
FA
U

 U
N

IV
E

R
S

IT
Y

 P
R

E
S

S
 2

01
2

Y
ih

en
g

 T
an

g
 		

Fo

rm
al

 V
er

ifi
ca

tio
n

in
 A

ut
om

at
ed

 M
an

uf
ac

tu
rin

g
Fo

rm
al

 V
er

ifi
ca

tio
n

in
 A

ut
om

at
ed

 M
an

uf
ac

tu
rin

g

FA
U

 U
N

IV
E

R
S

IT
Y

 P
R

E
S

S
 2

02
4

Yiheng Tang

Formal Verification in
Automated Manufacturing

In recent decades, discrete-event modelling has been widely utilised to address control
engineering problems. Comparing with conventional dynamic system modelling where
physical behaviour is explicitly to describe, discrete-event modelling focuses on a more
abstract level where logical behaviour is of interest. In this dissertation, we focus on the
formal verification of the logical closedloop behaviour of control systems. To satisfy safety
and/or liveness requirements according to given technical specifications, we exploit the
formal semantics of control programmes to represent the entire closed-loop behaviour
in a discrete-event model, from which the properties of interest can be formally verified
through an efficient method.

FAU Studien aus der Elektrotechnik 25

 ISBN 978-3-96147-743-2

Yiheng Tang

Formal Verification in Automated Manufacturing

FAU Studien aus der Elektrotechnik

Band 25

Herausgeber der Reihe:
Prof. Dr.-Ing. Bernhard Schmauß

Yiheng Tang

Formal Verification in Automated
Manufacturing

Erlangen
FAU University Press
2024

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.d-nb.de abrufbar.

Kontakt: Yiheng Tang, Friedrich-Alexander-Universität Erlangen-Nürn-
berg (https://ror.org/00f7hpc57), https://orcid.org/0009-0003-0396-
2619

Bitte zitieren als
Tang, Yiheng. 2024. Formal Verification in Automated Manufacturing. FAU
Studien aus der Elektrotechnik Band 25. Erlangen. FAU University Press.
DOI: 10.25593/978-3-96147-744-9.

Das Werk, einschließlich seiner Teile, ist urheberrechtlich geschützt.
Die Rechte an allen Inhalten liegen bei ihren jeweiligen Autoren.
Sie sind nutzbar unter der Creative-Commons-Lizenz BY.

Der vollständige Inhalt des Buchs ist als PDF über OPEN FAU
der Friedrich-Alexander-Universität Erlangen-Nürnberg abrufbar:
https://open.fau.de/home

Verlag und Auslieferung:
FAU University Press, Universitätsstraße 4, 91054 Erlangen

Druck: docupoint GmbH

ISBN: 978-3-96147-743-2 (Druckausgabe)
eISBN: 978-3-96147-744-9 (Online-Ausgabe)
ISSN: 2363-8699
DOI: 10.25593/978-3-96147-744-9

Formal Verification in Automated Manufacturing

Formale Verifikation in der Fertigungsautomatisierung

Der Technischen Fakultät

der Friedrich-Alexander-Universität

Erlangen-Nürnberg

zur

Erlangung des Doktorgrades Dr.-Ing.

vorgelegt von

Yiheng Tang

Als Dissertation genehmigt

von der Technischen Fakultät

der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen

Prüfung: 14. November 2023

Gutachter: Prof. Dr.-Ing. Thomas Moor

Prof. Dr.-Ing. Jörg Raisch

Acknowledgement

This dissertation was completed during my work as a research assistant at

the chair of automatic control of Friedrich-Alexander University Erlangen-

Nuremberg. I would like to express my appreciation to all the people who had

helped me to finish this dissertation.

I would like to start by expressing my deepest gratitude to my advisor, Prof.

Dr.-Ing. Thomas Moor, for his patient guidance, inspiring ideas and constant

encouragement, which lay the foundation of this dissertation. Furthermore, I

would like to sincerely thank Dr. rer. nat. MartinWitte from our industrial

partner Siemens AG, who has provided various interesting concepts and use-

cases from practical industry scenarios.

I would like to extend my gratitude to the chair holder, Prof. Dr.-Ing. Knut

Graichen, for taking the chairmanship of the examining committee. I would

also like to express my gratitude to Prof. Dr.-Ing. Jörg Raisch for taking the

revision of my dissertation, as well as Prof. Dr. Christoph Pflaum for the

participation in the examining committee.

I gratefully acknowledge all my colleagues at the chair of automatic control

for the open research atmosphere. Special thanks go to the research group of

discrete-event systems for all the fruitful discussions.

I would like to sincerely express my gratitude to my parents for the constant

love and encouragement to me. Many thanks also to my friends Jingyuan Li,

Danwei Shao and Dr. Hongzhe Zhou for their mental support.

Erlangen, November 2022 Yiheng Tang

iii

Abstract

In recentdecades, discrete-eventmodelling has beenwidelyutilised toaddress

control engineering problems (Preuße et al., 2012; Ramadge andW. Wonham,

1987). Comparing with conventional dynamic system modelling where phys-

ical behaviour is explicitly to describe, discrete-event modelling focuses on a

more abstract level where logical behaviour is of interest. In this dissertation,

we focus on the formal verification of the logical closed-loop behaviour of

control systems. To satisfy safety and/or liveness requirements according

to given technical specifications, we exploit the formal semantics of control

programmes to represent the entire closed-loop behaviour in a discrete-event

model, from which the properties of interest can be formally verified.

There are two major challenges to conquer in the current dissertation. The

first one is the lack of formal semantics of control programmes. In prac-

tice, various modelling languages and programming languages have been

developed for control programme design, e.g. Unified Modelling Language

(Object Management Group, 2017b), Interdisciplinary Modelling Language

(Brecher, Obdenbusch, Özdemir et al., 2016), Grafcet (Provost, J.-M. Rous-

sel et al., 2011) and various programming languages defined in the IEC-61131

standard. Unfortunately, most of the original documents do not provide

sufficiently formalised semantics to support formal verification. In particu-

lar, since we focus on the discrete-event dynamics of closed-loop behaviour,

careful semantics formalisation based on the logic time axis is essential.

The second challenge to conquer is the computational efficiency of the formal

verification for complex systems with modular and/or hierarchical structure.

Typically, such systems are represented by a collection of synchronised auto-

mata, each of which has relatively few states (Leduc, 2002a; Schmidt et al.,

2007). For such systems, we focus on verifying their non-blockingness in the

current dissertation, which can express various safety properties and (weak)

liveness properties (Cassandras and Lafortune, 2008). A conventional way

to address this verification problem is based on analysing the monolithic

representation of the entire system, which is usually infeasible due to the

exponential growth of the state space, a.k.a. the state explosion problem. One

approach that mitigates this issue is the compositional verification (Flordal

and Malik, 2009). Basically, the idea of compositional verification is to itera-

tively (i) abstract each synchronised automaton and (ii) compose a small set

of automata to form a subsystem. The iteration terminates when there is only

one automaton left. In particular, it is required that the abstraction preserves

v

the property to verify. This guarantees that verifying the monolithic represen-

tation is equivalent to verifying the final automaton after iteration, which in

general has fewer states. Specifically for compositional non-blockingness veri-

fication, various recent contributions have shown convincing results (Flordal

andMalik, 2009; PilbrowandMalik, 2015; Suet al., 2010;WareandMalik, 2012),

where it is generally assumed that all automata are synchronised through the

standard synchronous composition (Cassandras and Lafortune, 2008; Milner,

1989). In this dissertation, we address the compositional non-blockingness

verification problem where events are prioritised. More precisely, we envisage

that each event in the entire system has a priority value. In any state, events

with lower priority can never be executed if any event with higher priority is

active in this state. This feature can result from e.g. the formal semantics of

the control programme and indeed changes the way of synchronisation. Thus,

for modular/hierarchical systemswith prioritised events, existing frameworks

and results w.r.t. compositional non-blockingness verification need to be

carefully reviewed and adjusted.

vi

Kurzzusammenfassung

In den letzten Jahrzehnten wurde die ereignisdiskrete Modellierung immer

öfter angewandt, um regelungstechnische Probleme zu behandeln (Preuße et

al., 2012; Ramadge and W. Wonham, 1987). Im Vergleich zur konventionellen

Modellierung von dynamischen Systemen, wobei physikalisches Verhalten

explizit zu beschreiben ist, konzentriert sich die ereignisdiskrete Modellie-

rung auf eine abstraktere Ebene, auf der logisches Verhalten von Interesse

ist. In dieser Dissertation konzentrieren wir uns auf die formale Verifika-

tion des logischen Verhaltens von Regelkreisen. Um Sicherheits- und/oder

Lebendigkeitsanforderungen anhand gegebener technischer Spezifikationen

zu gewährleisten, verwenden wir die formale Semantik von Steuerprogram-

men, umden gesamten geschlossenen Regelkreis von einem ereignisdiskreten

System darzustellen, so dass die interessierenden Eigenschaften formal verifi-

ziert werden können.

In dieser Dissertation sind zwei wesentliche Herausforderungen zu bewälti-

gen. Der erste ist die fehlende formale Semantik von Steuerungsprogrammen.

In der Praxis stehen verschiedene Modellierungssprachen und Programmier-

sprachen für den Entwurf von Steuerungsprogrammen zur Verfügung, z.B.

Unified Modelling Language (Object Management Group, 2017b), Interdis-

ciplinary Modelling Langauge (Brecher, Obdenbusch, Özdemir et al., 2016),

Grafcet (Provost, J.-M. Roussel et al., 2011) und verschiedene in der Norm IEC-

61131 definierte Programmiersprachen. Leider bieten die meisten originalen

Dokumente keine ausreichend formalisierte Semantik, um die formale Veri-

fikation zu ermöglichen. Da die ereignisdiskrete Dynamik in geschlossenen

Regelkreisen für uns von Interesse ist, ist eine sorgfältige Formalisierung von

Semantik auf der logischen Zeitachse notwendig.

Die zweite zu bewältigende Herausforderung ist die rechnerische Effizienz

der formalen Verifikation für komplexe Systeme mit modularer und/oder

hierarchischer Struktur. Solche Systeme werden typischerweise durch mehr-

ere synchronisierte Automaten repräsentiert, von denen jeder relativ wenige

Zustände besitzt (Leduc, 2002a; Schmidt et al., 2007). In dieser Dissertation

konzentrieren wir uns für solche Systeme auf die Verifikation von Blockie-

rungsfreiheit, die verschiedene Sicherheits- und (schwache) Lebendigkeits-

eigenschaften (Cassandras and Lafortune, 2008) ausdrücken kann. Eine kon-

ventionelle Vorgehensweise von dieser Aufgabe basiert auf der Analyse der

monolithischen Darstellung des gesamten Systems, was oft wegen des expo-

nentiellenWachstums des Zustandsraums, auch bekannt als State Explosion

vii

Problem, nicht durchführbar ist. Ein Ansatz, der dieses Problem mildert,

ist die Compositional Verification (Flordal and Malik, 2009). Grundsätzlich

besteht die Idee der Compositional Verification darin, iterativ (i) jeden syn-

chronisierten Automaten zu abstrahieren und (ii) eine kleine Menge von

Automaten zusammenzusetzen, um ein Subsystem zu formen. Wenn nur ein

Automat verbleibend ist, terminiert die Iteration. Insbesondere ist es erforder-

lich, dass die Abstraktion die zu verifizierende Eigenschaft erhaltet. Dies

garantiert, dass das Verifikationsergebnis dermonolithischen Darstellung mit

dem des verbleibenden Automaten nach der Iteration übereinstimmt, der im

AllgemeinenwenigerZuständehat. Speziell fürdieCompositionalVerification

der Blockierungsfreiheit haben verschiedene neueste Beiträge überzeugende

Ergebnisse geliefert (Flordal and Malik, 2009; Pilbrow and Malik, 2015; Su et

al., 2010; Ware and Malik, 2012), wobei allgemein angenommenwird, dass alle

Automaten durch die standardmäßige synchrone Komposition (Cassandras

and Lafortune, 2008; Milner, 1989) synchronisiert sind. In dieser Dissertation

untersuchen wir die Compositional Verification der Blockierungsfreiheit, bei

der Ereignisse priorisiert sind. Genauer gesagt können wir uns so vorstellen,

dass jedes Ereignis im gesamten System einen Prioritätswert besitzt. In jedem

Zustand können die Ereignisse mit niedrigerer Priorität nicht ausgeführt wer-

den, wenn in diesem Zustand irgendein Ereignis mit höherer Priorität aktiv

ist. Diese Eigenschaft kann z.B. aus der formalen Semantik des Steuerungs-

programms ergeben und ändert die Art undWeise von Synchronisation. In

diesem Zusammenhang muss die existierenden Methoden und Ergebnisse

bzgl. Compositional Verification der Blockierungsfreiheit sorgfältig überprüft

und angepasst werden.

viii

Contents

1 Introduction . 1

2 Sequential behaviour diagram 11

2.1 Syntax and semantics . 12
2.1.1 Syntax and informal semantics 14
2.1.2 Formal semantics . 19
2.1.3 Conditions and variables 30
2.1.4 Operation of the drill station example 34

2.2 Translating SBDs into automata 35
2.2.1 Reachability automaton 37
2.2.2 Constraint automata 38
2.2.3 Result automaton and high-priority events 46
2.2.4 Representing the global behaviour 47

2.3 Extended semantics . 48
2.3.1 Termination condition 49
2.3.2 Writable and controlled variables 51
2.3.3 Immediate instructions 56

2.4 A practical example . 57

3 Compositional verificationwith prioritised events 67

3.1 Preliminaries . 69
3.1.1 Prioritised events . 69
3.1.2 Finite automata . 70
3.1.3 Synchronous composition and non-conflictingness 73

3.2 Conflict-preserving abstraction rules 76
3.2.1 Prioritised weak bisimulation 81
3.2.2 Abstraction rules based on incoming equivalence 93
3.2.3 Further abstraction rules 113

3.3 Compositional verification . 118

3.4 Case studies . 122
3.4.1 Synchronised SBDs . 122
3.4.2 Priority in control hardware 125

4 Sequential function chart . 131

4.1 Correlating SFCs with SBDs . 132
4.1.1 Syntax mapping from SFCs to SBDs 132
4.1.2 Dense-time SFC semantics 136
4.1.3 Translating SFCs into automata 140

ix

Contents

4.2 Compositional verification of modular SFC programmes 147

4.3 Case study . 150

5 Conclusions and future prospects 155

Bibliography . 157

Appendix . 163

A Plant models of the production line example 163

B 𝒰-conflict-preserving abstraction rules 168

C Tables of symbols . 178

x

1 Introduction

In modern industrial manufacturing, production procedures are highly auto-

mated through logical control programmes, while manual operations through

workers tend to be less involved. In this context, ensuring that theentiremanu-

facturing system satisfies certain safety and liveness requirements (Alpern

and Schneider, 1987) is of great practical value, i.e.

Safety Does the manufacturing system potentially exhibit any unsafe be-

haviour? E.g. is there a risk of collision between two robot arms when

they share some region within their individual movement?

Liveness Does the manufacturing system always make progress? E.g. can

the processing of a workpiece in a machine eventually be terminated?

Instead of performing tedious enumerative tests on real physical systems,

which is extremely time-consuming and may also threaten human life and

property safety, formally ensuring that the desired properties are fulfilled

already in the system design and development phase is obviously preferred.

Typically, safety and liveness requirements are considered as temporal prop-

erties of adynamic system, which can formally be represented by finite automa-

ta (Cassandras and Lafortune, 2008; Daniele et al., 1999; M. Y. Vardi, 1996).1

Typically, an automaton is a directed graph where each vertex is referred to as

a state and each directed edge connecting two states is considered a transition.

Besides, each transition is labelled by an event.

ar

lv

I II

Figure 1: An automaton

As an example, Figure 1 shows an automaton describing the logical behaviour

of a binary sensor which detects the presence of workpieces in front of it.

Two events ar (for arrive) and lv (for leave) are labelled on the two transitions

connecting both states I and II, indicating that workpieces alternatively arrive

and leave the sensor. In particular, by considering state I as the initial state,

it is implied that no workpiece is present at the beginning, since event ar,
instead of lv, always occurs first.

1 An automaton is finite if it has finitely many states. Throughout the current dissertation,

we assume that all automata are finite.

1

1 Introduction

position = west

GetObject

position = south

Drill_Type1 Drill_Type2 DustRemoval

[WPtype = A]

[else]

ID:0

ID: 1

ID:2 ID:3 ID:4

ID:5

ID:1001

ID:1002

ID:1003

ID:1004

events
control

instructions

ph
ys

ic
al

 p
la

nt
co

nt
ro

l p
ro

gr
am

m
e

Figure 2: Closed-loop behaviour

With automata as basic model, we now discuss how to ensure desired prop-

erties in a manufacturing system. From a control-theory perspective, we

consider that the entire system behaviour, which is also referred to as the

closed-loop behaviour, is represented by a plant (i.e. the uncontrolled be-

haviour) and a feed-back controller. By reading event sequences from the

2

1 Introduction

plant, the controller sends control instructions back to the plant; see Figure 2.

As the uncontrolled plant reflects the “physical nature”, we are interested in

the controller, which is the “man-made” counterpart and enforces the desired

properties in the closed-loop system. One well-known approach to achieve

this goal is the Supervisory Control Theory (SCT) (Ramadge and W. Wonham,

1989; Ramadge and W. Wonham, 1987). Given a plant model and a formal

specification describing the intended system behaviourand desired properties,

SCT automatically synthesises a controller (which is also referred to as a super-

visor) that enforces the specification in the closed-loop behaviour. However,

although SCT has been actively studied and developed in recent decades, one

relative drawback of SCT is that constructing formal discrete-event models,

especially formal specifications, is a challenging task that necessarily requires

highly advanced mathematical knowledge. This is one of the main reasons

why, in practice, SCT is seldom applied by automation engineers to solve

real-world control problems.

One alternative to controller synthesis is formal verification, which is a well-

discussed topic in computer science, e.g. in the theory of Model Checking

(E. M. Clarke et al., 2001). In this case, we envisage that control programmes

are already available and the resulting closed-loop system is algorithmically

verified (Bauer, Engell et al., 2004; Buzhinsky and Vyatkin, 2017; Gerber et al.,

2010; Preuße et al., 2012). One major benefit of applying formal verification is

that nominal control sequences are already realised in control programmes

(which is usually considered as “specification” as well when applying SCT).

Thus, the properties to verify are usually much easier to formulate. If the

verification result is positive, the control programme is considered useable

for the manufacturing system; otherwise, revision of the codes is necessary

(possibly with the help of counterexamples from the verification, i.e. an

“evidence” which tells how the desired property can by invalidated).2

Describing closed-loop behaviourwith automata Recall that close-loop

behaviour is represented by combining a plant and a controller. As we utilise

automata as our basic model, we purpose that both the plant and the con-

troller are modelled by automata. The closed-loop system is then computed

based on the synchronous composition of the plant and the controller model,

which is a common approach in SCT (Cassandras and Lafortune, 2008). On

this basis, we envisage the overall procedure for the closed-loop behaviour

verification as shown in Figure 3. In the scope of the current dissertation,

2 Note that the “trial-and-error” of programme codes is generally unavoidable for controller

synthesis approaches as well. As for SCT, it is common that ill-formed specifications result

in an overly pessimistic controller that disallows everything in the closed-loop behaviour.

3

1 Introduction

physical
plant

automaton
model

composition

verification
result

control
programme

automaton
model

Figure 3: Envisaged verification procedure

we propose that the plant model is directly available, which may have been

manually designed (possibly from some component library). From a practical

perspective, manually constructing plant models is not a verbose task since

plant behaviour is usually “determined”, i.e. when programming control codes,

it is rather unlikely to redesign and reassemble themachine. In contrast, since

programme codes may be edited at any time (due to e.g. new functional

requirements or negative verification results), an automatic procedure to

translate programme codes into automata is indispensable. To this end, we

first focus on the Sequential Behaviour Diagram (SBD) defined by Interdis-

ciplinary Modelling Language (IML) (Brecher, Obdenbusch, Özdemir et al.,

2016; Flender et al., 2019) and utilise SBDs as the formal representation for

control programmes. As being derived from thewell-knownUnifiedModelling

Language (UML) (Object Management Group, 2017b) and System modelling

language (SysML) which have more general modelling purposes, the recently

developed IML has a specific focus on industrial automation systems with

compactly three types of diagrams (comparing with 14 diagram types in UML

and 9 diagram types in SysML). SBD is a variant of Activity Diagram (AD) from

UML (and SysML as well) that utilises token propagation on a Petri-net-like

structure to illustrate concurrent processes. In fact, a demonstrating example

of an SBD has already been given on the right side of Figure 2. Each “square

block” in an SBD is referred to as a process, which is considered an abstract

programme block that can hold a token. In addition, each edge can propagate

4

1 Introduction

tokens in its direction. Unfortunately, existing literature does not sufficiently

formalise SBD semantics to enable its translation to automata. This problem

is addressed in Chapter 4.

Trans

lv

Figure 4: High-priority events preempt low-priority events

At the current stage, a specific feature appearing in the translation result is

worth mentioning – all events in the resulting automata are prioritised. In

any state in the closed-loop behaviour where a high-priority event is active,

all events with lower priority cannot be executed. This semantic feature was

originally studied in process algebra (Baeten et al., 1986; Cleaveland et al.,

2007; Lüttgen, 1998). As for SBDs, we shall stipulate in some cases that

token propagation has higher priority over other behaviour. We consider the

automaton fragmentgiven in Figure 4 as anexample. TheeventTrans standing
for token propagation has higher priority over the event lv, which corresponds
to a positive or negative edge in the line level of some sensor. In this case, we

should remove the transition labelled by lv as it will always be preempted by

Trans. This is also the reason whywe loosely wrote composition instead of the

standard synchronous composition in Figure 3, i.e. the closed-loop behaviour

in this context is represented by removing low-priority transitions (which is

also referred to as shaping) in the synchronous composition.

Compositional non-blockingness verificationwith prioritised events

In the current dissertation, we pay specific attention to the non-blockingness

as the property of our interest. Non-blockingness is one of the most common

properties required for closed-loop behaviour (Cassandras and Lafortune,

2008; Ramadge and W. Wonham, 1987) which states that in any reachable

state, it is always possible to attain desired system configurations in the future.

As for the example automaton in Figure 1, one can specify that state II encodes

a desired system configuration, which implies that the automaton is non-

blocking. The definition of non-blockingness infers some weak3 liveness

properties of the system. Nevertheless, a great variety of safety properties are

expressible by non-blockingness. Typically, if reaching certain states causes

3 Non-blockingness is weak since it only requires the system to have the opportunity to reach

some good future, while the system does not necessarily need to reach it. See also (Alpern

and Schneider, 1985; De Giacomo and M. Vardi, 2013).

5

1 Introduction

safety issues, e.g. collision or overheating, these states are considered unsafe

and can bemodelled as blocking states in plant models. Since the closed-loop

behaviour needs to be non-blocking, the plant behaviour must be restricted

by the controller so that unsafe states are rendered unreachable.

