
m_Iv- pm_ar+
O P > >
x A x A x A
G- 6\9 Q 6\9 Q 6\9 \}
/S ST SIS
i N N N
T afla 4|y < 4lla
pm_p0 ¢ O £ g pm_p0 ¢ O e g pm_p0 ¢ O e g
,oo) alls 'Oo; allg ,oo) all§
NN, o,b O, AN
g% NG, 0,
(% 4 0 \J ?) v
pm_ar- pm_Iv+
O« O«
Y Y v
pm_p- pm_p- pm_p
Gioi
pm_stp pm_op
ﬂ ﬂ Gl—l_3
pm_op pm_bs
—Q0 O > QF——
pm_stp pm_rd

Figure 58: Automata representing the plant behaviour of M1 — 1

G 1-2_1
cb1_off cb1_on cb1_on cb1_off
g cb1_on v cb1_ar V) cb1_off g
—> O < = < = « =
cb1_off cb1_Iv cb1_on
Gi22
cb2_off cb2_on cb2_on cb2_off

g ch2_on v cb2_ar V) cb2_off - v
" cb2 off ~ cb2 Iv ~ ¢cb2_on

G[—23
- cb1_lIv
-0 _ 0 cb1_Iv 0
cb2_ar

Figure 59: Automata representing the plant behaviour of M1 — 2

G opl1_pr

—-0O0+=——=0
op1_rl

Figure 60: The plant behaviour of M1

166

A Plant models of the production line example

rb_r+ rb_r+ rb_r+
v v v
rb_Iv- rb_ar+
O = >0 >0
Al \ Al
G271 X X X
Ny7&> Ny 786 Ny7&>
Vo 7 o7
0 O il L b 0 ¢ O ¢| L 0 ¢ O il L
s =2 s =2 s =2
N\ NE N\
\/‘0 \/‘0 \/‘0
' rb_ar- v rb_Iv+ 4
O«—— O= O
v v
ro_r- rb_r- ro_r-
G272
rb_off rb_on rb_on rb_off
V) rb_on g rb_ar g rb_off g
~ rb_off T rb v " tb_on
Gas Xs_ar
—>
xs_lv
Gy g rb_lV 0275 O Cb2_|V
— — —
Xs_ar ro_ar
Ial > >> él >
£ e' e'e' 2 e'
| rb_ar+
ol .5 o) OS5t ar
rb_lv+
2|
& o
O NER:]
G2_6 0p2 pr Cg2|_|V
— € — ro_Iv-)
O op2_rl O O

Figure 61: Automata representing the plant behaviour of M2

167

Appendix

B U-conflict-preserving abstraction rules

In this section, we explicitly review all abstraction rules introduced in Section
3.2 and show that, through straightforward substitutions in the correspond-
ing statements, they can all be applied as U/ -conflict-preserving abstraction
rules. In particular, since the proofs of the relevant statements do not require
major modifications, we avoid explicitly reformulating the proofs. Instead,
we suggest the following uniform substitutions in proofs:

» Replace each §(-) operator with the §;,(-) operator;

= Replace each transition superscript (-)® with (-)%«, which denotes the
existence of a transition in §;,(G);

= Replace each ¥, with aug(¥X) (since we only use the alphabet
¥\ When discussing synchronised behaviour);

» Replace each ¥ U X, with aug(X, U Xqp);

= Replace each M, U M, with MY := {E ¢ 229¢>) |30 ¢ M, U
M. aug()) = E'}.

In the remainder, when utilising terms like the proof of Proposition A analo-
gously applies to proving proposition B, we refer to proving Proposition B by
performing the aforementioned five uniform substitutions to the proof of
Proposition A. Some proofs may need several additional substitutions, which
will be explicitly mentioned. It is also worth mentioning thate.g. forautomata
G and T'with individual alphabets ¥, and ¥, we say a transition (z,) Su
(Ye,yr) MU(G || T) isdriven by G if a € aug(X, U Xp) — aug(Xp), Le. if
any event from X participates in this transition.

Prioritised weak bisimulation

We first review abstractions through constructing PW-bisimilar automata,
including quotient automaton construction w.r.t. PWB and redundant silent
loop removal. By adjusting Proposition 3.2.8 and Theorem 3.2.9, it turns out
that two PW-bisimilar automata are also &/ -conflict equivalent. We first adjust
Proposition 3.2.8 as follows.