For a moderately sized system, its non-blockingness can be simply verified

by performing enumerative backward reachability search in the monolithic

representation of the system (Cassandras and Lafortune, 2008). However,

for large-scale systems with multiple synchronisedmodules, constructing a

monolithic representation greatly suffers from the notorious state explosion

problem, as the entire state space increases exponentially w.r.t. the number

of modules. E.g., even each module has only 5 states, 10 synchronised mod-

ules can still reach a total state count of 510 ≈ 9.8 × 106 in the monolithic

representation. To this end, various contributions in recent decades have

attempted to solve the non-blockingness verification problem for modular

systems without explicitly constructing the monolithic representation. One

well-discussed approach is to utilise binary decision diagrams (BDDs) (Akers,

1978) to symbolically encode automata (Kimura and E. Clarke, 1990; Michon

and Champarnaud, 1998), which, compared with enumerating the entire tran-

sition structure, potentially reduces the memory required for representing

the state space.

A well-established alternative to address the non-blockingness verification

problem is compositional verification (Flordal and Malik, 2009; Pilbrow and

Malik, 2015; Su et al., 2010; Ware and Malik, 2012), which is based on applying

abstractions on individual modules. The underlying idea of compositional

verification stems from compositional reasoning, which derives the interface

rule in compositional model checking (E. Clarke et al., 1989). The basic idea

of the interface rule is illustrated in Figure 5, where we suppose that the

G1 G2

Σ∩

G′1

G1 ‖ G2

G′1 ‖ G2

Σ∩

Figure 5: Interface rule

6

1 Introduction

entire system 𝐺1 ∥ 𝐺2 consists of two modules 𝐺1 and 𝐺2.
4 Both modules

communicate with each other through a set of events Σ∩. Besides, we assume

that the property to verify 𝜙 is expressed by another set of events Σ′. In this

context, the idea is toconstructa suitable abstraction𝐺′
1 (which is also referred

to as an interface in (E. Clarke et al., 1989)) of 𝐺1 by neglecting all events not in

Σ∩ ∪Σ′, i.e. events owned by𝐺1 privately and irrelevant to𝜙. The suitableness
of the abstraction then guarantees that verifying 𝜙 in 𝐺1 ∥ 𝐺2 is equivalent

to verifying 𝜙 in 𝐺′
1 ∥ 𝐺2, which typically has fewer states than 𝐺1 ∥ 𝐺2. As

for non-blockingness verification, the process-algebraic equivalence conflict

equivalence was proposed in (Malik, Streader et al., 2004) to guarantee the

suitableness of an abstraction. Two automata, say 𝐺1 and 𝐺′
1 where 𝐺′

1 is

an abstraction of 𝐺1, are considered conflict equivalent if for any automaton

𝑇, 𝐺1 ∥ 𝑇 is non-blocking if and only if 𝐺′
1 ∥ 𝑇 is non-blocking. As for

the situation in Figure 5, 𝐺2 clearly is “any automaton”. At this stage, it is

also worth mentioning that, as the composition is generally associative and

commutative, the abstraction can be applied to each module in an arbitrary

order. E.g. for 10 modules, reducing the state count of each module from 5 to

3 already yields an appreciable overall state space reduction from 9.8 × 106 to

5.9 × 104.

Another key feature of compositional verification is that abstraction can also

be applied iteratively (Flordal and Malik, 2009; Su et al., 2010). Recall that

abstractions make use of private events. Suppose that a modular system

consists of five modules 𝐺1, … , 𝐺5 where each module has been abstracted,

resulting into 𝐺′
1, … , 𝐺′

5, respectively. At this stage, strategically choose a

small set of automata to compose, e.g. 𝐺′
1 ∥ 𝐺′

2 =∶ 𝐺12, potentially enables

further abstractions since events only being shared by𝐺1 and 𝐺2 are rendered

private. Thus, composition and abstraction can be iteratively applied to the

entire system until there is only one module left, whose non-blockingness is

identical to that of the monolithic representation. Figure 6 shows a possible

procedure to apply compositional verification for five modules. Each edge

transforming an automaton 𝐺_ into 𝐺′
_ indicates the application of suitable

abstractions, while edges merging multiple automata into a single automaton

indicates the composition. In this context, verifying the non-blockingness of

𝐺1 ∥ 𝐺2 ∥ 𝐺3 ∥ 𝐺4 ∥ 𝐺5 is equivalent to verifying 𝐺12345, which usually has

significantly fewer states.

Recently, various abstraction methods have been developed for the compos-

itional non-blockingness verification of (ordinary) automata (Flordal and

4 In this paragraph, we loosely utilise the operator ∥ to denote some kind of composition

which is commutative and associative.

7

1 Introduction

G1 G′1

G2 G′2

G3 G′3

G4 G′4

G5 G′5

G12

G45

G′12

G′45

G12345

Figure 6: Possible procedure to apply compositional verification for a modular system with five

modules

Malik, 2009; Malik, 2015; Pilbrow and Malik, 2015; Su et al., 2010; Ware and

Malik, 2012). Besides, compositional verification has been successfully applied

to several extended types of automata and/or other properties (Malik and

Leduc, 2013; Mohajerani, Malik et al., 2016; Ware and Malik, 2013). Since

non-blockingness is also one of the standard properties required for SCT, com-

positional synthesis of supervisors has also been widely discussed and shown

convincing results (Malik and Teixeira, 2016; Mohajerani, Malik et al., 2014;

Mohajerani, Malik et al., 2017). However, it is challenging to apply existing

results to verify the non-blockingness of modular/hierarchical SBDs, since

prioritised events influence the synchronisation of modules. As far as the

author’s knowledge, most contributions addressing compositional verification

problems take synchronous composition as the semantics of synchronisation

between modules, i.e. the behaviour of the entire system complies with the

synchronous composition of all modules. Unfortunately, this is not the case

for SBDs due to prioritised events. As we shall see in Chapter 2, the high-

priority of token-propagation events has a global effect across all modules. By

referring to the case in Figure 6, the behaviour of the entire modular system

shall comply with 𝒮(𝐺1 ∥ 𝐺2 ∥ 𝐺3 ∥ 𝐺4 ∥ 𝐺5), where the shaping operator
𝒮(⋅) removes low-priority transitions in each state in an automaton. In this

case, it is conceivable that theordinary conflict equivalencedoes not guarantee

the suitableness of abstraction any more – new equivalence over automata

with new abstraction methods need to be developed for compositional non-

blockingness verification with prioritised events. This topic is discussed in

Chapter 3 in more detail.

Outline The outline of the current dissertation is as follows. In Chapter 2,

we concentrate on translating SBDs into automata. This starts with a rigorous

formalisation of the syntax and semantics of SBDs, where we also consider

modularly and hierarchically structured SBDs from a practical perspective.

In particular, the discrete event dynamic behaviour of SBDs is clarified over

the logic dense time axis, which is naturally correlated with the semantics of

8

1 Introduction

automata. This chapter ends with a practical example, where a set of modu-

lar and hierarchical SBDs are constructed to control a production line. The

non-blockingness of the entire closed-loop system is then envisaged to be

verified by the compositional verification procedure introduced in Chapter 3

– in Chapter 3, we focus on modular systems whose behaviour is represented

by synchronised automata with prioritised events. By formally defining the

shaping operator 𝒮(⋅), we purpose a new equivalence over automata, i.e. the

conflict equivalence w.r.t. prioritised events, as a new characterisation for

suitable abstractions in our case. On this basis, new abstraction rules are

developed. At the end of this chapter, compositional verification is applied to

two different use-cases with prioritised events, including the SBD model pre-

viously constructed in Chapter 2. Finally, in Chapter 4, we discuss a graphical

programming language, the Sequential Function Chart (SFC), which has been

actively used in industry for years. Themotivation for adding this final chapter

is that the Petri-net-based structure of SFCs is apparently comparable with

SBDs. Thus, a question naturally arises is whether the translation procedure

for SBDs introduced in Chapter 2 and the compositional verification approach

developed in Chapter 3 are applicable for SFC verification. Nevertheless, due

to the physical-time-based semantics of SFC as well as the specific execu-

tion order of SFC control sequences, careful extensions and assumptions are

necessary.

9

2 Sequential behaviour diagram

The main objective of the current dissertation is to verify the controlled be-

haviour of manufacturing systems, a.k.a. closed-loop behaviour which is com-

posed from a plant model and a controller model. In particular, we focus on

the controller part and seek a possible formal representation which, from a

practical perspective, is sufficiently intuitive and comprehensive for automa-

tion engineers. To this end, we set our sights on the concept of modelling

languages, which has been intensively discussed recently in various fields, e.g.

software engineering, business management and industrial manufacturing.

The aim of modelling languages is to standardise the procedures of design

and analysis of complex systems. In particular, many of the modelling lan-

guages provide various possibilities to model sequential behaviour of a target

system, which can be utilised to design control programmes in automated

manufacturing. One common choice is the Activity Diagrams (AD) from the

well-known Unified Modelling Language (UML) (Object Management Group,

2017b) and System Modelling Language (SysML) (Object Management Group,

2017a); see e.g. (Fanti et al., 2013; Köhler et al., 2000; Y. Liu et al., 2014).

One of the most high-lighted features of UML and SysML is their flexibility

and versatility in different modelling domains. However, this may become

a burden when it comes to formal verification, which generally requires the

formalisation of the massive semantic structure documented in natural lan-

guage. In fact, many of the recent contributions addressing formal semantics

of AD take a subset from the complete language; see e.g. (Daw and Cleaveland,

2015a; R. Eshuis, 2006; Jarraya et al., 2009; Limaet al., 2013). In this context, we

focus on the recently developed Interdisciplinary Modelling Language (IML)

(Brecher, Obdenbusch, Özdemir et al., 2016; Flender et al., 2019; Herfs et al.,

2018) which has a specific aim of enabling common and consistent production

machine design with interdisciplinary technical requirements. Technically,

IML provides three types of diagrams for graphical modelling: Functional

Structure (FS) represents functions and their sub-functions in a hierarchical

fashion and determines the corresponding physical components realising

the respective function; Interaction Structure (IS) describes the interaction

between components through physical links and information flows; Sequen-

tial Behaviour Diagram (SBD) establishes the abstract structure of control

sequences which realises the functions of the machine. Among the three

diagram types, SBD is closely related to AD in that they both describe concur-

rent sequences through Petri-net-like structures. In addition, this intuition is

11

2 Sequential behaviour diagram

followed by other programming languages for industrial applications as well,

e.g. Sequential Function Charts (SFC) as defined in the IEC-61131 standard.

Thus, in this chapter, we select SBDs as the formal representation of control

programmes for manufacturing systems.

The subsequent question is, what property should be formally verified. In

this dissertation, we are mostly interested in the non-blockingness, which

can describe various safety properties as well as weak liveness properties

in closed-loop behaviour. To this end, we propose to translate SBDs into

automata, which is one of the most common models for non-blockingness

analysis (Cassandras and Lafortune, 2008; Ramadge and W. Wonham, 1987).

In particular, the translation result can be composed with plant models given

in automata as well to form closed-loop behaviour, whose non-blockingness

shall be formally verified. To this end, a sufficiently formalised semantics

of SBDs is essential for the translation procedure, which, however, is not

provided in existing documentations. Thus, in the current chapter, we first

focus on the formalisation of SBD semantics by clarifying the discrete event

dynamic behaviour of SBDs over logic dense time axis, which differs from

the ordinary physical time axis in that multiple events can be “stacked” on

a same physical time instance. In other words, a sequence of events can be

executed without consuming a positive duration of physical time. This time

model correlates SBD semantics with automata, which enables a semantically

precise translation from SBDs to automata.

This chapter is organised as follows: Section 2.1 introduces the formal syntax

and semantics of SBDs, based onwhich the translation procedure is developed

in Section 2.2. In Section 2.3, a typical practical use-case is considered, based

on which several extended semantic features are suggested for more precise

verification results. Finally, a relatively complicated practical example is mod-

elled in Section 2.4, based on which a brief overview of the non-blockingness

of SBDs is presented.

2.1 Syntax and semantics

In this section, we introduce the formal syntax and semantics of SBDs. Being a

Petri-net-like graph, the dynamic behaviour characterised by SBDs is basically

organised by token propagation. Hence, structural components similar to

Petri-net places (in which tokens can be held), transitions as well as directed

edges (along which tokens are propagated) are conceivable. We first consider

a prototypical example of a drill station as depicted in Figure 7 to demonstrate

some basic features of SBDs. The drill station comprises a robot arm which

12

2.1 Syntax and semantics

drill

ventilator

robot armworkpiece

Figure 7: A drill station

can fetch workpieces, a drill which processes workpieces, and a ventilator

that removes dust while drilling. The intended usage of the drill station is

that, after taking a workpiece to the south position, a whole is drilled into

the workpiece, possibly with different depths depending on the workpiece

type. While drilling, the ventilator continuously blows off the dust. The above

specification can be expressed by the SBDs given in Figure 8, in which we

highlight the following features:

Nested SBDs One entire IML project may consist of multiple SBDs. In Fig-

ure 8, the SBD 𝑇 is nested to SBD 𝑆, which is denoted by “ : 𝑇 ” in 𝑆. The
operation of 𝑇 is activated whenever 𝑆 invokes it, while the operation of

𝑆 is started spontaneously.

Nodes and edges Nodes are basic structural elements in SBDs which are

connected by directed edges. In Figure 8, all nodes are numbered with a

unique ID. Note that not all types of nodes can hold tokens for a positive

duration of time.

Process nodes Process nodes are the core of SBDs. Each process node is a

“black box” which can be seen as an abstract representation of a control

programme fragment. In Figure 8, nodes with ID 1, 2, 3, 4, 11 are process
nodes. Each process node has its pre- and postcondition to denote the

prerequisite and the guaranteed result of executing the process, respect-

ively. These are directly represented at the top or bottom of a process

node, respectively, and is trivially true if the respective box is empty. For

example, the process node with ID = 1 can be executed only when the

precondition position = west is fulfilled. After execution, it is guaranteed

13

2 Sequential behaviour diagram

position = west

GetObject

position = south

Drill_Type1 Drill_Type2 DustRemoval

[wptype = a]

[else]

ID:0

ID: 1

ID:2 ID:3 ID:4

ID:5

ID:1001

ID:1002

ID:1003

ID:1004

button = pushed

DrillWP
 :T

ID:10

ID:11

ID:12

S T

Figure 8: SBDs describing the control sequences of a drill station

that position = east is achieved. Besides,the process node with ID = 4 has

trivial precondition and trivial postcondition.

Auxiliary nodes All nodes not being process nodes are referred to as auxiliary

nodes, which are adapted from ADs defined in UML. These are initial

nodes (ID: 0, 10)which initialise tokenpropagation, terminal nodes (ID: 5,
12) which eliminate tokens, forks/joins (ID: 1001/1002) which begin/ter-

minate synchronous sequences, and branches/merges (ID: 1003/1004)
which begin/terminate alternative sequences.

2.1.1 Syntax and informal semantics

We first formalise the syntax of SBDs and introduce the intended usage of all

types of SBD components. We shall first notice that, as mentioned in the drill

station example, a complete IML project may include multiple SBDs, whose

executions are related to each other. Thus, we first declare the scope of SBDs

14

2.1 Syntax and semantics

that are relevant to the control of a given manufacturing system, namely, an

SBD project.

Definition 2.1.1. An SBD project is a family SBDP = (𝑆𝑖)1≤𝑖≤𝑘 of SBDs.

Technically, an SBD 𝑆 ∈ SBDP is a special kind of directed graph in which

to each node (or “vertex” from a graph-theoretical perspective), a node-type

attribute is assigned. Recall that there are totally seven types of nodes, which

motivates us to define the set of node types as

NodeTypes = {initial, process, terminal, fork, join, branch, merge}. (1)

We are now prepared to give the definition of an SBD.

Definition 2.1.2. Given an SBD project SBDP, an SBD 𝑆 ∈ SBDP is a tuple

𝑆 = ⟨Nodes𝑆, Edges𝑆, type𝑆, invoke𝑆, Guards𝑆⟩ where

• Nodes𝑆 is the set of nodes;

• Edges𝑆 ⊆ Nodes𝑆 × Nodes𝑆 is the set of directed edges;

• type𝑆 ∶ Nodes𝑆 → NodeTypes is the node type assignment function;

• invoke𝑆 ∶ Processes𝑆 → SBDP ∪̇ {∅} is the invocation function with

Processes𝑆 being the set of all nodes with the node type process within 𝑆;

• Guards𝑆 is a substructure for condition assignments.

In the following, we take the convention that for any 𝑆, 𝑇 ∈ SBDP where

𝑆 ≠ 𝑇, Nodes𝑆 ∩ Nodes𝑇 = ∅ must hold. For brevity, the subscript (⋅)𝑆 of

elements of a given SBD 𝑆 ∈ SBDP is often dropped if it is clear from the

context that only one SBD is currently discussed, e.g. we may write 𝑛 ∈ Nodes
instead of 𝑛 ∈ Nodes𝑆. Besides, for any node 𝑛 ∈ Nodes in some SBD, we

define

pre(𝑛) ∶= { 𝑛′ ∈ Nodes | (𝑛′, 𝑛) ∈ Edges }; (2)

suc(𝑛) ∶= { 𝑛′ ∈ Nodes | (𝑛, 𝑛′) ∈ Edges } (3)

to conveniently access its predecessors and successors.

Clearly, randomly connecting two nodes of any types through edges shall not

always result in a well-formed SBD with practical meaning. This motivates

us to first discuss the intended usage of each type of nodes, which inspires

us to stipulate several reasonable syntactical restrictions for a syntactically

well-formed SBD. Basically, SBDs describes the sequential behaviour of con-

current processes, which is referred to as SBD dynamics in the following. SBD

15

2 Sequential behaviour diagram

dynamics is organised by token propagation, which is a concept originates

from Petri-nets. As for SBDs, tokens are propagated in edge directions to

model the sequence of process activation (by receiving a token) and deactiva-

tion (by sending a token), which is similar to the so-called control flows in

AD. Since tokens do not carry concrete objects (as opposed to modelling e.g.

resources), we stipulate that the weight of each edge is equal to 1. Besides,

each node can carry at most one token at the same time, which is an intended

restriction especially due to the conceptional meaning of process nodes; see

below for a detailed discussion.

Initial nodes A node 𝑛 ∈ Nodes with type(𝑛) = initial is an initial node and

we write

InitialNodes ∶= { 𝑛 ∈ Nodes | type(𝑛) = initial } (4)

for the setof all initial nodes inan SBD.An initial nodehas nopredecessors

and exactly one successor. Upon the activation of the current SBD, one

token is generated in each initial node and the token is immediately

propagated to its successor as soon as the successor is capable of receiving

a token.

Processes A node 𝑛 ∈ Nodes with type(𝑛) = process is a process node (or
concisely a process) and we write

Processes ∶= { 𝑛 ∈ Nodes | type(𝑛) = process } (5)

for the set of all processes in an SBD. A process has exactly one predecessor

as well as exactly one successor and models a programme block which

takes a non-negative duration of physical time to execute. To abstractly

describe the dynamic behaviour of processes, we utilise the so-called

process state to describe the cyclic execution of each process; namely,

ProcessStates ∶= {idle, busy, done}, (6)

without explicitly specifying the concrete content of a process. Each

process is initially in the process state idle upon the activation of the

current SBD, which is immediately switched to the process state busy
when it receives a token. This starts the execution of the programme

associated with this process. Afterwards, upon the termination of the

programme, the process state is immediately switched to done. In this

state, if the successor is ready to take a token, the token is immediately

sent to the successor and the process state cycles back to idle. It is worth
mentioning that, we have already introduced all types of nodes which

16

2.1 Syntax and semantics

can hold a token for a positive duration of physical time, i.e. initial nodes

and processes. Finally, we shall stipulate that a process can hold at most

one token at any given time, since we do not allow the instantiation of

multiple copies of a process at the same time. This may sound overly

restrictive especially when compared with ADs, but in the context of

automated manufacturing, we should note that a physical plant generally

does not provide multiple instances. Recall the drill station example in

Figure 8 and consider the process GetObject, which could be relatively

complicated involving motion control of a robot arm and other sensor

behaviours for workpiece positioning. While GetObject is busy, it is clear
that a “second instance” can not be provided if there is no “second copy”

of the drill station.

Terminal nodes Anode𝑛 ∈ Nodeswith type(𝑛) = terminal is a terminal node

and we write

TerminalNodes ∶= { 𝑛 ∈ Nodes | type(𝑛) = terminal } (7)

for the set of all terminal nodes in an SBD. A terminal node has exactly one

predecessor, no successors and eliminates any token it receives immedi-

ately. Readers being familiarwith UMLmay havediscovered that terminal

nodes are comparable with flow final nodes in ADs in that eliminating a

token does not influence other tokens in the SBD, i.e. the execution of

the SBD shall proceed if there are still remaining tokens. When all tokens

in one SBD are eliminated, we say that this SBD is finished.

Forks and joins A node 𝑛 ∈ Nodes with type(𝑛) = fork is a fork while a node

𝑛′ ∈ Nodes with type(𝑛′) = join is a join. We write

Forks ∶= { 𝑛 ∈ Nodes | type(𝑛) = fork }; (8)

Joins ∶= { 𝑛 ∈ Nodes | type(𝑛) = join } (9)

for the set of all forks and joins in an SBD, respectively. A fork has exactly

one predecessor as well as at least two successors and describes the simul-

taneous beginning of concurrent processes. Thus, when taking a token

from its predecessor, the received token is duplicated to match the num-

ber of successors. Note that a fork is not able to hold a token for a positive

duration of physical time, which indicates that the duplicated nodes

must be instantaneously propagated to the successors. Therefore, a fork

taking a token implicitly requires that each successor must be ready to

receive a token. On the other hand, a join represents the simultaneous

termination of concurrent processes and has at least two predecessors as

17

2 Sequential behaviour diagram

well as exactly one successor. As the counterpart of forks, a join receives

tokens from all its predecessors and assembles them into a single token,

which is instantaneously propagated to its successor afterwards. A join

cannot hold a token for a positive duration of physical time either. Thus,

each predecessor of a join 𝑛 ∈ Joins can send its token only if (i) all other

predecessors of 𝑛 are ready to send a token and (ii) the successor of 𝑛 can

receive a token.

Branches and merges A node 𝑛 ∈ Nodes with type(𝑛) = branch is a branch

while a node 𝑛′ ∈ Nodes with type(𝑛′) = merge is amerge. We write

Branches ∶= { 𝑛 ∈ Nodes | type(𝑛) = branch }; (10)

Merges ∶= { 𝑛 ∈ Nodes | type(𝑛) = merge } (11)

for the set of all forks and joins, respectively. A branch has exactly one

predecessor as well as at least two successors and represents the choice

of alternative processes. Upon receiving a token from its predecessor,

a (possibly non-deterministic) choice of successor is taken, to which

the token is instantaneously propagated. The non-determinism can be

resolved by assigning disjunct branchconditions on each outgoing edge,
which will be discussed in detailed in Section 2.1.3. Besides, similar to

forks, since a branch cannot hold a token fora positivedurationof physical

time, a branch can only take a token if the chosen successor is ready to

take a token. On the other hand, a merge denotes the termination of

alternative processes and has at least two predecessors as well as exactly

one successor. If some predecessor 𝑛′ ∈ Nodes of a merge 𝑛 ∈ Merges is
ready for token propagation and the successor of 𝑛 is ready to receive a

token, the token in 𝑛′ is instantaneously propagated to the successor of

𝑛.