Proposition B.1 (adjusted from Proposition 3.2.8). Let G; = (@1, X, —1,
Q5, Ma) and Gy = (Qq, X, =, @5, M) be two Y-shaped automaton so
that G, & G,. For any automaton T' = (Qp, X ¢, =, Q7 M), any transition
(wq,) =5 (y;,yp) in 8 (G, || T) and any x, € Q, so that x; = x,, there

168

B U-conflict-preserving abstraction rules

p(a)
exists some y, € @, so that (v, 17) == (y,,yr) in 8 (G4 || T) and

Y1 = Y.

Proof. The proof of Proposition 3.2.8 applies analogously to the current pro-
position. Note that for the proof in Case 2, i.e. (z,z) 2 8u (y1, yr) being
not driven by G, one shall consider more carefully when a € ¥. Note that
GT Gt (71) = 0. From the definition of the unification operator, we can also
conclude that G4 (z,) = (). From the proof of Case 2 in Proposition 3.2.8, for
all z, € @, so that x; & z,, there exists some y, € (), so that x; & y, and

€

(€9, 27) = (Yor T7) — (Yo, Y1) (168)

in G, || T Based on the proof of Case 2 in Proposition 3.2.8, it suffices to check
whether G4 (y,) = 0 holds, since if not, the transition (y,, x) Lu (yy, yp) NO
longer exists in & (G, || T). To prove by contradiction, we suppose that there
exists some ¢, € G4(y,). Since z; = y,, from (P1), either ¢, € GY(x;) or

Gii‘lnt(ml) # 0 holds. Note that the latter statement implies G (z,) # 0

from Assumption 1. However, from (z,, z) % 8u (y1,yrp), it can be easily
implied that G (z,) = G7¢,, = 0, which contradicts both possibilities. [
With Proposition 3.2.8 adjusted as above, the applicability of PWB as a U-
conflict-preserving abstraction follows immediately.

Theorem B.2 (adjusted from Theorem 3.2.9). Let G; = (Q1,Xq, —1,
Q7. Mg) and Gy, = (Qy, X, =49, Q%, M) be two Y-shaped automata so that
G, = G,. It holds that G| ~%u G,

Proof. The proof of Theorem 3.2.9 applies analogously to the current theorem
by replacing Proposition 3.2.8 with Proposition B.1. O

Redundant silent step rule

The redundant silent step rule can obviously be applied as a ¥/-conflict-
preserving abstraction, since for a redundant silent step x 5 4, no regular
event is active in x at all. This indicates that for the proof of Proposition 3.2.19,
there is no opportunity for a private transition in 7"to unify with a transition in
G. With this observation, we adapt Propositions 3.2.19 and 3.2.20 as follows.

Proposition B.3 (adjusted from Proposition 3.2.19). Let G = (Qx, X, — ¢,
Q%, M) be a Y-shaped automaton and the equivalence ~C Qg X Qg is

169

Appendix

induced by the redundant silent step 5 Ty LetT = (Qp, Xp, =, Q7 M)
be any automaton. For all z; € Qr so that Tpgrth(a?T) + 0, (g, Zp) is not
reachable in S, (G || T).

Proof. The proof of Proposition 3.2.19 applies analogously to the current
proposition. O

Proposition B.4 (adjusted from Proposition 3.2.20). Let G = (Qa, X, — ¢,
Q%, M) be a Y-shaped automaton and the equivalence ~C Qg X Qg is
induced by the redundant silent step z 5 Ty LetT = (Qp, Xp, =, Qp, M)
be any automaton.

(i) For any transition ([xs], x) % 8u ([yalsyr) in 8 (G/~ || T), at least
one of the following two statements is true for any x, € [zg]:

p(e)
a) There exists some y, € [yq] so that (v, xr) == (yg,yp) in

$u(G || T), or
b) (x(,zy)is not reachable in S, (G || T').
(ii) For any transition (zq, Tp) Z8u (Yo, yr) in 8y (G || T'), at least one of

the following two statements is true:

@) (w6l 21) 3% ([ya)ur) in Su(G/~ | T), o

b) (xzg,xp)is not reachable in Sy (G || T).

Proof. The proof of Proposition 3.2.20 applies analogously to the current
proposition by replacing Proposition 3.2.19 with Proposition B.3. O

With Propositions B.3 and B.4, adjusting Theorem 3.2.21 turns out to be
straightforward as follows.

Theorem B.5 (adjusted from Theorem 3.2.21). Let G = (Qg, X, — ¢,
Q%, M) be a Y-shaped automaton and the equivalence ~C Qg X Qg is

induced by the redundant silent step z 5 Ty It holds that G =5« (G/~).

Proof. The proof of Theorem 3.2.21applies analogously to the current theorem
by replacing Proposition 3.2.20 with Proposition B.4. O]

170

B U-conflict-preserving abstraction rules

Abstraction rules based on incoming equivalence

Both the active events rule and the silent continuation rule are based on the
incoming equivalence, whose key property is the redirectability. Since redir-
ectability is defined over the shaped synchronous composition, an adjustment
to embed unification operator is necessary in the current context. This results
in the following definition of U-redirectability.

Definition B.6 (adjusted from Definition 3.2.22). Let G = (Qs, X, — ¢,
Q%, M) be a Y-shaped automaton. An equivalence ~C Qg X Qg is U-
redirectable if and only if for any automaton T' = (Qp, Xp, =5, Q7r, M),
Yo € Qg yr € Qrand sy € (aug(Xp)", the following two statements hold:

(R) (zg,xp) 75 L6y (Yo, yp) in 8y (G || T) forany x; € Qg xp €
Qrand o € aug(Xg U X7) — aug(Xp) implies that for all y; € [yc),

(zg,) 25” (Y& yr) holds.

(R2) 8,(G | T) s (ya, yr) implies that for all y,, € yqo S(G ||

ST ,
T) =5« (Y Y7)-

The key property of redirectability which was stated in Proposition 3.2.23 can
be adapted in a straightforward manner. Nevertheless, a minor supplement
w.r.t. Lemma 3.2.5 is essential for proving the following proposition. In the
proof of Proposition 3.2.23, the implication if ([z], z7) B (lvel, yr) in
8(G/~ || T), then there exists x, € [xs] and y;; € [yg] so that (xg,, x) 48
(Y& yr) in 8(G || T) is clearly true from Lemma 3.2.5. However, in the
current context where we intend to replace §(-) with §;(+), the implication is
invalidated if two equivalent states have different non-empty sets of active
unifiable events. This issue can be solved by additionally requiring ~,, or ~.
on the equivalence.

Lemma B.7. Let G = (Qq,Xq, —g,Qy, Mg) be a Y-shaped automaton
with an equivalence ~ C Qo X Q4 on G so that either ~ C ~_, or ~C~.
For any arbitrary automaton T' = (Qp, X, =7, Q7, Mp) and any transition
([xa], xp) 28u (lya)syr) in 8 (G/~ || T'), there exists xi, € (x| and y;, €
[yc] so that (xg;, x7) = (yg, yr) in Sy (G || T)

Proof. If ([z¢], zp) Z8u ([ya], yr) is not driven by G, then the statement
is obviously true due to Lemma 3.2.5.(ii). In particular, if o € aug(El}\G),

then forall z;, € [z], we have G"(z;) = (). Thus, we consider the case in

171

Appendix

which ([z&], zp) 28 (l[ye), yr) is driven by G. Clearly, from Lemma 3.2.5, it
suffices to consider the case in which o« € W. We prove by contradiction in the
following: if the statement does not hold, then there must exist two distinct
states zy,, x; € (v sothat GY(zy) # 0, G (x) # 0and G" (z) # G"(xf).
This contradicts the definitions of both ~_, and ~.. In particular, if ~ C ~__,
then G"(z) # 0 implies that [z] is a singleton for any 2, € Q. due to
Assumption 1. O

With Lemma B.7, we are in the position to adjust Proposition 3.2.23 as follows.