With the intended usage of each type of nodes as discussed above, it is con-

venient for us to define the syntactical well-formedness of an SBD. In the

remainder, we assume that all SBDs are syntactically well-formed. For con-

venience, we say a sequence of nodes 𝑛0𝑛1 … 𝑛𝑘, 𝑘 ≥ 1 where 𝑛𝑖+1 ∈ suc(𝑛𝑖)
for all 𝑖 ∈ {0, … 𝑘 − 1} is an instant node sequence if none of the nodes in this

sequence is an initial node, a process or a terminal node.

Definition 2.1.3. An SBD 𝑆 = ⟨Nodes, Edges, type⟩ is syntactically well-

formed if and only if all the following conditions hold:

(W1) for any node 𝑛 ∈ Nodes,
(i) if type(𝑛) = initial, then pre(𝑛) = ∅ and |suc(𝑛)| = 1;

18

2.1 Syntax and semantics

(ii) if type(𝑛) = process, then |pre(𝑛)| = |suc(𝑛)| = 1;

(iii) if type(𝑛) = terminal, then |pre(𝑛)| = 1 and suc(𝑛) = ∅;

(iv) if type(𝑛) ∈ {fork, branch}, then |pre(𝑛)| = 1 and |suc(𝑛)| > 1;

(v) if type(𝑛) ∈ {join, merge}, then |pre(𝑛)| > 1 and |suc(𝑛)| = 1;

(W2) |InitialNodes| ≥ 1;

(W3) for any instant node sequence𝑛0𝑛1 … 𝑛𝑘, if𝑛0 ∈ Forks, then𝑛𝑘 ∉ Joins;

(W4) for any instant node sequence 𝑛0𝑛1 … 𝑛𝑘, 𝑛0 ≠ 𝑛𝑘;

(W5) for any two instant node sequences 𝑛0𝑛1 … 𝑛𝑘 and 𝑛0𝑛′
1 … 𝑛′

𝑘′ where

𝑛0 ∈ Branches and 𝑛1 ≠ 𝑛′
1, there does not exist any 𝑛″ ∈ Joins so that

𝑛″ is in both sequences.

While conditions (W1) and (W2) are relatively straightforward from intuition,

we briefly explain (W3)–(W5) which specify the structure of instant node

sequences. (W3) prescribes that a join shall never be reached from a fork

withoutvisiting anyprocess, otherwiseanemptybut instantaneousconcurrent

execution is present, which shall be considered spurious. This condition is

inspired by (R. Eshuis, 2006, Transformation rule 2). Furthermore, (W4)

disallows any instant node sequence to be cyclic, which prevents indefinite

instantaneous cycling of token propagation. Finally, (W5) requires that for any

two instant node sequences beginning at the same branch but with different

successor choices, they shall not be able to instantaneously reach the same

join, as token propagation through such a join can never take place.

2.1.2 Formal semantics

2.1.2.1 Single SBD

In this subsection, we focus on formalising SBD semantics and begin with the

case where only one SBD is involved. As SBDs are syntactically comparable

with ADs, existing literature addressing the semantics formalisation prob-

lem for ADs are great references. One common approach to formalising AD

semantics is to consider ADs as Petri-nets with extended semantic features;

see e.g. (H. Eshuis, 2002; R. Eshuis and Wieringa, 2003; Störrle, 2004). Recall

briefly that a Petri-net is a bipartite graphwith two disjunct vertex sets, i.e. the

set of places and the set of transitions, and a set of directed edges so that each

edge either connects a place to a transition or vice versa. Most prominently,

only places are able to hold tokens, while firing transitions, i.e. propagate

tokens from places via transitions in the edge directions to further places, is

19

2 Sequential behaviour diagram

instantaneous.1 In this context, it is worth mentioning that, modelling pro-

cesses (or activities in ADs) as places or transition in Petri-nets are both valid

semantic interpretations. The former interpretation which is studied in (H.

Eshuis, 2002; R. Eshuis, 2006) follows the UML 1.5 specification where ADs
are considered as extended UML StateMachines (SMs), which is again derived

from statecharts (Harel and Naamad, 1996). However, this is not the case in

UML 2.𝑥 where SM and AD are semantically separated from each other. An

activity in UML 2.𝑥 is loosely considered as the sequencing of instantaneous

actions, and thus is naturally considered as a transition in Petri-net; see e.g.

(Störrle, 2004). Although the latter one is often considered as closer to Petri-

net semantics (R. Eshuis andWieringa, 2003), the former approach is more

preferable for our modelling requirement in that each process represents a

programme block and programme execution can consume a positive duration

of physical time. Thus, control instructions specified in a process do not need

to be instantaneous. Thus, we introduce the notation

Places ∶= InitialNodes ∪ Processes ⊆ Nodes (12)

to denote the set of nodes which correspond to places in Petri-nets.

Conventionally, the dynamic behaviour of a Petri-net is characterised by the

changeof tokendistributionoverplaces, which is caused by tokenpropagation.

This intuition is generally followed by SBD dynamics as well. To this end, a

careful explanation of the time model used by SBD dynamics is demanded

for a faithful formalisation. For a great number of physical systems, time is

usually described on the non-negative real time axis ℝ+
0 so that continuous

dynamics can be expressed appropriately. However, in this case, it is awkward

to express multiple instantaneous transitions which are ordered in a specific

sequence. This motivates the application of the two-dimensional time axis

ℝ+
0 × ℕ0 where in addition to the ordinary continuous dynamics (i.e. the

“horizontal axis”), instantaneous events can be finitely “vertically” stacked.

This is referred to as dense time in e.g. (Eker, Janneck, Lee, J. Liu et al., 2003)

and the resulting dynamic behaviour is considered hybrid (Tabuada, 2009).

For SBDs, we assume that continuous dynamics is not considered, which

allows us to simplify the dense time model to ℕ0 × ℕ0. Furthermore, we can

in fact utilise ℕ0 as our timemodel, which is often referred to as the logic time,

on which the physical time duration between two points ranges over ℝ+
0 . By

1 Note that this is true in most timed Petri-nets as well. In such cases, once a transition

becomes enabled, it can actually be fired only after a non-negative duration of physical time.

While “waiting” for firing, tokens enabling the transition still stay in original places and

firing transitions is instantaneous; see e.g. (Cassandras and Lafortune, 2008).

20

2.1 Syntax and semantics

keeping the two-dimensional time axis ℕ0 × ℕ0 in mind, the terminology

elapse of physical time is utilised to denote the progress in the horizontal

time axis, i.e. in the physical time. Thus, we utilise 𝜄 ∈ ℕ0 in the following to

denote a concrete “time point” on the logic time axis.

Based on the logic time axis, we define the token distribution over places,

i.e. the configuration of an SBD, as a semantic variable2 Marking. Recall that
each place in an SBD can hold at most one token. Thus, it is convenient to let

Marking directly range over subsets of Places, i.e. utilise

Marking(𝜄) ⊆ Places (13)

to map a time instance 𝜄 ∈ ℕ0 to a subset of Places.

If token propagation is possible at some time instance 𝜄, the token in 𝑛 ∈
Marking(𝜄) is instantaneously propagated to suc(𝑛) (note that 𝑛 as a place has

only one successor). However, if suc(𝑛) ∩ Places = ∅, further instantaneous
propagations shall be taken, until there are no tokens left in any non-place

node. From (W4), a series of instantaneous propagations from one configura-

tion to the successive one always takes finite steps, i.e. only a finite number of

edges will be visited. Token propagation through such a finite edge sequence,

which is referred to as a hyper-edge as suggested in (R. Eshuis, 2006), does

not consume any physical time and is semantically mapped to a Petri-net

transition. We write HEs to denote the set of all hyper-edges included in an

SBD. For any ℎ ∈ HEs, it is convenient to define

Sources(ℎ) ⊆ Places and Targets(ℎ) ⊆ Places (14)

to access its sources, from which the tokens are propagated by firing ℎ, and
targets, which obtain tokens after firing ℎ, respectively. Note that an hyper-

edge must have at least one source, but may have no outputs due to token

elimination at terminal nodes, which is a possible situation in Petri-nets as

well. In addition, another type of information a hyper-edge may carry is its

branch choices, i.e.

BranchChoices(ℎ) ⊆ { (𝑛, 𝑛′) | 𝑛 ∈ Branches, 𝑛′ ∈ suc(𝑛) } =∶ BranchChoices,
(15)

2 A semantic variable is referred to as a variable utilised to formulate SBD semantics. Semantic

variables shall not be confused with system variables (or concisely variables) later on, which
are utilised to e.g. formulate conditions.

21

2 Sequential behaviour diagram

which record all branches ℎ passes through and the corresponding successor

choice at each such branch. Since each hyper-edge only represent determin-

istic branch choice, it holds that for each ℎ ∈ HEs, we must have

∀(𝑛, 𝑛′), (𝑚, 𝑚′) ∈ Branchchoices(ℎ). 𝑛 = 𝑚 ⇒ 𝑛′ = 𝑚′. (16)

Since a hyper-edge may pass through multiple different kinds of non-place

nodes, it is not trivial to compute HEs of a given SBD. In the following, we

show an algorithm which constructs a single hyper-edge ℎ from a given place

𝑛0 ∈ Places so that 𝑛0 ∈ Sources(ℎ). The pseudo-codes of the algorithm
are given in Algorithm 1. Note that since only one hyper-edge is constructed

from 𝑛0 which may pass through branches and merges, consistent choices

for each branch to one of its successors as well for each merge back to one

of its predecessors are necessary for multi-step searches. These are denoted

by 𝛽 ∶ Branches → Nodes and 𝛾 ∶ Merges → Nodes as global parameters of

Algorithm 1, respectively, where we naturally require that

∀𝑛 ∈ Branches. 𝛽(𝑛) ∈ suc(𝑛) ; (17)

∀𝑛′ ∈ Merges. 𝛾(𝑛′) ∈ pre(𝑛′) (18)

must hold. We now explain Algorithm 1 as follows.

HYPEREDGECONSTRUCTION(𝑛0) This function constitutes the main func-

tion of the algorithm which consists of a recursive breadth-first forward

search FORWARDSEARCH for the given seed node 𝑛0 and a recursive

breadth-first backward search BACKWARDSEARCH if any join is visited

during the forward search. To represent the resulting hyper-edge ℎwhere

𝑛0 ∈ Sources(ℎ), this function returns all sources and targets of the hyper-
edge as well as all involved branch choices.

FORWARDSEARCH(𝑁, 𝑁𝑏) This function recursively search successors from

the input node set 𝑁 ⊆ Nodes. To encode the successor choice induced
by 𝛽, we introduce a restricted successor map suc𝛽 which is defined by

suc𝛽(𝑛) = {
suc(𝑛) if 𝑛 ∈ Nodes − Branches ;
{𝛽(𝑛)} if 𝑛 ∈ Branches .

(19)

For each 𝑛 ∈ 𝑁, all non-place non-terminal successors are recorded in

a set sucs ⊆ Nodes − Places − Terminals for the next iteration, while all
place successors are recorded in the result targets ⊆ Places. Note that if
a successor is a join, its unvisited non-place predecessors are recorded in

22

2.1 Syntax and semantics

Algorithm 1 Hyper-edge construction

global: sources ▷ result to return, initialised to empty set

global: targets ▷ result to return, initialised to empty set

global: branchChoices ▷ result to return, initialised to empty set

global: 𝛽 ▷ pre-defined successor choice of each branch

global: 𝛾 ▷ pre-defined predecessor choice of each merge

1: function HYPEREDGECONSTUCTION(𝑛0)

2: sources ← {𝑛0}
3: back ← FORWARDSEARCH({𝑛0}, ∅)
4: BACKWARDSEARCH(𝑏𝑎𝑐𝑘)
5: return sources, targets, branchChoices

6: end function

7: function FORWARDSEARCH(𝑁, 𝑁𝑏)

8: sucs ← ∅ ▷ (one-step) successors for the next iteration

9: for all 𝑛 ∈ 𝑁 do

10: sucs ← sucs ∪ (suc𝛽(𝑛) − (Places ∪ Terminals))
11: targets ← targets ∪ (suc𝛽(𝑛) ∩ Places)
12: if 𝑛 ∈ Branches then
13: branchChoices ← branchChoices ∪ (𝑛, suc𝛽(𝑛)) ▷ suc𝛽(𝑛)

has only one element

14: end if

15: for all 𝑛𝑠 ∈ sucs ∩ Joins do ▷ record other joined nodes

16: 𝑁𝑏 ← 𝑁𝑏 ∪ (pre(𝑛𝑠) − {𝑛} − Places) ▷ non-place pred. for

bw. search

17: sources ← sources ∪ (pre(𝑛𝑠) ∩ Places)
18: end for

19: end for

20: if sucs ≠ ∅ then
21: 𝑁𝑏 ← 𝑁𝑏 ∪ FORWARDSEARCH(sucs, 𝑁𝑏) ▷ collect all joined nodes

recursively

22: end if

23: return 𝑁𝑏
24: end function

25: function BACKWARDSEARCH(𝑁)

26: pres ← ∅ ▷ (one-step) predecessors for the next iteration

27: for all 𝑛 ∈ 𝑁 do

28: pres ← pres ∪ (pre𝛾(𝑛) − Places)
29: sources ← sources ∪ (pre𝛾(𝑛) ∩ Places)

23

2 Sequential behaviour diagram

30: if 𝑛 ∈ Branches then
31: branchChoices ← branchChoices ∪ (𝑛, pre(𝑛)) ▷ a branch

has only one pred.

32: end if

33: end for

34: if pres ≠ ∅ then
35: BACKWARDSEARCH(pres)
36: end if

37: end function

𝑁𝑏 ⊆ Nodes − Places for backward search. It is worth mentioning that

due to (W4), no non-place node can be reached twice and the recursion

is guaranteed to terminate.

BACKWARDSEARCH(𝑁) Since the forward search may visit joins, a backward

search for non-place predecessors at each join is necessary. Similar to

suc𝛽, a restricted predecessor map pre𝛾 is defined by

pre𝛾(𝑛) = {
pre(𝑛) if 𝑛 ∈ Nodes − Merges ;
{𝛾(𝑛)} if 𝑛 ∈ Merges .

(20)

to encode the predefined merge predecessor choice. Note thatwhenever a

branch is visited during the backward search, its unique predecessor and

itself is directly recorded in the branch choice regardless of 𝛽. Also note
that if the backward search is performed, it can never reach a forkwithout

visiting a process beforehand due to (W3). Thus, the forward search does

not need to be performed anew. In addition, (W5) guarantees that all

branches visited during the backward search shall not have appeared

in the forward search. Hence, ambiguous branch choices can always be

avoided, as required in (16).

Based on applying Algorithm 1 for each place 𝑛 ∈ Places, each possible branch
successor configuration 𝛽 and merge predecessor configuration 𝛾, the set of
all hyper-edges of an SBD can be determined. Note that since each place

can be a source of only one hyper-edge under given 𝛽 and 𝛾, places which
already belong to sources of some constructed hyper-edges can be skipped.

Furthermore, enumerating 𝛽 and 𝛾 can be recursively implemented by forking

the computation when any new branch or new merge is detected during

recursion, respectively.

24

2.1 Syntax and semantics

Recall that SBD dynamics is organised by firing hyper-edges. Basically, a

hyper-edge can be fired only if it is enabled. Since enabledness of a hyper-edge

is related to the process states of its sources and targets, we first define a

semantic variable ProcessState𝑛 for each process 𝑛 ∈ Processes to map each

time instance 𝜄 to one of the process states, i.e.

ProcessState𝑛(𝜄) ∈ ProcessStates , (21)

based on which the definition of an enabled hyper-edge is given as follows.

Definition 2.1.4. A hyper-edge ℎ ∈ HEs is enabled at time 𝜄 if and only if all
the following conditions hold:

(E1) Sources(ℎ) ⊆ Marking(𝜄);

(E2) ∀𝑛 ∈ Sources(ℎ) ∩ Processes. ProcessState𝑛(𝜄) = done;

(E3) ∀𝑛 ∈ Targets(ℎ). 𝑛 ∉ Marking(𝜄) − Sources(ℎ);

(E4) the guard condition associated with ℎ evaluates true at 𝜄.

In Definition 2.1.4, (E1) requires that all sources of the considered hyper-edge

are currently in the configuration. In addition, (E2) further requires that all

processes in the sources must be in the process state done. (E3) implies that all

targets of the considered hyper-edge must be in the process state idle, except
when a target is also a source of the same hyper-edge. Finally, we temporarily

assume that (E4) always holds. A detailed discussion of conditions will be

presented in Section 2.1.3. For convenience, we define the semantic variable

Enabled to denote the set of enabled hyper-edges at some time instance 𝜄, i.e.

Enabled(𝜄) ⊆ HEs . (22)

In the following,wecharacterise the SBDdynamics bydescribing the individual

update of configuration as well process states of all processes at 𝜄 + 1 utilising

the information at 𝜄. Note that the complete dynamic behaviour is based

on updating SBD from proper initialisation of the SBD, which can only be

faithfully described considering how SBDs are nested with each other within

an SBD project; see Section 2.1.2.2.

Definition 2.1.5. The individual update of an SBD 𝑆 is defined by the following

equations:

25

2 Sequential behaviour diagram

(i) if Enabled(𝜄) ≠ ∅, then by picking any ℎ ∈ Enabled(𝜄) and fire ℎ, the
configuration is updated by

Marking(𝜄 + 1) = (Marking(𝜄) − Sources(ℎ)) ∪ Targets(ℎ), (23)

and the process state of each process 𝑛 ∈ Processes is updated by the

following equations:

if 𝑛 ∈ Sources(ℎ) ∪ Targets(ℎ), then

ProcessState𝑛(𝜄 + 1) = {
idle if 𝑛 ∈ Sources(ℎ) − Targets(ℎ);
busy if 𝑛 ∈ Targets(ℎ);

(24)

otherwise,

ProcessState𝑛(𝜄 + 1) =
⎧
{
⎨
{
⎩

idle if ProccessState𝑛(𝜄) = idle;
busy or done if ProccessState𝑛(𝜄) = busy;
done if ProccessState𝑛(𝜄) = done;

(25)

(ii) otherwise, i.e. if Enabled(𝜄) = ∅, then the configuration is updated by

Marking(𝜄 + 1) = Marking(𝜄) (26)

and the process state of each process is updated according to (25).

Generally, the individual update is defined as such that if some hyper-edges is

enabled, one of themmust be fired, causing a configuration update by remov-

ing tokens from all sources and then providing tokens to all targets. Besides,

the process state of each process is updated according the idle–busy–done cycle.
At the current stage, the following two points w.r.t. Definition 2.1.5 are worth

mentioning:

� In the second case of (25), a process 𝑛 ∈ Processes which is irrelevant

to the picked enabled hyper-edge and is in the process state busy at 𝜄
have two possible process states at 𝜄 + 1, namely, either still busy or
done. This corresponds to two possible situations: if 𝑛 does not invoke

any other SBD, evolving from busy to done is spontaneous due to the
black-box mechanism of processes; otherwise, i.e. 𝑛 invokes some SBD

𝑇, 𝑛 evolves from busy to done if and only if 𝑇 becomes finished. The

latter case is addressed in detail in Definition 2.1.8.

26

2.1 Syntax and semantics

� Since an enabled hyper-edge ℎ is arbitrarily picked from all currently

enabled hyper-edges, non-deterministic behaviour may emerge when

multiple simultaneously enabled hyper-edges share some sources. In

other words, if two enabled hyper-edges visit the same branch with

different branch choices, firing one hyper-edge may disable the other.

This is often referred to as conflict; see e.g. (R. Eshuis, 2006). Neverthe-

less, in practice (especially in automated manufacturing), deterministic

behaviour of control programmes is often desired. As for SBDs, this

can be interpreted as such that different orders of firing simultaneously

enabled hyper-edges should lead to the same configuration. This can

be achieved by exclusive branch conditions, which will be introduced in

detail in Section 2.1.3.

Finally, we recall that a token can not be propagated into a process which

currently holds a token, which is also stated in Definition 2.1.4. We encode

this semantic restriction into semantic well-formedness, or concisely well-

formedness, as follows, which is assumed for all SBDs in the remainder.

Process A

Process B

Process A

Process B

Figure 9: Example SBDs with concurrent processes that are not properly joined

Definition 2.1.6. A (syntactically well-formed) SBD 𝑆 is semantically well-

formed if and only if

27

2 Sequential behaviour diagram

(W6) for all ℎ ∈ Enabled(𝜄) at any time instance 𝜄, it holds that

Sources(ℎ) ⊆ Marking(𝜄) → (Marking(𝜄)−Sources(ℎ)) ∩ Targets(ℎ) = ∅ .
(27)

One typical situation for a syntactically well-formed SBD being not (semanti-

cally) well-formed is such that multiple tokens generated by a fork or initial

nodes are improperly merged, e.g. as depicted in Figure 9. In fact, in other

programming languages with similar Petri-net-like structure, e.g. Sequential

Function Charts (SFCs) as defined in IEC 61131 − 3 standard, structures in
Figure 9 are considered illegal as well. In practice, more restrictive syntactic

rules areoften preferredwhere concurrent (or alternative) processes initialised

by a join (or a branch) must be terminated by a fork (or a merge). This kind

of restriction is adopted by e.g. Siemens-GRAPH, which is a programming

language derived from SFC.

2.1.2.2 Nested SBDs

Based on the semantics of each individual SBD, the global behaviour of a

complete SBD project can be formalised by considering parallel execution

(modularity) and invocations (hierarchy) between SBDs. Recall that the tuple

of an SBD 𝑆 ∈ SBDP includes the invocation function invoke𝑆. For any

𝑛 ∈ Processes𝑆, invoke𝑆(𝑛) ∈ SBDP indicates that 𝑛 does invoke an SBD,

in which case 𝑛 is referred to as an invoker. Contrarily, if invoke𝑆(𝑛) = ∅,
then the process 𝑛 is atomic and its behaviour is not specified by any SBD.

Correspondingly, we utilise3

invokedBy ∶ SBDP → 2ProcessesGL , (28)

with

ProcessesGL ∶= ∪̇𝑆∈SBDPProcesses𝑆 (29)

to denote the set-valued inverse of invoke, i.e. to match an SBD 𝑆 to all its

invoker processes globally. For any SBD 𝑆 so that invokedBy(𝑆) = ∅, it is not
invoked by any process and thus is referred to as a root. Note that an SBD

project may contain multiple root SBDs, which are operated in parallel in

that they are initialised simultaneously; see Definition 2.1.7 below. Also note

that henceforth, the convenient notation (⋅)GL is utilised to union sets of

3 2𝑋 denotes the power set of a set 𝑋.

28

2.1 Syntax and semantics

components in all SBDs of the SBD project with uniform component type,

which also applies to semantic variables, e.g. we utilise

MarkingGL(𝜄) ∶= ∪̇𝑆∈SBDPMarking𝑆(𝜄) . (30)

to denote the global configuration at time 𝜄.

Based on the individual update of each SBD, the dynamics of an complete

SBD project can be represented by the initialisation and update of the global

configuration and the process state of each process. Initialisation of an SBD

project occurs at 𝜄 = 0. Upon initialisation, globally all processes are set to the
process state idle, while in each root SBD, each initial node obtains one token.