Proposition B.8 (adjusted from Proposition 3.2.23). Let G = (Q¢, X, —)
Q%, Mg) be a Y-shaped automaton with a U-redirectable equivalence ~ C
@ x Q on G so that either ~C ~,, or ~C~. For any automaton T' =
(Qrp, X, =7, Q7 M), the following two statements hold:

(i) For any trace

E3t Qo

(o) Tro) —5 ([Ten)sop1) — 55 ([wonl 2m) (160)

in 8 (G/~ || T) where k > 1, a; € aug(¥g U Xp) — aug(Xp\) and
a;, €aug(Xg UX) UTY foralli € {2, k}, there exist x,, € [zqo] and

play-ap,)

Ty, € [Tgy] so that (zgg, Tr) —%u (TG Trp) in Sy (G || T);

(i) If Sy (G/~ || T) = Su ([zg], xp) for some s € (aug(Xs U Xp))*, then

there exists x, € [1¢] so that 8, (G | T) =S¢ (z,, x).

Proof. The proof of Proposition 3.2.23 applies analogously to the current
proposition through replacing Lemma 3.2.5 with Lemma B.7. O

Following Section 3.2.2, we are now in the position to state that the conjunction
of an incoming equivalence with either an active-event equivalence or an
silent-continuation equivalence is ¢/-redirectable. This conceivably requires
adjustments in Lemmata 3.2.29 and 3.2.30 as well as Propositions 3.2.31 and
3.2.32. We first consider adjusting Lemma 3.2.29.

Lemma B.9 (adjusted from Lemma3.2.29). Let G = (Qq, Xq, = ¢, Q4, Mg)
be a Y-shaped automaton. Let ~ C @ x () be an equivalence on G so that either
~ C ~ge O ~ C ~ .. For any automaton T = (Qp, X, =, Q7 Mp) and any
trace
Tk
(g, Tro) =% (26,) =5 = =% (26, 2qy) (170)

172

B U-conflict-preserving abstraction rules

in 8y (G || T) where k > 0 and 7; € aug(Xq\¢) foralli € {1, ..., k}, it holds
that for any z, € [z, a trace

T1

Tk
(TG T70) —Su (g, Tpy) —>S“ e U (rg, pyp) (171)

must exist in $;/(G || T') as well.

Proof. The proof of Lemma 3.2.29 applies analogously to the current lemma.
0

In the following, Lemma 3.2.30 as well as Propositions 3.2.31and 3.2.32 are to
adjust. These statements show properties of asynchronous traces, which are
defined as such that all events appearing on such traces are private. In Chapter
3, asynchronous and private are synonymous concepts. This is clearly not the
case when the unification operator is taken into consideration, since unifying
private unifiable transitions results in a synchronous transition. Hence, we
slightly strengthen the definition of an asynchronous trace in §;,(G || T') as
such that all events on the trace is in either aug(¥, ;) or T. This extension
enables the adjustments in the sequel.

Lemma B.1o (adjusted from Lemma 3.2.30). Let G = (Qa, 2q, —a,

Qs Mg) and T' = (Qp, X, =1, Q7, M) be two arbitrary automata and

1

Tk Tk+1
(g, T0) —Su (g, Tr1) —>5” e U (rg, wpy) —5u (Yar z7r) (172)

be an asynchronous trace in 8,,(G || T') so that k > 0 andfor alli € {1, k},

(TG Tpig) —5 (zg,@r;) is driven by T'and (zg, vy, s (ycywm) Is
driven by G. It holds that prio(7;, 1) > lo({7;, -, 7;}).

Proof. The proof of Lemma 3.2.30 applies analogously to the current lemma.
O

Proposition B.11 (adjusted from Proposition 3.2.31). Let G = (Q¢x, X, — ¢,
Qt, Mg) and T = (Qp, X, =1, Qp, Mp) be two arbitrary automata and

T2
S
u ..

T1 Tk
(Zgos Tro) =% (xgy, T0) — - =S (2, Ty (173)

be an asynchronous trace in §;;(G || T') so that k > 1 and the last transition

-
(Tap—1sTrr_1) 5 8u (g, Tpy) 1s driven by G.

(i) Letn =lo({ry,-,}). It holds that Ty (x1y) = 0.

173

Appendix

T;
(i) Let ng = lo({r; | (xgi 1, ¥p; 1) —°

np = lo({7; | (vg;_1, ;1)

—8u (xgi, xp;) is driven by T'}). It holds that ng > np.

(g, Tp;) is driven by G}) and

Proof. The proof of Proposition 3.2.31 applies analogously to the current pro-
position by replacing Lemma 3.2.30 with Lemma B.10. O

Proposition B.12 (adjusted from Proposition 3.2.32). Let G = (Q ¢, X, —)
Q%, Mg) be a T-shaped automaton and

1 T2 Tk
(g0, Tro) = (xgy, Tpy) —% - =5 (2 6p, Ty, (174)
be an asynchronous trace in S(G | T) where k > 0 and let n =

(3

lo({7; | (*gi—1,T1i—1) — (¥gy, Tp;) is driven by G'}). Let

L / /7
Too — Ty — = — Ty (175)

with k’> 0 be a trace in G so that all events on this trace are silent,
lo({r{,--,7,,}) = nandforalli' € {1, k' — 1}, Gfgﬂi (xg;) = 0. The
following two statements hold:

(i) For the trace given in (126), if k > 1 and the last tran-

., k . .
sition (kazl,:ch,l) —Su (zgp,py) is driven by G, then
P(T1 Ty

(24, Trg) =——=" (x,,, zpy) in S(G || T) where the last transition
is driven by G.

(ii) Let ~C Q¢ X Q¢ be an equivalence on G so that either ~ C ~,, or ~ C
P(TyT) .
~oe If gy, ~ xlyy, then (xg, xqy) =—=5¢ (2, 2p;,) i S(G || T).

Proof. The proof of Proposition 3.2.32 applies analogously to the current
proposition by replacing Lemma 3.2.29 and Proposition 3.2.31 with Lemma
B.9 and Proposition B.11, respectively. Note that for proving statement (i),
when constructing an asynchronous trace, transition unification can never
happen due to Assumption 1. More precisely, for the silent trace given in (175),
it is implicitly guaranteed that forall " € {1,--- | k" — 1}, G* (2,) =0. O

With Proposition B.12, we are prepared to declare that the conjunction of ~;,.
with either ~,, or ~. is indeed U/ -redirectable.

174

B U-conflict-preserving abstraction rules

Proposition B.13 (adjusted from Proposition 3.2.28). Let G = (Q, %, —,
Q°, M) be a Y-shaped automaton with an equivalence ~ C @ x () on G be such
that either ~ C ~;, N~ or ~ C~; N~ It holds that ~ is redirectable.

Proof. The proof of Proposition 3.2.28 applies analogously to the current
proposition by replacing Lemma 3.2.29 and Proposition 3.2.32 with Lemma
B.g and Proposition B.12, respectively. O

We are now finally at the stage to prove that the active events rule and the silent
continuation rule are both ¢/-conflict-preserving. This requires adjustments
of Proposition 3.2.33, Lemma 3.2.34 as well as both Theorems 3.2.35 and 3.2.36.

Proposition B.14 (adjusted from Proposition 3.2.33). Let G = (Q¢, X, —)
Q¢, M) be a Y-shaped automaton with an equivalence ~C Q4 x Qg on
G so that either ~ C ~,, or ~ C ~__ holds. For any arbitrary automatonT' =

<QT7 ETa T Q’}v MT> and any transition (':CGv xT) 1)521 (yGa yT) in ‘SU<G ||

()
T), it holds that (], 1) —— ([yg),yr) in 8y (G/~ || T).

Proof. The proof of Proposition 3.2.33 applies analogously to the current
proposition. O

Lemma B.15 (adjusted from Lemma3.2.34). Let G = (Qg, g, — ¢, Q4, Mg)

be a T-shaped automaton with an equivalence ~ C ~ .. Then for any arbitrary
sp(a)

automaton T = (Qy, S =1, Qip, My), if (2] 1) s in 8,y (G~ |
T) forsomexg € Qg, xp € Qp 7 € (aug(Xp)" and a € (aug(X; U) —

srp(a)
aug(Sp i) U, then for all), € [w6], (x4, 7) ——=sSu in Sy, (G || T).

Proof. The proof of Lemma 3.2.34 applies analogously to the current lemma
by replacing Lemma 3.2.29 with Lemma B.9. O]

Theorem B.16 (adjusted from Theorem 3.2.35). Let G = (Qa, X, — ¢,
Q¢, M) be a Y-shaped automaton with an equivalence ~ C ~,, N ~;,. on G.
It holds G ~%u (G /~).