Definition 2.1.7. The initialisation of an SBD project SBDP is defined by the

following equations:

For all 𝑆 ∈ SBDP,

Marking𝑆(0) = {
InitialNodes𝑆 if invokedBy(𝑆) = ∅ ;
∅ if invokedBy(𝑆) ≠ ∅ .

(31)

For all 𝑛 ∈ ProcessesGL,

ProcessState𝑛(0) = idle. (32)

As for the updates, special care should be taken for each invoker process and

the SBD it invokes. Unlike atomic processes, the behaviour of an invoker is

specified by an SBD, which implies that the process state cycle is related with

its invoked SBD. This motivates us to adapt the CallBehaviorAction defined

in ADs to interpret the semantics of SBD invocation; namely, a invoker is in

the process state busy when the invoked SBD is under execution, and sent to

the process state done when the invoked SBD is finished. This design choice

is also similar to that of macro steps in Grafcet (Provost, J.-M. Roussel et al.,

2011).

Definition 2.1.8. Theupdateof an SBDproject SBDP is defined by the conjunc-

tion of individual updates of each SBD 𝑆 ∈ SBDP and the following equations:

(i) Let ℎ ∈ HEsGL be enabled and fired at time instance 𝜄. For all 𝑛 ∈
Targets(ℎ) so that invoke(𝑛) = 𝑇 ∈ SBDP, it holds that

Marking𝑇(𝜄 + 1) = InitialNodes𝑇 ; (33)

29

2 Sequential behaviour diagram

(ii) At any time instance 𝜄, for all 𝑛 ∈ ProcessesGL so that invoke(𝑛) = 𝑇 ∈
SBDP, it holds that

Marking𝑇(𝜄) ≠ ∅ ⇒ ProcessState𝑛(𝜄) = busy ; (34)

Marking𝑇(𝜄) = ∅ ⇒ ProcessState𝑛(𝜄) ∈ {done, idle}. (35)

With Definitions 2.1.5, 2.1.7 and 2.1.8, all possible trajectories of MarkingGL(𝜄)
and ProcessState𝑛(𝜄) for all 𝑛 ∈ ProcessesGL of a given SBD project can be

described, which can further be represented by automata. At the end of

this paragraph, we recall that instantiating multiple copies of any process is

considered illegal. As for nested SBDs, this indicates invoking a non-root SBD

𝑇 is not allowed when 𝑇 has already been invoked and is still unfinished. In

addition, we syntactically disallow cyclic invocation structure. For an SBD

𝑆 with a invoker process 𝑛 ∈ Processes𝑆, allowing processes in invoke(𝑛) to
invoke𝑆 iswith little practical value. Hence, we introduce thewell-formedness

of an SBD project. For convenience, we introduce the term invocation sequence

todenoteafinitely concatenated sequenceof SBDs𝑆0𝑆1 … 𝑆𝑘 where 𝑘 ≥ 1 and
for each 𝑆𝑖 and 𝑆𝑖+1, there exists some 𝑛 ∈ Processes𝑆𝑖

so that invoke(𝑛) =
𝑆𝑖+1.

Definition 2.1.9. An SBD project SBDP iswell-formed if and only if

(WP1) for any time instance 𝜄, it holds that

∀𝑛, 𝑛′ ∈ MarkingGL(𝜄). 𝑛 ≠ 𝑛′ ∧ invoke(𝑛) ∈ SBDP ∧ invoke(𝑛′) ∈ SBDP
→ invoke(𝑛) ≠ invoke(𝑛′) ; (36)

(WP2) for any invocation sequence 𝑆0𝑆1 … 𝑆𝑘, it holds that 𝑆0 ≠ 𝑆𝑘.

In the remainder, well-formedness is assumed for all SBD projects.

2.1.3 Conditions and variables

In this section, the long awaited definition of the substructure Guards of each
SBD tuple is revealed. Recall from Definition 2.1.4 that a hyper-edge is always

associated with a guard condition, which is defined within Guards. We first

provide the formal definition of Guards as follows.

Definition 2.1.10. The guards of an SBD is a tuple Guards ∶= ⟨Variables,
precond, postcond, branchcond, Initcond⟩ where

• Variables is a set of system variables, or concisely variables;

30

2.1 Syntax and semantics

• precond ∶ Processes → Conditions is the precondition assignment function

where

Conditions denotes the set of all legit propositions formulated by Variables;
• postcond ∶ Processes → Conditions is the postcondition assignment func-

tion;

• branchcond ∶ BranchChoices → Conditions is the branch-condition assign-
ment function;

• Initcond ∈ Conditions is the initial condition.

Each SBD has a set Variables of (system) variables which are manipulated

by processes (e.g. for controlling actuator) and/or describe the plant status

(e.g. by reading sensor line levels). In additions, variables can be utilised

to construct various conditions to guard token propagations. Technically, a

condition is a mapping from some expression based on variable evaluation at

some physical time instance to a boolean value,4 where we particularly require

the trivial condition true must be a valid condition, i.e. true ∈ Condition
must hold. Since continuous dynamics is not considered, for each variable

𝑣 ∈ Variables, a finite set of values is defined which is denoted by range(𝑣),
from which a value is taken by 𝑣 at each discrete physical time instance and

we write

𝑣(𝜄) ∈ range(𝑣). (37)

Note that 𝜄 in (37) denotesa time instanceon the logic timeaxis, whichencodes

the (discrete) physical time axis as well. However, in order to faithfully illus-

trate the cooperative relation between token propagation and variable evalu-

ation, the two-dimensional dense time axis ℕ0 × ℕ0 is essential. Semantically,

we require that if a hyper-edge is fireable, i.e. enabled and actually chosen

if conflict among enabled hyper-edges exists, then it must be fired immedi-

ately. This semantic assumption is widely adopted in various Petri-net-like

modelling languages; see e.g. (R. Eshuis, 2006; Object Management Group,

2017b; Provost, J.-M. Roussel et al., 2011), since as soon as the guard condition

associated with a transition evaluates true, firing this transition shall never
be delayed as such that its guard condition is again invalidated. Thus, in

the context of SBDs, fireable hyper-edges are stacked vertically on a physical

time instance. More importantly, value changes of some explicit variable can

4 At the current stage, wedo not explicitly require the form a condition expression should take.

In fact, when translating SBDs to automata in Section 2.2, it is expected that each atomic

element forming a condition in Conditions, i.e. an atomic proposition, always takes the form

of an equality proposition, e.g. position = west as in the drill station example. Extending

expressions to more general syntax is beyond the scope of the current dissertation.

31

2 Sequential behaviour diagram

v := 1

fire h

fire h′

v := 0

ιh

ιv
ιh0 ιh1

ιv0

ιv1

ιv2

Figure 10: Value change and hyper-edge firing on the two-dimensional logic time axis (the

vertical axis is directed from top to bottom to suit the intuition of “the top most event occurs

first”)

only happen at the top of such stacks, i.e. there must be a minimal positive

duration of physical time between value changes. Meanwhile, “inserting” a

value change into the middle or bottom of the stack is forbidden.5 A concise

example of this mechanism is illustrated in Figure 10, where we explicitly

utilise 𝜄ℎ and 𝜄𝑣 to separately denote the discrete physical time and vertical

instantaneous action stack, respectively. Suppose the value of some variable 𝑣
changes from 0 to 1 at physical time 𝜄ℎ = 𝜄ℎ0. This event is placed at the top of

the stack; namely, at (𝜄ℎ, 𝜄𝑣) = (𝜄ℎ0, 𝜄𝑣0) where 𝜄𝑣0 by default denotes the first

instance of a stack at any 𝜄ℎ. Subsequently, hyper-edges ℎ and ℎ′ are enabled

and instantaneously fired at the same physical time instance. Although the

value of 𝑣 may eventually again change from 1 to 0 at some physical time

instance 𝜄ℎ1, it is guaranteed that 𝜄ℎ1 > 𝜄ℎ0.

In the following, we introduce the semantic effect of all types of conditions of

an SBD.

Precondition To each process, a precondition is assigned by the function

precond. The precondition of a process guards the process state transition
from idle to busy, so that it is guaranteed that the process is “correctly

started”. This implies that a hyper-edge ℎ is enabled at some time instance

𝜄 only if the precondition of each 𝑛 ∈ Targets(ℎ) evaluates true at 𝜄.

Postcondition To each process, a postcondition is assigned by the function

postcond. The postcondition of a process guards the process state tran-
sition from done to idle. Thus, a hyper-edge ℎ is enabled at some time

instance 𝜄 only if the postcondition of each 𝑛 ∈ Sources ∩ Processes evalu-
ates true at 𝜄. This guarantees that the process is “correctly left”. Besides,
at any time instance 𝜄 so that the process state of some 𝑛 ∈ Processes

5 Note that this holds for all variables, i.e. two variables cannot change their values at exactly

the same physical time point.

32

2.1 Syntax and semantics

turns from busy to done, postcond(𝑛) is guaranteed to evaluate true. Thus,
if a process is in the process state done, its postcondition may be invali-

dated due to e.g. the execution of other processes. In order that the

successive hyper-edge of 𝑛 can be fired, such postcondition invalidation

must be temporary. Note that alternatively, we could have also interpreted

postconditions as such that the “correct leaving” part is dropped; namely,

the process state of a process can evolve from done to idle regardless of
its postcondition. Processes with such kind of interpretation can be in

fact equivalently modelled by our construct through concatenating a

dummy process with trivial pre- and postconditions, which is similar to

the so-called wait node as suggested in (R. Eshuis, 2006) and the SFC

specification in IEC 61131 − 3 standard.

Branch condition To each branch choice, a branch condition is assigned

by the function branchcond. A hyper-edge ℎ is enabled at some time

instance 𝜄 only if all branch conditions assigned to branch choices in

BranchChoices(ℎ) evaluate true at 𝜄. In order to guarantee deterministic

choice at each branch, branch conditions associated with each branch

must be exclusive, which can be verified through syntactical analysis. This

can be guaranteed for branches with two successors by simply utilising

the keyword else which denotes the complement of the branch condition

on the other branch choice.

Initial condition To each SBD, an initial condition Initcond is assigned. An

SBDcan startexecution, i.e. obtain tokens in initial nodes, only if its initial

condition evaluates true. In the context of nested SBDs, since the process

state of an invoker process 𝑛 is instantaneously set to busy when the

SBD 𝑇 = invoke(𝑛) starts operation, a hyper-edge ℎ with 𝑛 ∈ Targets(ℎ)
is enabled only if the initial condition of 𝑇 evaluates true. In fact, the

initial condition of an non-root SBD plays the same semantic roll as

the precondition of its invoker process. However, when considering

translating SBDs into automata, several computational advantages are

conceivable when utilising initial conditions since it generally reduces

the state space of each SBD containing invokers (since possibly fewer

variables are associated with this SBD) and each non-root SBD (since

this SBD can only be initialised in restricted cases). Finally, since all root

SBDs are directly activated upon the initialisation of the SBD project, it

is natural to stipulate that the initial condition of a root SBD must be

trivially true.

With all types of conditions explained, the guard condition of an hyper-edge

which is required in (E4) of Definition 2.1.4 can be formalised as follows.

33

2 Sequential behaviour diagram

Definition 2.1.11. Let SBDP be an SBD project. The guard condition of an

hyper-edge ℎ ∈ HEsGL is defined by the condition 𝑐ℎ ∈ ConditionsGL where

𝑐ℎ ≡ (⋀
𝑛∈Targets(ℎ)

precond(𝑛) ∧ Initcondinvoke(𝑛))

∧ ⎛⎜
⎝

⋀
𝑛∈Sources(ℎ)∩ProcessesGL

postcond(𝑛)⎞⎟
⎠

∧ (⋀
(𝑛,𝑛′)∈BranchChoices(ℎ)

branchcond(𝑛, 𝑛′)) (38)

where for any𝑛 ∈ ProcessesGL so that invoke(𝑛) = ∅, we have Initcondinvoke(𝑛) =
true.

2.1.4 Operation of the drill station example

With the SBD formal semantics explained, we review the operation of the drill

station as given in Figure 8. Recall that each node has a globally unique ID,

i.e. NodesGL ⊂ ℕ0. In this context, each hyper-edge ℎ ∈ HEs is conveniently
denoted by a symbolic name which encodes its sources, targets and branch

choices, i.e. a hyper-edge ℎ ∈ HEs generally takes the form of

ℎ ≡ HE[S[𝑠1, … , 𝑠𝑖]C[𝑏1>𝑐1, … , 𝑏𝑗>𝑐𝑗]T[𝑡1, … 𝑡𝑘]] , (39)

with {𝑠1, … , 𝑠𝑖} = Sources(ℎ), {(𝑏1, 𝑐1), … , (𝑏𝑗, 𝑐𝑗)} = BranchChoices(ℎ) and
{𝑡1, … , 𝑡𝑘} = Targets(ℎ). The fragmentC[𝑏1>𝑐1, … , 𝑏𝑗>𝑐𝑗] and/orT[𝑡1, … 𝑡𝑘]
in (39) is omitted if the involved hyper-edge ℎ does not visit any branch and/or

the target set of ℎ is empty, respectively. Considering this nomenclature, the

nested SBDs 𝑆 and 𝑇 in Figure 8 hold hyper-edges

HEs𝑆 ≡ { HE[S[10]T[11]],
HE[S[11]] } (40)

and

HEs𝑇 ≡ { HE[S[0]T[1]],
HE[S[1]C[1003>2]T[2, 4]],
HE[S[1]C[1003>3]T[3, 4]],
HE[S[2, 4]],
HE[S[3, 4]] }. (41)

34

2.2 Translating SBDs into automata

Upon the initialisation of the SBD project SBDP = {𝑆, 𝑇 }, a token is immedi-

atelygenerated in the initial node10 in𝑆while there is no token in𝑇. Byassum-

ing that the initial condition of 𝑇 is trivial, the hyper-edge HE[S[10]T[11]]
becomes enabled as soon as precond(11), i.e. button = pushed, evaluates true.
Once HE[S[10]T[11]] becomes enabled, it is fired immediately, causing the

token in initial node 10 topropagate intoprocess 11 DrillWP. This propagation
sends process 11 to the process state busy and since process 11 invokes SBD 𝑇
(denoted by the symbol), a token is generated in the initial node 0 in 𝑇 at

the same time. At this stage, if precond(1) (i.e. position = west) evaluates true,
the only subsequently fireable hyper-edge HE[S[0]T[1]] is instantaneously
fired. This sends process 1 to the process state busy and the programme

codes in process 1 are executed. Upon the termination of process 1, it is
switched to the process state done and its postcondition position = south
must evaluate true. At this stage, two hyper-edges are possible to be fired sub-
sequently, i.e. HE[S[1]C[1003>2]T[2, 4]] and HE[S[1]C[1003>3]T[3, 4]]. Fir-

ing either hyper-edge requires postcond(1) to be true. In addition, firing

HE[S[1]C[1003>2]T[2, 4]] requires that branchcond(1003, 2), i.e. wptype = a
evaluates true, while firing HE[S[1]C[1003>3]T[3, 4]] requires that branchcond
(1003, 3) evaluates true. For instance, we pick HE[S[1]C[1003>2]T[2, 4]] to
fire. This sends the configuration of 𝑇 from {1} to {2, 4}, i.e. drilling starts
and the ventilator for dust removal is turned on parallelly. At this stage, the

next fireable hyper-edge is HE[S[2, 4]], which becomes enabled once both

processes 2 and 4 are in the process state done. Firing HE[S[2, 4]] finishes SBD
𝑇, which turns process 11 of the SBD 𝑆 to the process state done. Since the
postcondition of process 11 is trivial, its successive hyper-edge HE[S[11]] is
directly enabled and thus immediately fired afterwards. This eliminates all

tokens in SBD 𝑆 and, since there is no token left in any SBD, the execution of

this SBD project is terminated.

2.2 Translating SBDs into automata

Based on the formal semantics introduced in Section 2.1, the current sec-

tion proposes the procedure to translate SBDs into automata. Technically,

we represent the global behaviour of an SBD project by the synchronisation

of multiple automata, each of which is translated from one SBD in the pro-

ject6 while an explicit construction of the global behaviour is unnecessary.

6 Note that we do not explicitly refer to as the standard synchronous composition at the

current stage. See Step 4 below.

35

2 Sequential behaviour diagram

SBD

reachability
automaton

constraint
automata

result automaton
&

high-priority
events

plant
automata

Figure 11: Translation procedure of a single SBD (plant automata are not considered throughout

this section)

Moreover, each SBD is translated based on the construction of its correspond-

ing reachability graph as well as various types of constraint automata. By

referring to Figure 11, we outline the translation procedure for each SBD as

follows:

Step 1 Construct the reachability graph of the SBD and interpret it as an au-

tomaton by mapping each reachable configuration of the SBD into a state

and mapping hyper-edges to the alphabet of this automaton. In addition,

for a non-root SBD in the context of nested SBDs, the reachability graph

is extended to describe its cyclic activation and deactivation, since its

invokers may be activated multiple times.

Step 2 Construct automata to represent various constraints. In the current

section, there are two types of automata involved:

Condition automata Automata of this type handle the guard conditions

of hyper-edges. By interpreting value change of variables as events,

automata can be constructed where each state represents the evalu-

ation of one or multiple variables. As we only consider conditions

formulated based on equality propositions, hyper-edges can be fired

only in states where the variable evaluations satisfy the guard condi-

tion.

Process state automata Automata of this type organise the process state

cycles of processes.

Step 3 All automata constructed in the previous two steps are composed

through synchronous composition (Cassandras and Lafortune, 2008). To

36

2.2 Translating SBDs into automata

represent theclosed-loopbehaviourof the (sub-)system, apre-constructed

plantmodel is taken into the composition aswell. Finally, to represent the

high-priority of firing certain hyper-edge over value changes of variables,

we collect all events with higher priority as part of the translation result.

A typical situation is that for an SBD upon initialisation (i.e. the configur-

ation is InitialNodes), all enabled hyper-edges must be fired immediately

as soon as the preconditions of all successive processes evaluate true.

From the translation procedure above, translating one SBD results in one

single automaton combined with a set of high priority events. The technical

details are illustrated in the following subsections. At the end of the current

section, we will also clarify how the global behaviour can be represented by

the translation results, i.e. how are the automata synchronised considering

the high-priority events. Note that for an automaton constructed during

the translation of some SBD 𝑆 ∈ SBDP, we persist to utilise the subscript
(⋅)𝑆 if multiple SBDs are involved. The superscript (⋅)GL is utilised in similar

situationswhere uniform type of elements resulting from each individual SBD

translation need to be collected.

2.2.1 Reachability automaton

To represent the dynamics of a Petri-net, its reachability graph is commonly

utilised which is a directed graph where each vertex denotes one reachable

token configuration and each directed edge is associated with one or several

Petri-net transitions. Analogously, we represent the individual update of

an SBD as defined in (23) and (26) by constructing a reachability graph and

interpret it as an automaton. Such an automaton 𝐺REACH is a reachability

automaton with its alphabet ΣREACH. For the drill station example, both

reachability automata resulting from SBDs 𝑆 and 𝑇 are depicted in Figure 12.

To clarify ΣREACH, we utilise the event set ΣHEs in which each event 𝜎ℎ ∈ ΣHEs
is bijectively mapped to a hyper-edge ℎ ∈ HEs, i.e.

ΣHEs = {𝜎ℎ | ℎ ∈ HEs}. (42)

Clearly, this event set is identical to the alphabet of the reachability automaton

of a root SBD, e.g. for 𝐺REACH,𝑆 in Figure 12, we have

ΣREACH,𝑆 ∶= ΣHEs,𝑆 . (43)

In addition, from the SBD initialisation as defined in (31), the initial state of

𝐺REACH,𝑆 corresponds to the configuration InitialNodes𝑆. On the other hand,

for any non-root SBD, the alphabet of its reachability automaton shall be

37

2 Sequential behaviour diagram

[10]

HE[S[10]T[11]]

[11]

HE[S[11]]

[]

[]

[0]

HE[S[0]T[1]]

[1]

[2, 4] [3, 4]

HE[S[1]C[1003>2]T[2, 4]] HE[S[1]C[1003>3]T[3, 4]]

HE[S[2, 4]] HE[S[3, 4]]

B11

Figure 12: Reachability automata of the drill station example: 𝐺REACH,𝑆 for 𝑆 (left) and

𝐺REACH,𝑇 for 𝑇 (right)

extended. From (34), an invoker being sent to the process state busy implies

that the invoked SBD gets tokens in its initial nodes. As for the non-root SBD

𝑇, its corresponding alphabet is given by

ΣREACH,𝑇 ∶= ΣHEs,𝑇 ∪̇ ΣINV,𝑇 (44)

where

ΣINV,𝑇 ∶= {B𝑛 | 𝑛 ∈ ProcessesGL ∧ invoke(𝑛) = 𝑇 }. (45)

At the current stage, we explain the event set ΣINV,𝑇 as such that by executing

any B𝑛 ∈ ΣINV,𝑇, the process state of 𝑛 ∈ ProcessesGL (which invokes 𝑇) is
turned to busy. In fact, events in the formof B𝑛 are referred to as “busy events”

which will be discussed in detail in the following subsection. For the current

example, we have ΣINV,𝑇 = {B11}. In the subsequent subsections, we shall

see that the event B11 will appear in the translation result of 𝑆 as well. This

construction represents the hierarchical structure in amodular fashion, which

is similar to the usage of interface in (Leduc, 2002a). Furthermore, as (31)

suggests, the initial state of 𝐺REACH,𝑇 corresponds to its empty configuration

and for each B𝑛 ∈ ΣINV,𝑇, a transition is constructed from the empty con-

figuration to the configuration IntialNodes𝑇. Finally, from the perspective of

automata theory, we point out that state names are only cosmetically illus-

trated in figures as they do not contribute to the formal language generated

by the automaton.

2.2.2 Constraint automata

We now construct automata which guard the transitions in a reachability

automaton, namely, condition automata and process state automata.

38

2.2 Translating SBDs into automata

2.2.2.1 Condition automata

Recall fromDefinition 2.1.4 thatahyper-edgecanbefiredonly if its correspond-

ing guard condition (38) evaluates true. Since we only consider conditions
formulated by equality propositions resulting from variable evaluations, for

any condition 𝑐 ∈ Conditions, an automaton 𝐺𝑐 is constructed based on com-

posing variable automata 𝐺𝑣 for each 𝑣 ∈ Variables involved in 𝑐. Basically,
the state set of 𝐺𝑣 is set up as such that each state is bijectively mapped to a

value 𝑙 ∈ range(𝑣), from which we define the alphabet of each 𝐺𝑣 as

Σ𝑣 ∶= {𝜎𝑣,𝑙 | 𝑙 ∈ range(𝑣)} (46)

where each event 𝜎𝑣,𝑙 ∈ Σ𝑣 is interpreted as “the value of variable 𝑣 has

changed to 𝑙”. For convenience, we utilise the notation

ΣVAR ∶= ∪𝑣∈VariablesΣ𝑣 (47)

as well to denote all variable events of an SBD. Finally, one or several values
can optionally be picked from range(𝑣) to denote possible initial values of
𝑣 in order to restrict the set of initial states. Otherwise, all states of 𝐺𝑣 are

considered initial.