Proof. The proof of Theorem 3.2.35 applies analogously to the current theorem
through the following uniform substitutions:

» Replace Lemma 3.2.34, Propositions 3.2.33, 3.2.23and 3.2.28 with Lemma
B.15, Propositions B.14, B.8 and B.13, respectively;

175

Appendix

» Replace redirectable with U -redirectable;

= Replaceo € X —Qand o’ € X witho € aug(X5UX) —aug(Xpg)—
Qand 0’ € aug(Xq U Xp) — aug(Xp) in Case 2. O

Theorem B.17 (adjusted from Theorem 3.2.36). Let G = (Qg, Xq, —¢
,Q%, M) be a Y-shaped automaton with an equivalence ~C Q4 X Qg on G

so that ~ C ~;,. N ~. It holds G ~%u (G/~).

Proof. The proof of Theorem 3.2.36 applies analogously to the current theorem
through the following uniform substitutions:

» Replace Propositions 3.2.33, 3.2.23 and 3.2.28 with Propositions B.14, B.8
and B.13, respectively;

» Replace redirectable with U -redirectable;
= Replace o € X; with o € aug(¥; UXy) — aug(Ep) in Case ;5

= Replace a ¢ ¥ with a ¢ aug(X, U Xp) — aug(Xs) in Case 3. O

Further abstraction rules

We have also introduced three abstraction rules in Section 3.2.3, i.e. the only
silent incoming rule, the only silent outgoing rule and the certain conflicts
rule. Recall that the first two rules originate from combining PWB and silent
continuation rule, while the latter rule is simply inspired by the fact that
blocking behaviour of an automaton can be merged without caring about its
explicit structure. All these rules are obviously #/-conflict-preserving. For
consistency, we subtly adjust Theorems 3.2.37, 3.2.38 and 3.2.39 as follows,
where we only uniformly substitute each ~ relation with ~Su,

Theorem B.18 (adjusted from Theorem 3.2.37). Let G = (Q, %, —,Q°, M)
be a Y-shaped automaton and let x € () be such that x is not in any live-

lock, 7,y € G(z) and y 5z implies o« = 7(;). Then for the automaton
G = (Q.%,—~,Q", M) with

—'={(z,op) |z D yandy # 7} U {(z,0,9) |2 S F >y}, (176)
it holds that G ~5u (.

Theorem B.19 (adjusted from Theorem 3.2.38). Let G = (Q, %, —,Q°, M)
be a T-shaped automaton and let = € () be such that z is not in any live-lock

176

B U-conflict-preserving abstraction rules

and G(z) = {7y)}. Let Q:={yecQl|z N y}, then for the automaton
G =(Q—{z},%, =, Q) with

o [@ Q.
@ - (#HUQ freq

—' = {(z,a,y) |z S yand 7 ¢ {,y}} U {(z,0,y) |+ > Fand y € Q},
(178)

(177)

it holds that G ~Su '.

Theorem B.20 (adjusted from Theorem 3.2.39). Let G = (Q, %, —,Q°, M)
be a Y-shaped automaton. Let Q). C () be the set of co-reachable states in
G and Q.. = Q — Q. the set of non-co-reachable states in G. Define two
transition sets as

—i= {xiy\erc,aeA,yeQand

B €QueTET. Gp(a) =0ra Sy }; (179)
—y={r = ylr€Q, 0N,y Q.G () =0and 3y € Q. >y}
(180)

andlet G’ = (Q, %, — — (—, U —,),Q°, M). It holds that G ~5u G’.

177

Appendix

C Tables of symbols

Important symbols utilised in the current dissertation are listed in the follow-
ing tables. Note that in different chapters, we sometimes use a same symbol
to refer to as elements in different sets. For instance, n is referred to as a node
in Chapter 2 while a priority value in Chapters 3 and 4.

General symbols

symbol description page

1,7,k € Ny indices 15

by non-silent event set 37, 70

oceXx non-silent event 37, 70
Symbols in Chapter 2

symbol description page

S,T € SBDP SBDs 15

n,m € Nodes nodes in SBDs 15

L€ Ny logic time instance 21

h € HEs hyper-edge 21

v € Variables variable 31

[€ range(v) value of the variable v 39
Symbols in Chapter 3

symbol description page

¢ universe of events 69

T silent event set 69

178

C Tables of symbols

n,m € N priority value 69
ACe event set 69, 70
A<n, ASn events with priority higher 69
than (or not lower than) n in A
ac€ event 69
1,2 € Q state 70
Te® silent event 69
ET\G CE—T regular private event set in 81
the test automaton 7'
TE NG regular private event in the 81
test automaton 7T’
prio priority assignment function 69
lo lowest priority of a given set of events 69
hide hiding map 70
p natural projection 70
G(x) active events in the state x 71
G/, hiding transition ¢ in G 75
S shaping operator 73
Sy Y-shaping operator 76
— transition relation 70
= abstract transition relation 7
A—:n>, ﬁ, extended transition relations 81
= extended transition relation 87
(for defining APWB only)
PN extended transition relations 96
toom (for defining incoming equivalence only)
$ conflict equivalence 76
~ PWB (over two automata) 82
~ PWB (over one automaton) 84
A APWB 87
~ine incoming equivalence 97
~e active-event equivalence 97
~ee silent-continuation equivalence 08

179

Appendix

Symbols in Chapter 4
symbol description page
u universe of unifiable symbols 144
Y unifiable event set 144
Y ew unifiable event 145
aug event set augmentation (w.r.t. unifiable events) 145
u unification operator 145
Sy shaped unification 147
~Su U-conflict equivalence 149

180

In recent decades, discrete-event modelling has been widely utilised to address control
engineering problems. Comparing with conventional dynamic system modelling where
physical behaviour is explicitly to describe, discrete-event modelling focuses on a more
abstract level where logical behaviour is of interest. In this dissertation, we focus on the
formal verification of the logical closedloop behaviour of control systems. To satisfy safety
and/or liveness requirements according to given technical specifications, we exploit the
formal semantics of control programmes to represent the entire closed-loop behaviour
in a discrete-event model, from which the properties of interest can be formally verified
through an efficient method.

ISBN 978-3-96147-743-2

9" 783961 " 477432

FAU UNIVERSITY PRESS 2024

	Cover
	Title
	Acknowledgement
	Abstract
	Kurzzusammenfassung
	Contents
	 1 Introduction
	2 Sequential behaviour diagram
	2.1 Syntax and semantics
	2.1.1 Syntax and informal semantics
	2.1.2 Formal semantics
	2.1.2.1 Single SBD
	2.1.2.2 Nested SBDs

	2.1.3 Conditions and variables
	2.1.4 Operation of the drill station example

	2.2 Translating SBDs into automata
	2.2.1 Reachability automaton
	2.2.2 Constraint automata
	2.2.2.1 Condition automata
	2.2.2.2 Process state automata

	2.2.3 Result automaton and high-priority events
	2.2.4 Representing the global behaviour

	2.3 Extended semantics
	2.3.1 Termination condition
	2.3.2 Writable and controlled variables
	2.3.3 Immediate instructions

	2.4 A practical example
	Concluding remarks

	3 Compositional verification with prioritised events
	3.1 Preliminaries
	3.1.1 Prioritised events
	3.1.2 Finite automata
	3.1.3 Synchronous composition and non-conflictingness

	3.2 Conflict-preserving abstraction rules
	3.2.1 Prioritised weak bisimulation
	3.2.2 Abstraction rules based on incoming equivalence
	3.2.3 Further abstraction rules

	3.3 Compositional verification
	3.4 Case studies
	3.4.1 Synchronised SBDs
	3.4.2 Priority in control hardware

	Concluding remarks

	4 Sequential function chart
	4.1 Correlating SFCs with SBDs
	4.1.1 Syntax mapping from SFCs to SBDs
	4.1.2 Dense-time SFC semantics
	4.1.3 Translating SFCs into automata

	4.2 Compositional verification of modular SFC programmes
	4.3 Case study
	Concluding remarks

	5 Conclusions and future prospects
	Bibliography
	Own Publications
	Student Works

	Appendix
	A Plant models of the production line example
	B U-conflict-preserving abstraction rules
	C Tables of symbols