We show an example 𝐺light for a variable light with three possible values

range(light) = {off, blink, on} and initial value off in Figure 13. To match

the style of hyper-edge names, we symbolically represent each event in Σ𝑣 for

the variable 𝑣 by
𝜎𝑣,𝑙 ≡ VE[𝑣, 𝑙] (48)

Typically, each valuemay be changed to anyothervalue freely, whichmay seem

to be overly permissive in some contexts. Consider briefly another situation

where a variable depth has three values range(depth) = {0cm, 1cm, 2cm}. This
can e.g. be utilised to denote the drilling depth for the drill station example.

Clearly, from 0cm, the state 2cm shall not be reachable without first reach-

ing 1cm. Nevertheless, such kind of restrictions can always be described in

properly constructed plant models.

Let ℎ ∈ HEs be some hyper-edge. In order to construct 𝐺𝑐ℎ
for the guard

condition 𝑐ℎ ∈ Conditions of ℎ, the synchronous composition of all 𝐺𝑣 where

𝑣 ∈ Variables is involved in 𝑐 is first to take. Each state in the resulting

automaton indicates a possible evaluation of all involved variables. On this

basis, self-loops labelled by 𝜎ℎ ∈ ΣREACH can be appended in states of this

automatonwhere theguard condition 𝑐ℎ of ℎ ∈ HEs evaluates true. Finally, for
the considered SBD, an automaton𝐺COND which guards all hyper-edges of the

39

2 Sequential behaviour diagram

VE[lig
ht, o

n]
on

off blink
VE[light, off]

VE[lig
ht, o

ff]

VE[light, blink]

VE[light, on]
VE[light, blink]

VE[light, on]

VE[light, off] VE[light, blink]

Figure 13: Automaton tracking a variable light with range {off, blink, on}

current SBD can be constructed by computing the synchronous composition

of all 𝐺𝑐ℎ
for each ℎ ∈ HEs.

Remark 2.2.1. Since the guard condition defined in (38) is in conjunctive form,

we could normally separately construct automata for precondition, postcondi-

tion, etc., which are then composed via synchronous composition. Moreover,

if Conditions only recognises conjunctions of equality propositions, condition
automata can be constructed straightforward on a per-variable basis without

needing an explicitly construction of 𝐺𝑐. This is achieved by directly construct-

ing 𝐺𝑣 for each 𝑣 ∈ Variables and append a self-loop labelled by 𝜎ℎ ∈ ΣREACH
in each specific state of 𝐺𝑣 whenever

� 𝑣 is involved in the guard condition of ℎ and

� the value corresponding to this state matches the equality proposition

utilised in ℎ.

On this basis, 𝐺COND can be computed by the synchronous composition of all

such “self-loop augmented” 𝐺𝑣, since 𝐺COND overall describes the conjunction

of a collection of equality propositions. Note that special care should be taken

for branch conditions if this pure conjunctive form of conditions is adopted,

especially when utilising the keyword else for deterministic successor choice. If

one of the branch condition is a conjunction of at least two equality propos-

itions, its complement is generally a disjunction, which cannot be implicitly

described by synchronous composition. In such cases, we shall separately

construct a condition automaton 𝐺𝑐 for the branch choice with else condition,
which is again composed into 𝐺COND.

As for the drill station example, there are globally three involved variables

for various conditions, i.e. Variables𝑆 = {button} and Variables𝑇 = {position,
wptype}. Their respective value ranges and initial values are listed in Table

40

2.2 Translating SBDs into automata

HE[S[10]T[11]]

HE[S[11]]

rel.

HE[S[0]T[1]]

HE[S[1]C[1003>2]T[2, 4]]

HE[S[1]C[1003>3]T[3, 4]]
HE[S[2, 4]] HE[S[3, 4]]

HE[S[10]T[11]]

pres.
press

release

press
release

(a)

HE[S[11]]

west

HE[S[0]T[1]]
HE[S[1]C[1003>2]T[2, 4]]
HE[S[1]C[1003>3]T[3, 4]]

HE[S[2, 4]]

HE[S[3, 4]]

HE[S[10]T[11]]

south
goS

goW

goW
goS

(b)

HE[S[11]]

a

HE[S[1]C[1003>2]T[2, 4]] HE[S[1]C[1003>3]T[3, 4]]

HE[S[2, 4]]

HE[S[3, 4]]

HE[S[10]T[11]]

b
isB

isA

isBisA

(c)

Figure 14: Variable automata for variables button (a), position (b) and wptype (c)

1. With Remark 2.2.1, three variable automata 𝐺button, 𝐺position and 𝐺wptype
are constructed with correspondingly augmented self-loops of hyper-edge

events. On this basis, 𝐺COND,𝑆 is identical to 𝐺button, while 𝐺COND,𝑇 can

be constructed by computing the synchronous composition of 𝐺position and

𝐺wptype.

2.2.2.2 Process state automata

In this paragraph, process state automata are constructed in order to represent

the process state cycles of processes as defined in (24) and (25). Basically, we

utilise ΣPROC to denote the set of events which change the process state of a

process, i.e.

ΣB ∶= {B𝑛 | 𝑛 ∈ Processes}; (49)

Table 1: Variables involved in the drill station example with their corresponding values (initial

values are underlined); push ≡ VE[button, pushed], release ≡ VE[button, released], goW ≡
VE[position, west], goS ≡ VE[position, south], isA ≡ VE[wptype, a] and isB ≡ VE[wptype, b].

variable values events

button {pushed, released} {push, release}
position {south, west} {goW, goS}
wptype {a, b} {isA, isB}

41

2 Sequential behaviour diagram

ΣD ∶= {D𝑛 | 𝑛 ∈ Processes}; (50)

ΣI ∶= {I𝑛 | 𝑛 ∈ Places}; (51)

ΣPROC ∶= ΣB ∪ ΣD ∪ ΣI (52)

where each B𝑛 ∈ ΣB, D𝑛 ∈ ΣD or I𝑛 ∈ ΣI changes the process state of process

𝑛 ∈ Processes to busy, done or idle, respectively. For convenience, we associate
each initial nodewith an idle event to indicate that the token has left the node.

Besides, we recall that firing an enabled hyper-edge causes a series of process

state changes of its source and target places. To acknowledge that all process

state changes caused by firing some hyper-edge are completed, an additional

event ack𝑆 is introduced for each SBD 𝑆 ∈ SBDP which is often paired with

𝜎ℎ ∈ ΣHEs in process state automata.

For each individual SBD 𝑆 ∈ SBDP, we construct one process automaton

which is the synchronous composition of five types of automata. For con-

venience, we utilise regular expressions7 to represent each automaton to be

constructed due to their overall cyclic structure. We shall point out that, to

save computational effort, we do not explicitly handle done event D𝑛 ∈ ΣD
if 𝑛 is not a invoker, since from (25), such D𝑛 may spontaneously happen

between an B𝑛 ∈ ΣB and I𝑛 ∈ ΣI without any constraints. Nevertheless, we

point out in advance that in Section 2.3.1, we may flexibly assign the done

event to any process depending on modelling requirements.

(PA1) For each process 𝑛 ∈ Processes, we represent the process state cycle by
generating

(B𝑛 ⋅ D𝑛 ⋅ I𝑛)∗ (53)

if 𝑛 is an invoker or

(B𝑛 ⋅ I𝑛)∗ (54)

if 𝑛 is not a invoker, respectively. Note that the generated sequence always

begins with a busy event B𝑛 ∈ ΣB since all processes are initially in the

process state idle, as defined in (32). Besides, by considering each initial

node as a special type of empty process without predecessors, we generate

I𝑛 (55)

7 Automata in the current paragraph are represented by regular expressionswhere sums+ and

products ⋅ stand for expression union and concatenation, respectively. A superscript asterisk

(⋅)∗ denotes the Kleene-closure of a language. The terminology of “by generating some

regular expression” is interpreted as such that the generated language of the automaton

to construct matches the prefix closure of the given regular expression (Cassandras and

Lafortune, 2008).

42

2.2 Translating SBDs into automata

for each 𝑛 ∈ InitialNodes if 𝑆 is a root SBD, since once a token has left 𝑛,
𝑛 can never hold a token again; in contrary, if 𝑆 is not a root SBD,

(ΣINV,𝑆 ⋅ I𝑛)∗ (56)

is generated for 𝑛, since 𝑆 can repeatedly be invoked. By referring to the

definition of synchronous composition, we observe that for an invoker

process𝑛, anautomatongenerating (53) and𝐺REACH,𝑇 forany invoke(𝑛) =
𝑇 are synchronised over the event B𝑛, which indeed represents (34).

(PA2) For each hyper-edge ℎ ∈ HEs, we represent the deactivation of source
places as well as the activation of target places by generating

((I𝑛1 + ⋯ + I𝑛𝑘 + B𝑚1 + ⋯ + B𝑚𝑘′ + ack𝑆⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
($)

)∗ ⋅ 𝜎ℎ

⋅ I𝑛1 ⋯ I𝑛𝑘 ⋅ B𝑚1 ⋯ B𝑚𝑘′⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
($$)

⋅ ack𝑆)∗ (57)

to denote that firing ℎ sends places {𝑛1, … , 𝑛𝑘} = Sources(ℎ) to the pro-
cess state idle and sends places {𝑚1, … , 𝑚𝑘′} = Targets(ℎ) to the process
state busy, respectively. Note that enabling the ($) part is necessary since
all places 𝑛1, … , 𝑛𝑘, 𝑚1, … , 𝑚𝑘′ in ($) can also be sources or targets of

hyper-edges other than ℎ. Besides, ack𝑆 can also be utilised to acknow-

ledge hyper-edges other than ℎ in HEs𝑆. Moreover, the order of events in

($$) of the above expression is in general inessential.

(PA3) For each process 𝑛 ∈ Processes, we restrict the execution of B𝑛 so that

it can only occur between a hyper-edge, of which 𝑛 is a target, and the

subsequent ack𝑆. Thus, we utilise

ΣTARGET
𝑛 ∶= {𝜎ℎ ∈ ΣHEs | 𝑛 ∈ Targets(ℎ)} (58)

to denote the set of hyper-edge events which place a token on 𝑛 and

generate
(ack∗

𝑆 ⋅ ΣTARGET
𝑛 ⋅ B𝑛∗ ⋅ ack𝑆)∗ (59)

for each 𝑛 ∈ Processes. Recall that initial nodes are not associated with
busy events. Similarly, we generate

(ack∗
𝑆 ⋅ ΣSOURCE

𝑛 ⋅ I𝑛∗ ⋅ ack𝑆)∗ (60)

for each 𝑛 ∈ Places where

ΣSOURCE
𝑛 ∶= {𝜎ℎ ∈ ΣHEs | 𝑛 ∈ Sources(ℎ)} (61)

43

2 Sequential behaviour diagram

denotes the set of hyper-edge events which take a token from 𝑛.

(PA4) For each invoker process 𝑛 ∈ Processes, we generate

(D𝑛 ⋅ ΣSOURCE
𝑛 ⋅ I𝑛)∗ . (62)

to represent that firing a hyper-edge is possible only if all its source pro-

cesses are in the process state done.

(PA5) Sincefiring hyper-edges is instantaneous, it is clear thatvariableevents

shall not occur between a hyper-edge event and a subsequent ack𝑆. Thus,

we generate

((ΣVAR)∗ ⋅ ΣHEs ⋅ ack𝑆)∗ . (63)

for the current SBD 𝑆.

Note that the above construction only handles a single SBD 𝑆 ∈ SBDP, which
indicates that (P5) only addresses local variable events. For an SBD project

with multiple SBDs, an overall version of (P5) shall be generated as

((ΣGL
VAR)∗ ⋅ ΣGL

HEs ⋅ ΣGL
ack)∗ . (64)

where ΣGL
ack ∶= ∪𝑆∈SBDP{ack𝑆} is the union of all hyper-edge acknowledge-

ments.

At this stage, we recall from (35) where we required that the done state tran-
sition of a invoker and finishing the invoked SBD are synchronised. To this

end, we first take the assumption that

∀𝑆 ∈ SBDP. invoked(𝑆) ≠ ∅ ⇒ |Terminals𝑆| = 1 , (65)

i.e. any non-root SBD has exactly one terminal node. In this situation, any

non-root SBD 𝑇 is finished if any event in

ΣFIN,𝑇 ∶= {𝜎ℎ ∈ ΣHEs,𝑇 | Targets(ℎ) = ∅} (66)

is executed. By recalling (35), it is the event set ΣFIN,𝑇 that sends the invokers

of 𝑇 to the process state done. Hence, we conveniently define a mapping fin as

fin(D𝑛) = {
{D𝑛} if invoke(𝑛) = ∅ ;
ΣFIN,invoke(𝑛) if invoke(𝑛) ≠ ∅

(67)

for all 𝑛 ∈ ProcessesGL and replace D𝑛 in (53) and (62) with fin(D𝑛). As for
the drill station example, the only explicit done event is D11 (since only the

44

2.2 Translating SBDs into automata

process with ID = 11 is an invoker), which should be replaced by fin(D11) =
{ HE[S[2, 4]], HE[S[3, 4]] }. At this stage, it is worth mentioning that one con-

sequence of the replacement through fin is that done events will totally dis-

appear in the translation result. Nevertheless, we shall see below in Section

2.3.1 that we could optionally append done events to atomic processes as well.

Remark 2.2.2. Depending on the verification purpose, it is often desired to only

preserve the (replaced) done events fin(ΣD) (that is the union of fin(D𝑛) of all
processes) in the model while neglecting ΣI, ΣB as well as ack𝑆. In such cases,

the tedious construction of process state automata as proposed in (PA1)–(PA5)

as well as (64) can be circumvented, since the reachability automaton 𝐺REACH
already implicitly encodes whether a process is currently in the process state

idle or not. In this regard, there are two questions to answer:

How to synchronise invocation We recall that a non-root SBD is activated

through the synchronisation via busy events of its invokers. For each non-

root SBD 𝑇, if we remove all busy events in the translation result, we shall

simply replace ΣINV,𝑇 as defined in (45) by

ΣEXT
INV,𝑇 ∶= {𝜎ℎ ∈ ΣGL

HEs | ∃𝑛 ∈ Targets(ℎ). invoke(ℎ) = 𝑇 }, (68)

i.e. the set of hyper-edge events, by executing which an invoker of 𝑇 receives

a token.

How to distinguish busy and done states To answer this question, we only

need to introduce a binary flag for each invoker process, which evalu-

ates true if and only if this process in currently in the process state done.
Upon receiving a token, the flag is initially false, i.e. the process is in the
process state busy, which then becomes true by executing any event in

fin(D𝑛). On this basis, instead of composing the process state automaton

with the reachability automaton later on, we can more efficiently extend

the reachability automaton by enabling fin(D𝑛) for each process 𝑛 which is

currently in the process state busy, i.e. those in current configuration but

with the additional flag evaluated false. Correspondingly, executing any
event in fin(D𝑛) changes the flag to true. This kind of state space reduction
is also utilised in other semantics formalisation scenarios; see e.g. (Daw

and Cleaveland, 2015a) where the author computed the so-called “macro

steps” of ADs by abstracting the detailed token propagation steps.

In summary, if the construction of process state automata is undesired, minor

modifications in the reachability automaton are required. The resulting extend-

ed reachability automata 𝐺EXT
REACH,𝑆 and 𝐺EXT

REACH,𝑇 of SBDs 𝑆 and 𝑇 for the drill

station example are illustrated in Figure 15.

45

2 Sequential behaviour diagram

[10]

HE[S[10]T[11]]

[11]

HE[S[11]]

[]

[11D]

[]

[0]

HE[S[0]T[1]]

[1]

[2, 4] [3, 4]

HE[S[1]C[1003>3]T[3, 4]]

HE[S[2, 4]] HE[S[3, 4]]

HE[S[10]T[11]]

HE[S[1]C[1003>2]T[2, 4]]
HE[S[2, 4]]
HE[S[3, 4]]

Figure 15: Extended reachability automata for SBDs 𝑆 and 𝑇 in the drill station example

2.2.3 Result automaton and high-priority events

All automata constructed in the previous two steps (aswell as a plantmodelled

by automata) are composed through synchronous composition to form the

translation result 𝐺SBD. At this stage, we again consider Definition 2.1.5. As

soon as a hyper-edge becomes enabled (and if deterministic branch choices

are guaranteed), it must be fired instantaneously. Combining the explanation

of variable value changes in the time model as introduced in Section 2.1.3 and

Figure 10, we conclude that at some state in 𝐺SBD, if a hyper-edge ℎ ∈ HEs is
enabled, its corresponding event 𝜎ℎ ∈ ΣHEs shall take priority over all variable

events ΣVAR. However, concluding that a hyper-edge is enabled requires that

all its sourceprocessesare in theprocess statedone, whichcurrentlycanonlybe
implied if the considered process is an invoker, i.e. its completion is implied by

the completion of the SBD it invokes. Note that although process completion

implies that its postcondition evaluates true, the converse generally does not
hold. Thus, we collect all hyper-edge events 𝜎ℎ ∈ ΣHEs so that

∀𝑛 ∈ Sources(ℎ). 𝑛 ∈ InitialNodes ∨ (𝑛 ∈ Processes ∧ invoke(𝑛) ≠ ∅) (69)

holds. Such events are related to hyper-edges whose enabledness can be

concluded on a per-state basis and thus are with higher priority. As for the

drill station example, we shall collect { HE[S[10]T[11]], HE[S[11]] } from SBD

𝑆 and { HE[S[0]T[1]] } from SBD 𝑇 as high-priority events.

46

2.2 Translating SBDs into automata

goW goS

isB
isA

goW

goSisB
isA

goW
goS

isB

isA

goW
goSisB

isA

goW
goW

isB

isA

HE1

HE1

HE1

HE1

goW goS

isB

isA

goW
goSisB

isA

HE2

HE2

HE3

. . .

HE4

. . .

. . .

. . .

. . .

. . .

Figure 16: Translation result after local shaping (self-loops of ΣVAR are omitted); HE1 =
HE[S[10]T[11]], HE2 = HE[S[0]T[1]], HE3 = HE[S[1]C[1003>2]T[2, 4]], HE4 =
HE[S[1]C[1003>3]T[3, 4]]; at both states where HE2 is active (blue), all active variable events

are disabled

2.2.4 Representing the global behaviour

The translation procedure introduced hitherto represents each single SBD

as one automaton with a set of high priority events, as depicted in Figure 11.

For the entire SBD project, the monolithic global behaviour complies with a

single automaton which can be constructed by

� translating each SBD following the procedure hitherto and constructing

their synchronous composition;

� shaping spurious transitions according to the high priority events, i.e. if

any high-priority event is executable in some state, all outgoing tran-

sitions labelled by a non-high-priority event must be removed.

The purpose of (ii) is to remove all transitions labelled by variable events

whenever a high priority event collected in Section 2.2.3 is active. This is also

referred to as preemption which represents the fact that if a hyper-edge is

47

2 Sequential behaviour diagram

enabled, it must be fired immediately before any variable changes its value,

i.e. enabled hyper-edges preempt variable events.

Remark 2.2.3. Without influencing the global behaviour, shaping spurious

transitions can in fact already partially be applied in the local construction

phase. This simplifies each module by reducing its transition count, which

possibly reduces its state space since some states may become unreachable.

Technically, if a high-priority event is private, i.e. does not appear in other

synchronised automata, we can shape the local behaviour directly since the

high-priority event will never be disabled by other modules; see Lemma 3.2.2 in

Chapter 3 for a more detailed explanation. We show a fragment of the shaped

translation result of SBD 𝑇 in the drill station example in Figure 16, where the

only high priority event HE[S[0]T[1]] is clearly private. Note that by following
Remark 2.2.2, we omit representing ΣB and ΣI explicitly. Similarly, both high

priority events { HE[S[10]T[11]], HE[S[11]] } from SBD 𝑆 are private as well,

thus can locally preempt other events.

2.3 Extended semantics

As shown in the previous two sections, SBD semantics is generally represented

by firing enabled hyper-edges in an extended Petri-net with guard conditions

and process state cycles. Technically, the process state cycle is a means of

abstraction of process operations. However, this is in some cases a too weak

model for verification. We consider the following practical scenario as shown

in Figure 17: suppose the temperature of the liquid in a container is to be

controlled. At some stage direct before processHeat is activated, the container
is cooled downnaturally. When hitting thecritical temperature 50∘C (as stated

in the precondition in Figure 17), the process Heat is activated which heats

the container with heating wires. When reaching temperature 100∘C, process

Heat should be left so that the correctly heated liquid can be processed further.

temp = 50°C

Heat

temp = 100°C

...

...

Figure 17: A temperature controlling process

48

2.3 Extended semantics

We consider the following three questions which cannot be answered within

the current SBD semantics:

Question 1: When does the process terminate? If only the information from

postcondition is available, the process Heat is allowed to heat the liquid
to any extremely high temperature (which shall not be allowed) and

eventually cool it down to around 100∘C. This ill-formed sequence can

even be repeated multiple times, as we only need to guarantee that the

temperature is 100∘C when the process is terminated.

Question 2: Which variable(s) can(not) be manipulated? Naturally, a faith-

fully modelled plant shall represent the logic that the temperature of the

liquid can increase only if it is heated. Thus, heating itself may be related

to e.g. a boolean variable, by setting which to 1 the container is heated.
If no information about which process can manipulate which variable

(i.e. write values to a variable) is available, any process may freely heat

the liquid.

Question 3: When should the control come into effect? Although theprocess

Heat is intended to heat the liquid at 50∘C, there is no informationdescrib-

ing when the container will actually be heated. Thus, the temperature of

the liquid can still decrease when the process Heat is in the process state

busy, since starting the process Heat does not necessarily imply that the

liquid is immediately heated.

Without being able to answer the above three questions, the translation result

may conceivably allow spurious closed-loop behaviour and produce overly

pessimistic verification result. To answer the questions, we propose several

optional annotations for each process in the following respective subsections.

Note that the extensions do not change the overall translation procedure as

depicted in Figure 11. Instead, only the individual steps are modified.

2.3.1 Termination condition

Recall from (53) that a process 𝑛 ∈ Processes (with an explicit done event D𝑛)
cycles its process states by repeatedly executing B𝑛 ⋅ D𝑛 ⋅ I𝑛. As stated in (57),

the busy eventB𝑛 and the idle event I𝑛 are triggered by firing hyper-edges and

thus are guarded by guard conditions. This inspires us to answerQuestion 1 by

optionally assigning a termination condition to a non-invoker process. Similar

to invoker processes, each non-invoker process 𝑛 with specified termination

condition is equipped with an explicit done event D𝑛, whose execution is

49

2 Sequential behaviour diagram

guarded by the termination condition. The assignment of termination condi-

tions is represented by the map

termcond ∶ Processes → Conditions ∪̇ {∅}. (70)

where ∅ ∉ Conditions is dedicated to representing unspecified condition. Thus,
we clearly have

∀𝑛 ∈ Processes. invoke(𝑛) ∈ SBDP ⇒ termcond(𝑛) = ∅ , (71)

since the termination of a invoker process is implied by finishing the SBD it

invokes. For any busy process 𝑛 ∈ Processes with termcond(𝑛) ≠ ∅ (i.e. the

termination condition of 𝑛 is specified), its process state must immediately

be switched to done whenever termcond(𝑛) evaluates true. This implies a

refinement of the individual update of an SBD as stated in Definition 2.1.5, i.e.

we shall append

ProcessState𝑛(𝜄 + 1) = done (72)

for each 𝑛 ∈ Processes with termcond(𝑛) ∈ Conditions if

(i) ProcessState𝑛(𝜄) = busy;

(ii) termcond(𝑛) evaluates true at time 𝜄.

Remark 2.3.1. Readers shall not confuse unspecified conditions with trivial

conditions. A trivial condition is a condition that evaluates true at any time.

However, as introduced in Definition 2.1.10, unspecified condition cannot be

assigned to preconditions, postconditions, branch conditions and initial condi-

tions.

Recall from Section 2.1.4 that the termination of a process implies its postcon-

dition. Thus, the termination condition of a process, if specified, must imply

its postcondition. In this context, if a hyper-edge has only one source pro-

cess, no branches involved and preconditions of all its target places evaluate

true, the termination condition of the source process triggers the hyper-edge

immediately, i.e. the tokens are instantaneously propagated before the value

of any variable changes. Contrarily, if such a hyper-edge is delayed due to

e.g. invalid precondition of some target processes, the process may remain

in the process state done for a positive duration of physical time. In this time

period, the postcondition may be invalidated due to e.g. the operation of

other running processes. This circumstance will be addressed in detail in the

following Section 2.3.2 where we discuss the write access to variables.

50

2.3 Extended semantics

By reviewing the translation procedure introduced in Section 2.2, we imple-

ment the termination condition by modifying and extending the steps in

Sections 2.2.2 and 2.2.3:

Section 2.2.2 For each process 𝑛 ∈ Processes with termcond(𝑛) ∈ Conditions
−{true} (i.e. 𝑛 has specified non-trivial termination condition), an expli-

cit done event D𝑛 is equipped to 𝑛 which can be seen as a generalised

hyper-edgeevent. In this context,D𝑛 is enabled only if termcond(𝑛) evalu-
ates true. Recall that the condition automaton 𝐺COND was originally

composed by a set of automata associated with guard conditions of hyper-

edges. This set is thus augmented by automata associated with termina-

tion conditionsof all involved processes. Thus, a brief adaption is required

for (AP1) in Section 2.2.2 as well so that for each process 𝑛 ∈ Processes
with termcond(𝑛) ∈ Conditions − {true}, we generate (B𝑛 ⋅ D𝑛 ⋅ I𝑛)∗ as

well.

Section 2.2.3 Due to the introduction of termination condition, more hyper-

edges can be determined as enabled from a per-state basis. Technically,

all hyper-edge events 𝜎ℎ ∈ ΣHEs where

∀𝑛 ∈ Sources(ℎ). 𝑛 ∈ InitialNodes ∨ (𝑛 ∈ Processes ∧ invoke(𝑛) ≠ ∅)
∨ termcond(𝑛) ∈ Conditions (73)

are considered as high priority events, i.e. we extend (69) by additionally

allowing source places to have specified termination conditions. In add-

ition, for each process 𝑛 ∈ Processes so that termcond(𝑛) ∈ Conditions −
{true}, its corresponding done event D𝑛 ∈ ΣD is with high priority as well.

Since more processes are equipped with explicit done events, it is worth men-

tioning that the construction of extended reachability automata as suggested

in Remark 2.2.2 is influenced as well. As for the drill station example, we

assume that processes with ID = 2 and 4 are specified with non-trivial termin-

ation conditions. The resulting extended reachability graph of the SBD 𝑇 is

depicted in Figure 18.

2.3.2 Writable and controlled variables

As pointed out by the example in Figure 17, some variables of an SBD may be

associated with e.g. actuator manipulation. Note that generally, plant models

do not restrict the write access to such variables since the plant model shall

allow any kind of control instructions from the controller. Thus, to answer

51

2 Sequential behaviour diagram

[]

[0]

HE[S[0]T[1]]

[1]

[2, 4] [3, 4]

HE[S[1]C[1003>2]T[2, 4]] HE[S[1]C[1003>3]T[3, 4]]

HE[S[2, 4]] HE[S[3, 4]]

HE[S[10]T[11]]

[2D, 4D]

[2D, 4] [2, 4D]

D2 D4

[3, 4D]

D4

D4 D2

Figure 18: Extended reachability automaton for SBD 𝑇 with specified termination conditions

Question 2, the write access to a set of writable variables needs to be restricted

on a per-process and per-SBD basis.

Technically, writable variables are referred to as variables that can actively be

manipulated by processes and define globally for an SBD project two disjoint

sets

VariablesGL = WVariablesGL ∪̇ UVariablesGL (74)

whereWVariables stands forwritable variables andUVariables stands forunwrit-
able variables, respectively. Typically, an unwritable variable describes the

status of some sensor or some external control agent. On the other hand,

a writable variable can conveniently be utilised to denote actuator status,

internal operations or sometimes the consequence of some complicated con-

trol sequences.

For an SBD 𝑆 ∈ SBDP, owning some writable variable 𝑣 ∈ VariablesW,𝑆 does

not imply that there exists some process 𝑛 ∈ Processes𝑆 having write access

to 𝑣, since 𝑣 may be manipulated only in some other SBD 𝑇 ≠ 𝑆 while 𝑆 only

passively reads 𝑣 to e.g. form guard conditions. This inspires us to define for

each 𝑆 ∈ SBDs and 𝑛 ∈ Processes𝑆 the set of controlled variables

CVariables𝑆(𝑛) ⊆ {(𝑣, 𝑙) | 𝑣 ∈ WVariables𝑆, 𝑙 ∈ range(𝑣)}, (75)

52

2.3 Extended semantics

where each (𝑣, 𝑙) ∈ CVariables𝑆 indicates that process 𝑛 has the access to set

the value of 𝑣 to 𝑙. In addition, we write

CVariables𝑆 ∶= ∪𝑛∈Processes𝑆
CVariables𝑆(𝑛) (76)

todenote the setof all controlled variablesof the SBD𝑆. It isworthmentioning

that CVariables𝑆(𝑛) = ∅ implies that the process 𝑛 does not have write access

to any writable variables. Moreover, for nested SBDs, we require that the

controlled variables of a invoker process is identical to that of the SBD it

invokes, i.e.

∀𝑆, 𝑇 ∈ SBDP, 𝑛 ∈ Processes𝑆. invoke(𝑛) = 𝑇
→ CVariables𝑆(𝑛) = CVariables𝑇 . (77)

We are now in the position to represent controlled variables in automata.

Naively, we could interpret each controlled variable (𝑣, 𝑙) bijectively as one
variable event 𝜎𝑣,𝑙 ∈ ΣVAR. However, apart from to which value a variable is

set, it is also important to determine which process has this write access when

two parallel processes share some controlled variables. The reason for this

assertion is that shared events are synchronously executed in synchronous

composition. This indicates that for two parallel (non-invoker) processes

𝑛, 𝑛′ ∈ ProcessesGL sharing the write access to some controlled variable (𝑣, 𝑙),
the write access of 𝑛 to (𝑣, 𝑙) may be disallowed by 𝑛′ (e.g. since 𝑛′ is currently

not active). Thus, we shall, instead of (𝑣, 𝑙), map (𝑣, 𝑙, 𝑛) into an event 𝜎(𝑣,𝑙,𝑛)
where 𝑛 ∈ Processes and (𝑣, 𝑙) ∈ CVariables(𝑛). This motivates us to modify

the variable event set as ΣVAR ∶= ∪𝑣∈VariablesΣ𝑣, i.e. the alphabet Σ𝑣 of an

variable automaton 𝐺𝑣 of an variable 𝑣 ∈ Variables depends on its writability:

Σ𝑣 ∶=
⎧{
⎨{⎩

{𝜎𝑣,𝑙 | 𝑙 ∈ range(𝑣)} if 𝑣 ∈ UVariables;
{𝜎𝑣,𝑙,𝑛 | 𝑙 ∈ range(𝑣), invoke(𝑛) = ∅,

(𝑣, 𝑙) ∈ CVariables(𝑛)} if 𝑣 ∈ WVariables.
(78)

Note that for an invoker process 𝑛′, its write access to some controlled vari-

able (𝑣, 𝑙) is inherited from the SBD it invokes. Hence, no variable event

𝜎𝑣,𝑙,𝑛′ should be introduced in this situation. Consider the variable auto-

maton in Figure 13 again. Suppose the write access to (light, on) is shared
by two non-invoker processes 1 and 2, while the write accesses to (light, off)

53

2 Sequential behaviour diagram

and (light, blink) are exclusively owned by process 1. The corresponding vari-
able automaton 𝐺light should be modified as depicted in Figure 19, where we

symbolically name the events with

𝜎𝑣,𝑙,𝑛 ≡ VE[𝑣, 𝑙, 𝑛]. (79)

on

off blink
VE[light, off, 1]

VE[light, blink, 1]

VE[light, on, 2]

VE[light, off, 1] VE[light, blink, 1]

VE[light, on, 1]

VE[lig
ht, o

n,
1]

VE[lig
ht, o

n,
2]

VE[lig
ht, o

ff,
1] VE[light, on, 1]

VE[light, on, 2]

VE[light, blink, 1]

Figure 19: Variable automaton extended for shared write access

We now embed writable and controlled variables into our translation proced-

ure. Technically, additional self-loops are introduced on the reachability au-

tomaton to activate/deactivate corresponding events. Note that variable ma-

nipulation shall be considered as a part of the process operation. Thus, the

write access to controlled variables of a process should only be allowed if it

is in the process state busy. This restriction should be specifically handled

if a process has an explicit done state, i.e. the process is a invoker or is spe-
cified with a non-trivial termination condition. To this end, it is convenient to

utilise the extended reachability automaton as suggested in Remark 2.2.2.

In each state of the extended reachability automaton of 𝑆 ∈ SBDP, we
determine on a per-state basis the set of processes P ⊆ Processes𝑆 that

are currently busy (or possibly busy if it is a non-invoker process without

specified termination condition). Afterwards, for each 𝑛′ ∈ P, we activate
self-loops of events 𝜎𝑣,𝑙,𝑛 ∈ ΣVAR where 𝑛 ∈ ProcessesGL with invoke(𝑛) = ∅
if (𝑣, 𝑙) ∈ CVariables(𝑛′) and either of the two following conditions hold:

(WV1) 𝑛 = 𝑛′ , or

(WV2) 𝑛 ≠ 𝑛′ and there exists some invocation sequence 𝑆0𝑆1 ⋯ 𝑆𝑘 so that

𝑛 ∈ Processes𝑆𝑘
, 𝑛′ ∈ Processes𝑆0

and invoke(𝑛′) = 𝑆1.

54

2.3 Extended semantics

In addition,

(WV3) self-loops of 𝜎𝑣,𝑙,𝑛 should be applied to the empty configuration state

in the extended reachability automaton of a non-root SBD 𝑆 ∈ SBDP.

Note that (WV3) is dedicated for such cases where there exists some process

𝑛″ ∈ ProcessesGL − invokedBy(𝑆) which accesses 𝑣 when 𝑆 is not activated.

Remark 2.3.2. To satisfy (77), it is possible that for some SBD 𝑆 ∈ SBDP,
there exists (𝑣, 𝑙) ∈ CVariables𝑆 so that 𝑣 does not contribute to any conditions
guarding the behaviour of 𝑆. The corresponding variable event(s) 𝜎𝑣,𝑙,𝑛 (where

(𝑣, 𝑙) ∈ CVariables(𝑛)) of such a controlled variable will then only appear as

self-loops in the translation result, since they will not be considered when

constructing condition automata.

Remark 2.3.3. For a non-root SBD 𝑇 ∈ SBDP, if CV ⊆ CVariables𝑇 is a set

of controlled variables that can be accessed only when 𝑇 is active (i.e. the

corresponding variable events can be executed if and only if some processes

in 𝑇 are active), we clearly do not need to handle self-loops w.r.t. (WV2) and

(WV3) in the extended reachability automaton of 𝑇.

We again consider the drill station example. Globally, we envisage that the

process GetObject performs some complicated control sequences, which

eventually rotate the robot arm to the south position. Thus, we globally

let WVariablesGL = {position}. Typically, as we may only wish to move the

robot arm in one direction, we let

CVariables𝑇(1) = {goS}; (80)

CVariables𝑇(2) = CVariables𝑇(3) = CVariables𝑇(4) = ∅, (81)

following which

CVariables𝑇 = CVariables𝑆(10) = CVariables𝑆 = {goS} (82)

can be figured out easily. For the extended reachability automaton of 𝑇 as

given in Figure 18, we append a self-loop of the event goS in the state [1]. Note
that from Remark 2.3.3, self-looping goS in the state [] can be omitted for 𝑇.
For 𝑆, we again follow Remark 2.3.3 in that we avoid self-looping goS in the

state [11] of the automaton depicted on the left side of Figure 15.

55

2 Sequential behaviour diagram

2.3.3 Immediate instructions

The access to writable variables generally constitutes control instructions

that a process potentially executes. Yet, as pointed out in Question 3, it is

sometimes undesired that these instructions are delayed arbitrarily when

a process becomes busy. To address this problem, we recall that a process

is started only if its precondition evaluates true. Thus, to answer Question
3, we optionally strengthen this semantic restriction so that some control

instructions of a process are executed before its precondition is invalidated.

Technically, for any process 𝑛 ∈ Processes, we optionally assign an integer

value, which is referred to the immediateness value, to its controlled variable

(𝑣, 𝑙) ∈ CVariables(𝑛) through the function

immediate(𝑣, 𝑙, 𝑛) ∈ ℕ ∪̇ {∅}. (83)

For immediate(𝑣, 𝑙, 𝑛) ∈ ℕ, the process 𝑛 should execute 𝜎𝑣,𝑙,𝑛 before

precond(𝑛) is invalidated. We also stipulate that if immediate(𝑣, 𝑙, 𝑛) <
immediate(𝑣′, 𝑙′, 𝑛), 𝜎𝑣,𝑙,𝑛 mustbeexecuted before𝜎𝑣′,𝑙′,𝑛. If immediate(𝑣, 𝑙, 𝑛)
= ∅, then no immediateness value is assigned to (𝑣, 𝑙) ∈ CVariables(𝑛). For
convenience, we assume that for each process, the immediateness value of a

controlled variable, if defined, is unique. This allows us to generate a unique

event sequence 𝑃𝑛 ∈ Σ∗
VAR which represents the instructions executed in a

desired order for each process 𝑛 ∈ Processes. Thus, as soon as 𝑛 is switched

to the process state busy, we shall not allow invalidating precond(𝑛) before
the execution of 𝑃𝑛 has been finished. This is realised by generating for each

process 𝑛 the regular expression

(Σ∗
prio ⋅ B𝑛 ⋅ 𝑃𝑛 ⋅ Σ∗

prio ⋅ I𝑛)∗ (84)

where Σprio ⊆ ΣVAR is defined by

Σprio ∶={𝜎𝑣,𝑙, 𝜎𝑣,𝑙,𝑛′ | 𝑣 is utilised in precond(𝑛)}
∪ {𝜎𝑣,𝑙,𝑛 | (𝑣, 𝑙) ∈ CVariables(𝑛)}. (85)

Clearly, if ΣB and ΣI are to omit as suggested in Remark 2.2.2, B𝑛 and I𝑛 in

(84) need to be substituted by ΣTARGET
𝑛 and ΣSOURCE

𝑛 , respectively.

Remark 2.3.4. Obviously, disallowing all variable events {𝜎𝑣,𝑙, 𝜎𝑣,𝑙,𝑛′ | 𝑣 is
utilised in precond(𝑛)} is not necessary for guaranteeing that precond(𝑛) is
not invalidated. Alternatively, one could substitute this term in (85) by

{𝜎𝑣,𝑙 | executing 𝜎𝑣,𝑙 invalidates precond(𝑛)}. (86)

56

2.4 A practical example

M1

M2

M1-1

M1-2

SF1 CB1 CB2 RB XS

SF2

PM

Figure 20: A production line example

However, the relative drawback of this alternative implementation is that if

precond(𝑛) contains e.g. disjunction of equality propositions, then whether

executing any 𝜎𝑣,𝑙 ∈ ΣVAR invalidates precond(𝑛) depends on the current

variable evaluation, which is rather cumbersome to figure out and renders the

construction through (84) invalid.

For the drill station example, consider the process with ID = 4 which is dedi-

cated to activating the ventilator when the drill is operating. Note that

without specifying immediate instructions, we may even tolerate such cases

in which the ventilator activation is delayed until drilling has already finished.

To disallow such cases to happen, we can refine the SBD by e.g. introdu-

cing new variables drill and ventilator with range(drill) = range(ventilator) =
{on, off} to indicate whether the drill or the ventilator is currently working,

respectively. Afterwards, setting drill = off as precond(4) and assigning

immediate(4, ventilator, on) = 1 (or any arbitrary natural number value) effect-

ively restricts the SBD behaviour so that the ventilator must be turned on

before the drill is turned on.

2.4 A practical example

So far, SBD semantics has been completely introduced. In the following, we

design the control sequences of a production line through an SBD project

with modular and hierarchical structure.

The production line is graphically depicted in Figure 20 which, as the plant,

consists of two stack feeders (SFs), two conveyor belts (CBs), one processing

machine (PM), one rotary table (RB) and one exit slide (XS). Besides, two

operation buttons (OPs) are dedicated for user operations which are not

57

2 Sequential behaviour diagram

represented in Figure 20. In addition, the intended usage of the plant is to

transfer workpieces from SF1 and SF2 to XS. For the route from SF1 to XS,

a workpiece is first transported via CB1 to CB2, where the workpiece must

be processed by PM. Afterwards, the processed workpiece is sent to XS via

RB. Note that RB can be oriented in either the west-east or the north-south

orientation through rotation, and sending workpiece from CB2 to XS requires
RB being in the west-east orientation. On the other hand, the route from SF2
to XS simply gathers a workpiece from SF2 to the west-east oriented RB and

sends the workpiece to XS. Since multiple physical components are involved

in the plant, it is desired to design the control programmewithin a modular

and hierarchical structure. As illustrated in Figure 20, the plant is divided

into two main modules M1 and M2, marked by green rectangles, where M1
further consists of two sub-modules M1 − 1 and M1 − 2, marked by blue

rectangles. Note that both SFs are considered as being externally controlled

and thus excluded from the SBD design.

We first list all involved variables in Table 2, including the plant components

they belong to (comp.), possible values, variable descriptions and writability.

Note that there are two “intern” variables P and M2_BUSY which belong

to neither physical component. Instead, they are only internally utilised to

organise the interaction between M1 and M2. Besides, we take the following
conventions for brevity:

� Each unwritable variable corresponds to a sensor signal, indicating

whether a specific location is occupied (by e.g. a workpiece). 0 means

that the sensor is currently free, while 1 means being occupied.

� Each non-intern writable variable corresponds to an actuator signal.

Value = 0 or 1 indicates that the corresponding actuator is idle or turned
on, respectively. For those denoting a belt motor (*_BM as in Table 2),

turning on the motor always drives the belt from west to east or from

north to south.

� Each variable has a unique initial value, which is underlined.

By utilising the variables given in Table 2, five SBDs 𝑆PROC, 𝑆TAKE, 𝑆SEND, 𝑆1
and 𝑆2 are constructed, which are depicted in Figures 21 and 22. For brevity,

we take the following conventions for the graphical illustrations of SBDs in

Figures 21 and 22.

� IDs of non-place nodes are hidden.

� All conditions are conjunction of equality propositions.

58

2.4 A practical example

Table 2: Variables list of the production line example

comp. variable values description wrt.

CB1 CB1_BM {0, 1} belt motor yes

CB1_WPS {0, 1} workpiece sensor no

CB2 CB2_BM {0, 1} belt motor yes

CB2_WPS {0, 1} workpiece sensor no

PM PM_PM {−1, 0, 1} positioning motor (1 = to south,

0 = stop, −1 = to north)
yes

PM_PS+ {0, 1} south position sensor no

PM_PS- {0 ,1} north position sensor no

PM_MOP {0 ,1} processing machine yes

PM_MRD {0, 1} ready to start processing machine no

OP OP1, OP2 {0, 1} operation button no

RB RB_BM {0, 1} belt motor yes

RB_WPS {0, 1} workpiece sensor no

RB_RM {−1, 0, 1} rotation motor (1 = clockwise,

0 = stop, −1 = counter-clockwise)
yes

RB_SCW {0, 1} orientation sensor,

north-south position
no

RB_SCCW {0, 1} orientation sensor,

west-east position
no

XS XS_WPS {0, 1} workpiece sensor no

intern P {0, 1} 1 =PM has finished processing,

0 = otherwise yes

M2_BUSY {0, 1} 1 =M2 busy transporting

workpiece, 0 = otherwise yes

� Foreach SBD, its associated plantmodel and initial conditionaredirectly

given at the top of each SBD. Note that since 𝑆1 and 𝑆2 are root SBDs,

their initial conditions are trivially true.
� A non-invoker process 𝑛 has the controlled variable (𝑣, 𝑙) if and only if

𝑣 ∶= 𝑙 appears in postcond(𝑛). For denoting equality propositions, “:=”
and “=” are semantically identical. Besides, all such controlled variables

are immediate instructionswhere the execution order complies with the

59

2 Sequential behaviour diagram

top-to-bottom order in the corresponding figure. Controlled variables

of an invoker process are never immediate instructions.

� For each non-invoker process 𝑛, we have postcond(𝑛) = termcond(𝑛).

PM_DriveOut

PM_PM:=1

PM_Stop

PM_PM:=0

PM_Operate

PM_MOP:=1

PM_PS+=1

PM_MRD=1

PM_DriveBack

PM_MOP:=0
PM_PM:=-1

PM_MRD=0

PM_Stop

PM_PM:=0

PM_PS-=1

SBD:SPROC

PLANT:G1-1

PM_MOP=0
PM_PM=0

ID: 1

ID: 2

ID: 3

ID: 4

ID: 5

ID: 0

(a)

CB1_On

CB1_BM:=1

CB2_WPS=1

CB1_Off

CB1_BM:=0

CB2_On

CB2_BM:=1

CB2_WPS=1

CB2_Off

CB2_BM:=0

CB1_BM=0
CB1_WPS=0
CB2_BM=0
CB2_WPS=0

SBD:STAKE

PLANT:G1-2

ID: 11

ID: 12

ID: 13

ID: 14

ID: 10

(b)

CB2_On

CB2_BM:=1

RB_WPS=1

CB2_Off

CB2_BM:=0

CB1_BM=0
CB1_WPS=0
CB2_BM=0
CB2_WPS=1

SBD:SSEND

PLANT:G1-2

ID: 21

ID: 22

ID: 20

(c)

Figure 21: SBDs of modules M1 − 1 (a) and M1 − 2 (b,c)

60

2.4 A practical example

TakeWP

OP1=1

OP2=0
M2_BUSY=0

SBD:S1

PLANT: G1

 :STAKE

ProcessWP
 :SPROC

Wait

P:=1

SendWP
 :SSEND

Wait

P:=0

ID: 101

ID: 102

ID: 103

ID: 104

ID: 105

ID: 100

(a)

RB_RM:=1
M2_BUSY:=1

RB_ToSF2

[P=1]

OP2=1

RB_RM:=0
RB_BM:=1

RB_TakeSF2

RB_SCW=1

RB_RM:=-1
RB_BM:=0

RB_ToPM

RB_WPS=1

RB_RM:=0

RB_Stop

RB_SCCW=1

M2_BUSY:=1

Wait

[ELSE]

SBD:S2
PLANT: G2

Wait

RB_BM:=1

RB_Send

XS_WPS=0

RB_BM:=0
M2_BUSY:=0

RB_Stop

XS_WPS=1

Wait

OP2=0

ID: 201
ID: 202

ID: 203

ID: 204

ID: 205

ID: 206

ID: 207

ID: 208

ID: 209

ID: 200

(b)

Figure 22: SBDs of modules M1 (a) and M2 (b)

The overall structure of the closed-loop behaviour is demonstrated in Figure

23. Each module constitutes a plant model which communicates with its

associated SBD(s). Among all modules, the module M1 − 2 is associated with

two SBDs 𝑆TAKE and 𝑆SEND, while each othermodel is associated with a single

SBD. In the following, we explain the detailed functionality of each module.

The corresponding plant models are given in Appendix A.

61

2 Sequential behaviour diagram

SPROC

M1-1 M1-2

S1

M2STAKE SSEND

S2

M1

Figure 23: Structure of the modularised closed-loop behaviour

ModuleM1-1

Being associated with the SBD 𝑆PROC, the module M1 − 1 is responsible for
workpiece processing. As shown in Figure 20, PM is initially located on the

north side of CB2. When aworkpiece is correctly positioned at CB2, PM drives

out to the south position and positions themachine head above theworkpiece.

Afterwards, the workpiece is processed for a few seconds. Finally, PM drives

back to the north position.

ModuleM1-2

Being associated with SBDs 𝑆TAKE and 𝑆SEND, the module M1 − 2 handles

the workpiece transport from SF1 to RB. Once 𝑆TAKE is activated, both CB1
and CB2 are turned on until a workpiece arrives at the workpiece sensor of

CB2. On the other hand, when 𝑆SEND is activated, only CB2 will be turned
on until RB receives the workpiece from CB2. Note that CB1_BM is also a

local variable of 𝑆SEND, but not controlled by any processes in 𝑆SEND. Besides,

activating 𝑆SEND requires that a workpiece is actually available at CB2, which
is indicated in its initial condition.

62

2.4 A practical example

ModuleM1

Being associated with the SBD 𝑆1, the module M1 organises the cooperation
between M1 − 1 and M1 − 2. Generally, 𝑆1 cyclically invokes SBDs 𝑆TAKE,

𝑆PROC and 𝑆SEND when OP1 is pressed. In addition, after 𝑆PROC has finished,

the value of the internal variable P is set to 1 to indicate that a processed

workpiece is ready to be sent to RB. If the module M2 is currently not busy

withotherworkpiece transportationandOP2 is notpressed (indicating thatno
workpieces from SF2 is waiting for transport via RB), the processed workpiece

will be transported through invoking 𝑆SEND.

ModuleM2

Being associated with the SBD 𝑆2, the module M2 is responsible for transport-
ing workpieces from either CB2 or SF2 to XS via RB. To take a workpiece from

CB2, M2 passively reads the value of P from M1 (note that P is not controlled

in M2) and if P = 1, RB stays in the west-east orientation and transports a

(processed) workpiece from CB2 to XS. Otherwise, i.e. when P = 0, RB turns

clockwise to the north-south orientation whenever OP2 is pressed, indicating

that SF2 is attempting to send a workpiece. Entering either route will directly

set the internal variable M2_BUSY to 1, which forbids M1 to invoke 𝑆SEND.

The value of M2_BUSY is then set to 0 if XS has successfully received the

workpiece. Note that since XS is designed to have maximal capacity, RB is

allowed to send workpieces to XS only if XS_WPS = 0, i.e. the workpiece
sensor at the entrance of XS is currently vacant.

Non-blockingness of SBDs

Following the translation procedure in Section 2.2, the global closed-loop

behaviour of the production line example is described by five automata result-

ing from the five SBDs in Figures 21 and 22. In the current example, the two

high-level SBDs𝑆1 and 𝑆2 are cyclically structuredwith no terminal nodes util-

ised. In practice, it is important to ensure that both cyclic SBDs indeed repeat

the cyclic execution indefinitely, i.e. for each SBD, there exists the possibility

to proceed the execution at any state, i.e. to fire some subsequent hyper-edges.

Such properties can be conveniently expressed by non-blockingness. A non-

blocking system requires that in any reachable state, there exists the possibility

to attain desired configurations in the future, which are often denoted by a set

(or multiple sets) of marking states in the conventional automata and formal

language theory (Cassandras and Lafortune, 2008).

63

2 Sequential behaviour diagram

Unfortunately, non-blockingness is very expensive to verify for modular sys-

tems (Cassandras and Lafortune, 2008; Malik, Streader et al., 2004), since

conventionally, it again requires an explicit construction of the monolithic

representation of the entire system, whose state space is generally in the

exponential order w.r.t. the number of modules. To mitigate the high compu-

tational cost, one elegant approach is to utilise the so-called compositional

verification (Flordal and Malik, 2009) which attempts to reduce the state

space of each module before computing the overall composition. Recently,

various contributions (Flordal and Malik, 2009; Pilbrow and Malik, 2015; Su

et al., 2010; Ware and Malik, 2012) have utilised compositional verification

for non-blockingness check and shown convincing results. However, as far as

the author’s knowledge, they all assume that the automata are synchronised

through the ordinary synchronous composition (Cassandras and Lafortune,

2008; Milner, 1989). By referring to Section 2.2.4, this is unfortunately not

the case for our SBD translation procedure since the monolithic closed-loop

behaviour should be represented by the shaped synchronous composition of

all automata. In this situation, it can be shown that most of the available re-

sults w.r.t. compositional non-blockingness verification need to be modified,

which will be intensively discussed in the following chapter in detail.

Concluding remarks

To prepare for the formal verification of SBD projects, we have focused on

translating SBDs into finite automata based on formalising SBD semantics in

the current section. Basically, SBD semantics is represented by token propaga-

tion on an extended Petri-net in that processes in an SBD are referred to

as places and hyper-edges are considered as (Petri-net) transitions. Since

the state of a Petri-net is generally distributed over its current token config-

uration, it is natural to construct the reachability graph of an SBD so that

the configuration can be determined on a per-state basis. In this context,

the reachability graph is synonymous to an automaton whose transitions are

labelled by hyper-edges. Furthermore, SBDs carry some features in addition

to ordinary Petri-nets, i.e. guard conditions and process states, which restrict

the free propagation of tokens. These were correspondingly represented by a

set of constraint automata. Finally, by taking a plant model into consideration

aswell, the local closed-loop behaviour can be constructed by taking their syn-

chronous composition. For a complicated project consisting of multiple SBDs,

the translation procedure effectively generate for each SBD one automaton.

One specific feature of the translation result is that all events carry priority

attributes. Particularly, if a hyper-edge is considered fireable, it must be fired

64

2.4 A practical example

immediately without waiting for other events, especially those generated by

variable value changes. If the global behaviour is represented by a single au-

tomaton, since transitions with lower priority can be simply removed (which

is also referred to as shaping) if some high-priority events are active. After-

wards, properties such as non-blockingness can be easily verified through e.g.

enumeration-based reachability analysis. However, for complicated systems

with multiple SBDs, SBD semantics stipulates that the priorities have global

effects; namely, high-priority events in one module restrict the occurrence

of low-priority events in other modules. In this context, challenges will arise

when exploiting advanced verification techniques for modular systems, e.g.

compositional verification. In the following chapter, we address the problem

of compositional non-blockingness verification when events carry priority

attributes and show verification results of the production line example.

65

3 Compositional verification with prioritised
events

At the end of the last chapter, we briefly introduced the concept of non-

blockingness. Generally, the non-blockingness of a single automaton can be

simply verified by e.g. enumerating reachable states and check their backward

reachability from desired configurations (a.k.a. co-reachability). However,

when handling modular systems, we observe that non-blockingness generally

cannot be reasoned in a modular fashion. In particular, the synchronisation

of a family of non-blocking automata is not always non-blocking, which can

be seen from e.g. the well-known dining philosophers problem (E. Dijkstra,

1971). Thus, the straightforward way to verify the non-blockingness of a mod-

ular system is again to construct its monolithic representation, which suffers

from the notorious state explosion problem, i.e. the overall state count grows

exponentially w.r.t. the count of modules. One well-established approach

addressing this problem is the compositional verification (Flordal and Malik,

2009). Inspired by the testing theory (Brinksma et al., 1995; Natarajan and

Cleaveland, 1995) originating from process algebra (Milner, 1989), compos-

itional verification applies abstractions on each involved automaton in a

modular system, which reduces the state count of each module by typically

utilising their private events while preserving the property of interest, e.g.

non-blockingness (Malik, Streader et al., 2004), from a global perspective.

Afterwards, a strategically chosen set of automata are substituted by their

composition. This substitution potentially rendersmore events private, which

enables further applicability of abstractions. The abstraction-composition

cycle is thus iteratively performed until only one automaton is left, whose non-

blockingness coincides with that of the monolithic representation. Recently,

compositional verification has been successfully applied in various contribu-

tions addressing the non-blockingness verification problem; see e.g. (Flordal

andMalik, 2009; Malik, 2015; PilbrowandMalik, 2015; Su et al., 2010; Wareand

Malik, 2012). Several other properties, e.g. controllability (Flordal and Malik,

2009) and opacity (Mohajerani and Lafortune, 2020), can be addressed by

compositional verification as well by converting them into non-blockingness

verification. Besides, (Malik and Leduc, 2013; Ware and Malik, 2013) utilised

compositional verification to check the generalised non-blockingness (Malik

and Leduc, 2008), which is a weaker variant of the ordinary non-blockingness,

and (Lennartson et al., 2020) showed the applicability of compositional veri-

fication to any temporal logical property within CTL∗-X. On the other hand,

67

3 Compositional verification with prioritised events

it is worth mentioning that the idea of composition verification can be adap-

ted in the Supervisory Control Theory as well, where the non-blockingness

of the entire system is usually required; see e.g. (Malik and Teixeira, 2016;

Mohajerani, Malik et al., 2014; Mohajerani, Malik et al., 2017).

In the current chapter, we investigate the possibility to extend available results

w.r.t. compositional verification to the situationwhereevents are all prioritised,

i.e. each event has a priority value. In any state, events with lower priority

are disabled if any event with higher priority is currently active, which is

referred to as preemption. In particular, we stipulate that event priorities

influence the global behaviour, i.e. high-priority events in one module also

preempt low-priority events in other modules. This kind of system set-up

was closely related to some variants of process algebra with prioritised events

(Cleaveland et al., 2007; Lüttgen, 1998) and can be utilised to handle the

translation result of an SBD project; see Section 2.2.4. In fact, not only SBDs,

various other popular modelling languages, e.g. ADs (R. Eshuis, 2006) and

Grafcet (Provost, J.-M. Roussel et al., 2011), exhibit similar behaviour as well

in that upon qualifying some guard condition, the system shall proceed to

subsequent tasks immediately. In addition, another use-case where event

priority arises iswhen implementing modular automata synthesised by formal

methods as control programmes. This typically includes the following two

sub-cases: (i) at some state where multiple control instructions (or internal

operations) are active, the choice of the action to execute is sometimes not

fully random. Besides, (ii) when the execution of some instruction and the

occurrence of some sensor event are both possible in some state, the executor

typically takes the action immediately without “waiting” for the sensor event

(Qamsane et al., 2016). The latter one can be seen as a kind of weak timed

behaviour which is closely related to timed discrete event systems; see e.g.

(Brandin and W. M. Wonham, 1994).

The content of this section is extended from (Tang and Moor, 2024) in that

more technical details, such as algorithm complexity, is included. This section

is organised as follows. Preliminaries and notation conventions are clarified

in Section 3.1. Section 3.2 introduces the abstraction rules for compositional

non-blockingness verification when taking prioritised events into consid-

eration. The abstraction rules are applied to the complete compositional

verification procedure introduced in Section 3.3, which is tested by several

practical examples in the final section, including the SBDexample constructed

previously in Section 2.4.

68

3.1 Preliminaries

3.1 Preliminaries

3.1.1 Prioritised events

Consider a universe of symbols 𝔈 also referred to as events, which are the basic

elements to represent discrete-event dynamics. Besides, a string is a finite

sequence of events. TheKleene’s closure of a set of events𝐴 ⊆ 𝔈 is denoted 𝐴∗

which is the set of all strings constructed by events in 𝐴, including the empty

string 𝜖 ∉ 𝔈. Note that 𝜖𝑠 = 𝑠 = 𝑠𝜖 holds for any string 𝑠. In some contexts,

the notation (⋅)+ is utilised as well to conveniently exclude the empty string

from a Kleene’s closure, i.e. 𝐴+ ∶= 𝐴∗ − {𝜖}. The concatenation of two strings
𝑠 and 𝑡 is denoted 𝑠𝑡. Besides, for two strings 𝑠 and 𝑟, 𝑠 is considered a prefix of
𝑟 if there exists some string 𝑡 so that 𝑟 = 𝑠𝑡, denoted 𝑠 ⩽ 𝑟. Besides, a priority
value is assigned to each event. This is a means of representing execution

semantics, e.g. when confronting a choice of executing either of two events

with different priority,1 the executor should always choose the one with higher

priority. We also say that all events in the current framework are prioritised.

In this regard, the priority assignment function

prio ∶ 𝔈 → ℕ (87)

is formally utilised to denote the priority of each event. In particular, priorities

are read as ordinal numbers, i.e. 1 ∈ ℕ is considered the first priority, 2 ∈ ℕ
the second priority, etc. As a greater ordinal number denotes a lower priority,

1 is the unique highest priority. Thus, when writing e.g. prio(𝜎) < prio(𝜌), we
intend to show that the priority of 𝜎 is higher than that of 𝜌. For convenience,
the following notations are used for any event set 𝐴 ⊆ 𝔈:

• events with priority higher (or not lower) than 𝑛 ∈ ℕ within 𝐴
𝐴<𝑛 ∶= { 𝛼 ∈ 𝐴 | prio(𝛼) < 𝑛 };
𝐴≤𝑛 ∶= { 𝛼 ∈ 𝐴 | prio(𝛼) ≤ 𝑛 };

• events with priority higher (or not lower) than prio(𝛼) for 𝛼 ∈ 𝔈 within 𝐴
𝐴<𝛼 ∶= 𝐴<prio(𝛼);

𝐴≤𝛼 ∶= 𝐴≤prio(𝛼);

• the lowest priority value within 𝐴

lo(𝐴) ∶= {
max{ prio(𝛼) | 𝛼 ∈ 𝐴 } if 𝐴 ≠ ∅;
1 if 𝐴 = ∅.

1 This does not necessarily indicate that the priority value of each event is unique.

69

3 Compositional verification with prioritised events

In process algebra, representing internal behaviour which are irrelevant to

the synchronisation with external systems is of particular interest, since it

enables various system abstraction techniques. Internal behaviour is tech-

nically represented by silent events Υ ⊂ 𝔈. On the other hand, events in

𝔈 − Υ are considered regular and the terminology of alphabet is utilised to

denote any finite regular event set Σ ⊂ 𝔈 − Υ. While regular events are shown

explicitly to the external environment for synchronisation, silent events are

anonymous for the external environment. Regarding the priority assignment,

it suffices to let Υ be such that each priority value 𝑛 ∈ ℕ is bijectively mapped

to one event in Υ in order to represent local behaviourwith different priorities.

This motivates us to symbolically represent each silent event 𝜏 ∈ Υ where

prio(𝜏) = 𝑛 with
𝜏 ≡ 𝜏(𝑛) (88)

and we have
Υ ∶= { 𝜏(𝑛) | 𝑛 ∈ ℕ }. (89)

Most prominently, the current set-up of silent events guarantees that each

regular event has a counterpart silent event with the same priority, which is

one of the fundamental prerequisite for abstraction. Formally, a hiding map

hide ∶ (𝔈 − Υ) → Υ is defined by

hide(𝜎) = 𝜏(prio(𝜎)) (90)

for each 𝜎 ∈ 𝔈 − Υ. This set-up is also utilised in (Lüttgen, 1998) and con-

stitutes an extension of the more common single distinguished silent event

Υ = {𝜏} in the ordinary context without prioritised events; see e.g. (Flordal

and Malik, 2009; Milner, 1989). In this regard, we utilise natural projec-

tion p ∶ 𝔈∗ → (𝔈 − Υ)∗ to remove all silent events from any string 𝑠 ∈ 𝔈∗

(Cassandras and Lafortune, 2008). Formally, natural projection is iteratively

defined by

p(𝜖) = 𝜖; (91)

p(𝑠𝛼) = {
p(𝑠) if 𝑠 ∈ 𝔈∗, 𝛼 ∈ Υ;
p(𝑠)𝛼 if 𝑠 ∈ 𝔈∗, 𝛼 ∈ 𝔈 − Υ.

(92)

3.1.2 Finite automata

Definition 3.1.1. A finite automaton is a tuple 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ where

• 𝑄 is the finite state set;

70

3.1 Preliminaries

• Σ is the alphabet;

• → ⊆ 𝑄 × (Σ ∪ Υ) × 𝑄 is the transition relation;

• 𝑄∘ ⊆ 𝑄 is the set of initial states;

• 𝑀 ⊆ 2Σ is the marking set.

Themarking set in theautomaton tuple isageneralisationof non-blockingness

and is similar to theso-called colouredmarking in themultitasking supervisory

control theory (Hering de Queiroz et al., 2005); see Definition 3.1.2. Note

that silent events are not legit to carry marking information. Besides, in the

following, we utilise the notation 𝐴𝐺 ∶= Σ ∪ Υ to denote the union of the

alphabet of 𝐺 with the silent event set. The subscript (⋅)𝐺 of 𝐴𝐺 is omitted

if it is clear from the context. Finally, note that automata are not required

to be deterministic; namely, it is possible that for 𝛼 ∈ 𝐴 and 𝑥, 𝑦, 𝑦′ ∈ 𝑄
where 𝑦 ≠ 𝑦′, both (𝑥, 𝛼, 𝑦) ∈ → and (𝑥, 𝛼, 𝑦′) ∈ → hold. Generally, a control

system does behave deterministically, while abstraction may introduce non-

determinism.

We use the infix notation 𝑥
𝛼
−→ 𝑦 to denote (𝑥, 𝛼, 𝑦) ∈ → and the infix notation

is iteratively extended to string-valued labels; namely, (i) let 𝑥
𝜖
−→ 𝑥 for all

𝑥 ∈ 𝑄 and (ii) 𝑥
𝑠𝛼
−→ 𝑧 for all 𝑥, 𝑧 ∈ 𝑄, 𝑠 ∈ 𝐴∗ and 𝛼 ∈ 𝐴 if 𝑥

𝑠
−→ 𝑦 and 𝑦

𝛼
−→ 𝑧

for some 𝑦 ∈ 𝑄. Moreover, we write 𝑋
𝑠
−→ 𝑌 for 𝑋, 𝑌 ⊆ 𝑄 whenever there

exist 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 so that 𝑥
𝑠
−→ 𝑦. The set-theoretic complement of the

transition relation is denoted →/ , i.e., 𝑋
𝑠
−→/ 𝑌 is interpreted as such that for

any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, (𝑥, 𝑠, 𝑦) ∉ → holds. 𝑋
𝑠
−→ and 𝐺

𝑠
−→ stand for 𝑋

𝑠
−→ 𝑄

and 𝑄∘ 𝑠
−→ 𝑄, respectively. For a state 𝑥 in an automaton 𝐺, the set of active

events in 𝑥 is given by

𝐺(𝑥) ∶= { 𝛼 ∈ 𝐴 | 𝑥
𝛼
−→ }. (93)

Finally, a trace is a sequence of alternating states and events, i.e. in the form

of

𝑥0
𝛼1
−→ 𝑥1

𝛼2
−→ ⋯

𝛼𝑘
−→ 𝑥𝑘. (94)

We again introduce several convenient notations for brevity.

• active events in state 𝑥 with priority higher (or not lower) than 𝑛 ∈ ℕ
𝐺<𝑛(𝑥) ∶= {𝛼 ∈ 𝐺(𝑥) | prio(𝛼) < 𝑛};
𝐺≤𝑛(𝑥) ∶= {𝛼 ∈ 𝐺(𝑥) | prio(𝛼) ≤ 𝑛};

• silent active events in state 𝑥 (with priority higher or not lower than 𝑛 ∈ ℕ)
𝐺slnt(𝑥) ∶= 𝐺(𝑥) ∩ Υ;

71

3 Compositional verification with prioritised events

𝐺<𝑛
slnt(𝑥) ∶= 𝐺<𝑛(𝑥) ∩ Υ;

𝐺≤𝑛
slnt(𝑥) ∶= 𝐺≤𝑛(𝑥) ∩ Υ;

• regular active events in state 𝑥 (with priority higher than 𝑛 ∈ ℕ)
𝐺rglr(𝑥) ∶= 𝐺(𝑥) − Υ;

𝐺<𝑛
rglr(𝑥) ∶= 𝐺<𝑛(𝑥) − Υ;

𝐺≤𝑛
rglr(𝑥) ∶= 𝐺≤𝑛(𝑥) − Υ;

• abstract transition relation =⇒ ⊆ 𝑄 × Σ∗ × 𝑄

𝑥
𝑠
=⇒ 𝑦 for 𝑠 ∈ Σ∗ if and only if there exists 𝑠′ ∈ 𝐴∗ so that p(𝑠′) = 𝑠 and

𝑥
𝑠′

−→ 𝑦;

• concatenation of different types of transitions

𝑥
𝑠
−→

𝑠′

=⇒ 𝑦 if and only if there exists some state 𝑧 so that 𝑥
𝑠
−→ 𝑧 and 𝑧

𝑠′

=⇒ 𝑦.

Regarding the liveness property of an automaton, its non-blockingness is of

specific interest which states that desired system configurations are persist-

ently reachable in the future in any reachable state (Cassandras and Lafortune,

2008). Particularly for SBD verification, it is desired that each SBD has the

opportunity toproceed bye.g. firing somecritical hyper-edges. Thismotivates

us to classify desired configurations into different categories and we require

that reaching each type of the desired configurations should be persistently

possible. This idea is comparablewith the strong non-blockingness utilised in

the multitasking supervisory control theory (Hering de Queiroz et al., 2005).

Definition 3.1.2. Given an automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩, a state 𝑥 ∈ 𝑄
is reachable if there exists 𝑠 ∈ Σ∗ so that 𝐺

𝑠
=⇒ 𝑥. A state 𝑥 ∈ 𝑄 is co-reachable

if for allΩ ∈ 𝑀, there exists 𝑡 ∈ Σ∗ and 𝜔 ∈ Ω so that 𝑥
𝑡𝜔
=⇒. 𝐺 is non-blocking

if all its reachable states are co-reachable.

Note that a regular event, say 𝜔 ∈ Σ, can appear in multiple event sets in

the marking set. If executing 𝜔 is possible in the future, all event sets in

the marking set containing 𝜔 are qualified to achieve the non-blockingness.

Consider the following example.

σ, ρ

I II

ω
ω

Figure 24: An example for non-blockingness

72

3.1 Preliminaries

Example 3.1.1. Consider the automaton𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ given in Figure
24 with Σ = {𝜎, 𝜌, 𝜔}. In addition, two possibilities of defining the marking set

𝑀 are discussed: if 𝑀 = {{𝜎, 𝜔}, {𝜌, 𝜔}}, then 𝐺 is non-blocking provided 𝜔
appears in both event sets of the marking set, and 𝜔 is executable in the future

for both states. On the other hand, if 𝑀 = {{𝜎, 𝜔}, {𝜌}}, 𝐺 turns out to be

blocking since 𝜌 cannot be executed any more once state II is reached.

We now define how prioritised events influence the execution semantics of

automata. In any state with multiple active events, transitions labelled by

events with lower priority should be disabled. In this regard, we say the

lower-priority events are preempted. This is formally illustrated by shaping an

automaton with the shaping operator.

Definition 3.1.3. Given an automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩, the shaping
operator 𝒮(⋅) is defined as such that 𝒮(𝐺) ∶= ⟨𝑄, Σ, →𝒮, 𝑄∘, 𝑀⟩ where

𝑥
𝛼
−→𝒮 𝑦 if and only if 𝑥

𝛼
−→ 𝑦 and 𝐺<𝛼(𝑥) = ∅. (95)

In any state of an automaton after shaping, only the transitions labelled by

events with the highest priority among all active events are preserved. Note

that after shaping an automaton, some states may become unreachable and

can be directly removed.

3.1.3 Synchronous composition and non-conflictingness

In practice, large-scale systems are commonly decomposed into modular

pieces. All modules are cooperatively operated under certain synchronisa-

tion semantics. Suppose two automata with respective alphabets Σ1 and Σ2
are to synchronise. Their plain synchronised behaviour complies with their

synchronous composition (Milner, 1989). In particular, events in Σ1 ∩ Σ2 are

shared which should be executed synchronously, while all other events in

Σ1 ∪ Σ2 ∪ Υ are private which are asynchronously executed.

Definition 3.1.4. Given two automata 𝐺1 = ⟨𝑄1, Σ1, →1, 𝑄∘
1, 𝑀1⟩ and 𝐺2 =

⟨𝑄2, Σ2, →2, 𝑄∘
2, 𝑀2⟩, their synchronous composition is defined by

𝐺1 ∥ 𝐺2 ∶= ⟨𝑄 ∶= 𝑄1×𝑄2, Σ ∶= Σ1∪Σ2, →, 𝑄∘ ∶= 𝑄∘
1×𝑄∘

2, 𝑀 ∶= 𝑀1∪𝑀2⟩,
(96)

where → ⊆ 𝑄 × Σ × 𝑄 is defined by

(𝑥1, 𝑥2)
𝛼
−→ (𝑥′

1, 𝑥′
2) if 𝛼 ∈ Σ1 ∩ Σ2, 𝑥1

𝛼
−→1 𝑥′

1 and 𝑥2
𝛼
−→2 𝑥′

2; (97)

73

3 Compositional verification with prioritised events

(𝑥1, 𝑥2)
𝛼
−→ (𝑥′

1, 𝑥2) if 𝛼 ∈ (Σ1 − Σ2) ∪ Υ and 𝑥1
𝛼
−→1 𝑥′

1; (98)

(𝑥1, 𝑥2)
𝛼
−→ (𝑥1, 𝑥′

2) if 𝛼 ∈ (Σ2 − Σ1) ∪ Υ and 𝑥2
𝛼
−→2 𝑥′

2. (99)

A transition (𝑥1, 𝑥2)
𝛼
−→ (𝑥′

1, 𝑥′
2) is driven by 𝐺1 if 𝑥1

𝛼
−→1 𝑥′

1 in 𝐺1.

Clearly, since state names do not contribute to system behaviour, synchron-

ous composition is considered commutative and distributive, i.e. 𝐺1 ∥ 𝐺2
= 𝐺2 ∥ 𝐺1 and 𝐺1 ∥ (𝐺2 ∥ 𝐺3) = (𝐺1 ∥ 𝐺2) ∥ 𝐺3. The synchronisation

of a family of automata (𝐺1)1≤𝑖≤𝑘, i.e. 𝐷 = 𝐺1 ∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑛, is com-

monly referred to as amodular systemwhile each 𝐺𝑖 is referred to as amodule.

From the ordinary context where event prioritising is not considered, the

non-blockingness of 𝐷 is commonly referred to as the non-conflictingness of

all modules. At this stage, it is worthmentioning that the non-blockingness of

one module, or even each module, cannot imply non-conflictingness and vice

versa. Thus, the conventional approach to checking non-conflictingness is to

explicitly construct 𝐷, which is of exponential order w.r.t. the count of mod-

ules. This problem can be decently addressed by compositional verification.

The core of compositional verification is to apply suitable abstraction on each

module while the non-conflictingness is preserved. To this end, based on the

testing theory framework (Brinksma et al., 1995; Natarajan and Cleaveland,

1995), the concept of conflict equivalence was introduced in (Malik, Streader

et al., 2004)which sufficiently implies the preservation of non-conflictingness;

namely, substituting any module with its conflict equivalent abstraction does

not influence the non-conflictingness. After abstraction, the verification pro-

cedure alternates to the composition of a strategically chosen set of automata.

This procedure is then iteratively performed until only one automaton is

left, whose non-blockingness coincides with the non-conflictingness of the

original modular system 𝐷.

In the scope of the current dissertation, it is stipulated that event prioritising

influences the behaviour of the entire modular system, i.e. high-priority

events in one module preempt low-priority events in other modules as well.

In this context, the non-blockingness of the modular system after shaping,

i.e. 𝒮(𝐷), is of our interest and is exactly the property for which an efficient

verification procedure is desired.

Definition 3.1.5. A family (𝐺𝑖)1≤𝑖≤𝑘 of automata is non-conflicting w.r.t.

prioritised events if and only if 𝒮(𝐺1 ∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑘) is non-blocking.

In the remainder of the current chapter, the terminology non-conflicting is

concisely utilised to denote non-conflicting w.r.t. prioritised events. At this

74

3.1 Preliminaries

stage, following the idea of compositional verification, we consider again the

entire modular system

𝒮(𝐺1⏟
∶=𝐺

∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑘⏟⏟⏟⏟⏟
∶=𝐻

) . (100)

Since synchronous composition is commutative and distributive, we choose

𝐺1 =∶ 𝐺 as the automaton to abstract. Correspondingly, 𝐻 in (100) is also

referred to as the synchronisation rest part, or simply the rest part. Let 𝐺′

be an abstraction of 𝐺, we obviously expect that 𝒮(𝐺 ∥ 𝐻) is non-blocking if
and only if 𝒮(𝐺′ ∥ 𝐻) is non-blocking.

One fundamental abstraction is provided by transition hiding, which is tech-

nically referred to as replacing a regular transition label by its silent counter-

part.

Definition 3.1.6. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be an automaton and let 𝑡 =
(𝑥, 𝜎, 𝑦) ∈ → be any transition in 𝐺. Hiding 𝑡 in 𝐺 results in an automaton

𝐺/𝑡 = ⟨𝑄, Σ, →𝑡, 𝑄∘, 𝑀⟩ where

→𝑡 ∶= (→ −{𝑡}) ∪ {(𝑥, hide(𝜎), 𝑦)}. (101)

When synchronising an automaton 𝐺 with another automaton 𝐻, we say

a transition 𝑡 in 𝐺 is hidable w.r.t. 𝐻 if hiding 𝑡 in 𝐺 preserves the non-

conflictingness.

Definition 3.1.7. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ and 𝐻 = ⟨𝑄𝐻, Σ𝐻, →𝐻,

𝑄∘
𝐻, 𝑀𝐻⟩ be two automata. A transition 𝑡 ∈ →𝐺 in 𝐺 is hidable w.r.t. 𝐻 if and

only if

𝐺 and 𝐻 are non-conflicting ⇔ 𝐺/𝑡 and 𝐻 are non-conflicting. (102)

At a first glance, any transition labelled by a regular private event seem to be

hidable. However, special care should be taken to the marking set as it may

also include some private events. Hiding all transitions labelled by private

events carrying marking information is clearly not legit.

Proposition 3.1.8. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ and 𝐻 = ⟨𝑄𝐻, Σ𝐻, →𝐻,

𝑄∘
𝐻, 𝑀𝐻⟩ be two automata and let 𝑡 = (𝑥, 𝜎, 𝑦) ∈ →𝐺 be a transition in 𝐺

where 𝑥, 𝑦 ∈ 𝑄𝐺 and 𝜎 ∈ Σ𝐺 − Σ𝐻. If for all Ω𝐺 ∈ 𝑀𝐺, 𝜎 ∉ Ω𝐺, then 𝑡 is
hidable w.r.t. 𝐻.

Proposition 3.1.8 conservatively suggests that transitions labelled by events

with marking information should never be hidden. Nevertheless, some of

75

3 Compositional verification with prioritised events

such transitions are indeed hidable if their future behaviour is within some

specific structure. We resume to this topic later in Proposition 3.3.1 after a

deeper dive into synchronisation with prioritised events in the next section.

Note that hiding itself does not require an explicit representation or any

specific structure from the rest part, which is a prominent feature we shall

generally require for all abstraction rules. In particular, this concept can be

explicitly guaranteed from the definition of conflict equivalence w.r.t. priori-

tised events. This is inspired by the conflict equivalence in theordinary context

(Malik, Streader et al., 2004) where automata are synchronised through the

ordinary synchronous composition.

Definition 3.1.9. Two automata 𝐺1 and 𝐺2 are conflict equivalent w.r.t. pri-

oritised events, denoted 𝐺1 ≃𝒮 𝐺2, if for any automaton 𝑇, it holds that

𝐺1 and 𝑇 are non-conflicting ⇔ 𝐺2 and 𝑇 are non-conflicting.

In the remainder of this chapter, conflict equivalence concisely stands for

conflict equivalence w.r.t. prioritised events. In particular, an abstraction of 𝐺,

say 𝐺′, is a conflict-preserving abstraction of 𝐺 if 𝐺′ ≃𝒮 𝐺. Note that conflict

equivalence does not require any information about the rest part (even its

alphabet), which implies that substituting 𝐺 in (100) by an automaton 𝐺′

with 𝐺′ ≃𝒮 𝐺 indeed preserves the non-conflictingness, i.e.

𝒮(𝐺 ∥ 𝐻) is non-blocking ⇔ 𝒮(𝐺′ ∥ 𝐻) is non-blocking.

Finally, it is worth mentioning that there is no unique minimal conflict-

preserving abstraction of an arbitrarily given automaton. This can be seen

from (Flordal and Malik, 2006) where an example in the ordinary context is

given. This obviously applies to conflict equivalence (w.r.t. prioritised events)

as well by simply assuming that all events have the same priority. Hence,

developing conflict-preserving abstraction rules is valuable to address the

compositional non-blockingness verification problemw.r.t. prioritised events.

3.2 Conflict-preserving abstraction rules

In this section, various conflict-preserving abstraction rules are developed

for compositional verification. To this end, some specific definitions and

observations w.r.t. prioritised events are first to clarify. We begin with the

introduction of the Υ-shaping operator.

76

3.2 Conflict-preserving abstraction rules

Definition 3.2.1. Given an automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩, the Υ-shaping

operator 𝒮Υ(⋅) is defined by 𝒮Υ(𝐺) ∶= ⟨𝑄, Σ, →𝒮Υ , 𝑄∘⟩ where

𝑥
𝛼
−→𝒮Υ 𝑦 if and only if 𝑥

𝛼
−→ 𝑦 and 𝐺<𝛼

slnt(𝑥) = ∅. (103)

An automaton 𝐺 is Υ-shaped if and only if 𝐺 = 𝒮Υ(𝐺).

Definition 3.2.1 introduces a “partial” shaping operator which only shapes

transitions using silent events. Generally, the normal shaping operation

does not commute with synchronous composition, i.e. we cannot shape an

individual module locally before the overall synchronous composition is con-

structed since a shared high-priority event in one module may be deactivated

by other modules. Nevertheless, we can always partially shape an automaton

using Υ-shaping since silent events can never be disabled by synchronisation.

Thus, for any 𝜏 ∈ Υ and 𝛼 ∈ 𝐴 so that 𝑥
𝜏
−→ and 𝑥

𝛼
−→ for some state 𝑥 with

prio(𝜏) < prio(𝛼), the latter transition will never be executed as long as shap-
ing will eventually be performed, since each time when 𝑥 is visited, either 𝜏
or some event with priority higher than 𝜏 must be active. This observation is

illustrated by the following lemma.

Lemma 3.2.2. For any two automata 𝐺1 and 𝐺2, it holds that

𝒮(𝐺1 ∥ 𝐺2) = 𝒮(𝒮Υ(𝐺1) ∥ 𝐺2). (104)

Since synchronous composition is commutative and associative, it follows

immediately that performing Υ-shaped on any module beforehand does

not influence the monolithic representation of the entire system. This is a

simple yet powerful conflict-preserving abstraction rule as well. In addition,

Υ-shaping is indeed conflict-preserving from Lemma 3.2.2. In the remainder

of this chapter, it is consistently assumed that the automaton to abstract is

Υ-shaped, which simplifies many of the statements and definitions.

Remark 3.2.1. Obviously, if the alphabet of the rest part is available,Υ-shaping

canmore aggressively be uniformly substituted by “private shaping”, i.e. shaping

using all private events including those regular events not appearing in the rest

part. This substitution clearly yields a more remarkable state reduction. Note

that, similar to hiding, “private shaping” is not conflict-preserving as well, but

indeed preserves the non-conflictingness under a given rest part.

We now shift our focus to silent loops where all transitions leaving the loop

are labelled by regular events. Such silent loops are referred to as live-locks

and have specific semantic meaning when considering prioritised events.

77

3 Compositional verification with prioritised events

Definition 3.2.3. Given a Υ-shaped automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩, an
𝑛-live-lock in 𝐺 is a set of states 𝑋 ⊆ 𝑄 where for all 𝑥 ∈ 𝑋,

(L1) 𝐺slnt(𝑥) ≠ ∅;

(L2) for all 𝜏 ∈ 𝐺slnt(𝑥), 𝑥
𝜏
−→ 𝑥′ implies 𝑥′ ∈ 𝑋;

(L3) for all 𝑥, 𝑦 ∈ 𝑋, there exists a trace 𝑥
𝛼1
−→ 𝑥1

𝛼2
−→ 𝑥2

𝛼3
−→ ⋯ 𝑥𝑘

𝛼𝑘
−→ 𝑦,

where 𝑥𝑖 ∈ 𝑋, 𝛼𝑖 ∈ Υ for all 𝑖 = 1, 2, … , 𝑘,

and

(L4) lo(∪𝑥′∈𝑋𝐺slnt(𝑥′)) = 𝑛.

We also concisely write 𝛼-live-lock to denote prio(𝛼)-live-lock where 𝛼 ∈ 𝐴.
Technically, a live-lock is a non-trivial (i.e. with at least one transition) silent

Strongly Connected Component (SCC) (Aho et al., 1974) where neither state

can leave this SCC through executing a silent transition. Due to prioritised

events, a live-lock may indefinitely trap the behaviour of the rest part, i.e.

when in some 𝑛-live-lock of an automaton, the rest part can never execute

any event with priority lower than 𝑛. Most prominently, the trapping effect

no longer exists when (L2) does not hold. Consider the following example.

Example 3.2.1. Let 𝐺, 𝐺′ and 𝐻 be three automata as given in Figure 25. In

particular, {I, II} is a 2-live-lock in 𝐺. When 𝐺 and 𝐻 are synchronised, the

only transition in 𝐻, which is labelled by 𝜏(3), can never be executed. On the

other hand, {I′, II′} does not form any live-lock in 𝐺′ due to the invalidation of

(L2). By reaching III′, the trapping effect is released which allows 𝐻 to proceed.

I IIτ(1)

τ(2)

I′ II′τ(1)

τ(2)

τ(2) III′

G

G′
τ(3)

i iiH

Figure 25: The trapping effect of a 2-live-lock

Note that for a Υ-shaped automaton, if both state sets 𝑋 and 𝑌 are live-locks,

then either 𝑋 = 𝑌 or 𝑋 ∩ 𝑌 = ∅. This implies that computing live-locks can

be easily accomplished by seeking maximal silent SCCs, since one state can

never be shared by two distinct live-locks.

With the notion of live-locks, we now discuss the construction of quotient

automata, which is a well-known approach that reduces the state space of a

given automaton by merging states according to proper partition of the state

78

3.2 Conflict-preserving abstraction rules

set. Given a set 𝑄 and an equivalence relation ∼ ⊆ 𝑄 × 𝑄 on 𝑄, we utilise

[𝑥] ∶= {𝑥′ ∈ 𝑄 | (𝑥, 𝑥′) ∈ ∼} to denote the equivalence class which includes

the state 𝑥 ∈ 𝑄 w.r.t. ∼ and give the definition of quotient automaton as

follows.

Definition 3.2.4. Given a Υ-shaped automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ and
an equivalence relation ∼ ⊆ 𝑄 × 𝑄, the quotient automaton 𝐺/∼ of 𝐺 w.r.t.

∼ is defined by 𝐺/∼ ∶= ⟨𝑄/∼, 𝐴, −→
∼
, 𝑄̃∘, 𝑀⟩ where

𝑄/∼ ∶= { [𝑥] | 𝑥 ∈ 𝑄 }; (105)

𝑄̃∘ ∶= { [𝑥∘] | 𝑥∘ ∈ 𝑄∘ }; (106)

−→
∼
∶= { [𝑥]

𝛼
−→ [𝑦] | 𝑥

𝛼
−→ 𝑦 }

− { [𝑥]
𝜏
−→ [𝑥] | 𝜏 ∈ Υ and for any 𝑋 ⊆ [𝑥],

𝑋 is not a 𝜏-live-lock in 𝐺 }. (107)

Example 3.2.2. Consider the automaton 𝐺 given in Figure 26. The state set

{I, II} is a 2-live-lock and merging it results in a 𝜏(2)-self-loop. On the other

hand, neither III nor IV is in any live-lock. Merging them does not produce any

silent self-loop according to (107).

IIIσ(2)τ(1)G IV G/∼I II [I] [III]

τ(2)

τ(1) σ(2)

τ(2)

I∼II
III∼IV

Figure 26: Quotient automaton

Comparing with the conventional quotient automaton construction (Flordal

and Malik, 2009), (107) additionally requires that any silent self-loop in the

quotient automaton which does not correspond to a live-lock in the original

automaton should be removed. This construction attempts to preserve the

trapping power after abstraction, which is crucial especially when an equi-

valence class includes acyclic silent event sequences. Obviously, (107) also

remove some silent self-loops which were existent before abstraction, e.g. con-

sider some automaton with only two states 𝑥 ≠ 𝑦 and two transitions 𝑥
𝜏1
−→ 𝑥

and 𝑥
𝜏1
−→ 𝑦. Constructing its quotient automaton w.r.t. the trivial partition

removes the transition [𝑥]
𝜏1
−→ [𝑥]. This constitutes a simple abstraction rule

as well which will be discussed later in Lemma 3.2.10. We now show some

useful properties of our quotient automaton construction.

Lemma 3.2.5. Given a Υ-shaped automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ and an
equivalence relation ∼ ⊆ 𝑄 × 𝑄, it holds that

79

3 Compositional verification with prioritised events

(i) For any transition [𝑥]
𝛼
−→

∼
[𝑦] in 𝐺/∼, there exist 𝑥′ ∈ [𝑥] and 𝑦′ ∈ [𝑦] so

that 𝑥′ 𝛼
−→ 𝑦′ in 𝐺;

(ii) If 𝐺/∼<𝑛
slnt([𝑥]) = ∅ in 𝐺/∼ for some 𝑥 ∈ 𝑄 and 𝑛 ∈ ℕ, then there exists

𝑥′ ∈ [𝑥] so that 𝐺<𝑛
slnt(𝑥

′) = ∅.

Proof. (i) Note the special case of [𝑥]
𝜏
−→

∼
[𝑥] for some 𝜏 ∈ Υ. According to

the definition of 𝜏-live-lock, since [𝑥] includes all states of a 𝜏-live-lock,
there must exist 𝑥′, 𝑥″ ∈ [𝑥] so that 𝑥′ 𝜏

−→ 𝑥″.

(ii) Since 𝐺/∼<𝑛
slnt([𝑥]) = ∅, it follows that for any 𝑥′ ∈ [𝑥] and 𝜏 ∈ Υ<𝑛,

𝑥′ 𝜏
−→ ̄𝑥 implies ̄𝑥 ∈ [𝑥]. Thus, if 𝐺<𝑛

slnt(𝑥
′) ≠ ∅ holds for each state

𝑥′ ∈ [𝑥], there must exist some 𝑚-live-lock 𝑋 ⊆ [𝑥] so that 𝑚 < 𝑛.
This contradicts 𝐺/∼<𝑛

slnt([𝑥]) = ∅ through the construction of quotient
automaton.

FollowingDefinition 3.1.9, various statementsand theirproofs in the remainder

of this chapter involve an automaton 𝐺 to be abstracted and an arbitrary test

𝑇. In such cases, we take the following conventions for brevity:

� States in𝐺 are always indicatedwith a subscript (⋅)𝐺, e.g. 𝑥𝐺, 𝑥′
𝐺, 𝑦𝐺, … ,

while states in 𝑇 are always indicated with a subscript (⋅)𝑇.

� Subscripts (⋅)𝐺 and (⋅)𝑇 are omitted for transitions in𝐺 and 𝑇 since they

can be read from the states of the transition, e.g. 𝑥𝐺
𝛼
−→ 𝑦𝐺 must be a

transition in 𝐺.

� Subscripts of transitions in 𝐺 ∥ 𝑇, 𝒮(𝐺 ∥ 𝑇), 𝐺/∼ ∥ 𝑇 and 𝒮(𝐺/∼ ∥ 𝑇)
are omitted as well. A state in 𝐺 ∥ 𝑇 or 𝒮(𝐺 ∥ 𝑇) must take the form

((⋅)𝐺, (⋅)𝑇), while a state in𝐺/∼ ∥ 𝑇 or𝒮(𝐺/∼ ∥ 𝑇) must takes the form

([(⋅)𝐺], (⋅)𝑇).

� Since 𝑇 is arbitrary and may carry private marking information, we

aggressively assume that none of the transitions in 𝑇 is silent (without

losing generality, this assumption is sometimes dropped in examples

since most examples utilise 𝑇 to witness some undesired behaviour). In

addition, the notation of Σ𝑇 \𝐺 ∶= Σ𝑇 − Σ𝐺 denotes the private event

set of 𝑇 where Σ𝐺 and Σ𝑇 are the alphabets of 𝐺 and 𝑇, respectively.
Notations

𝑇prvt(𝑥𝑇) ∶= { 𝜏 ∈ Σ𝑇 \𝐺 | 𝑥𝑇
𝜏
−→ };

𝑇 <𝑛
prvt(𝑥𝑇) ∶= { 𝜏 ∈ 𝑇prvt(𝑥𝑇) | prio(𝜏) < 𝑛 }

80

3.2 Conflict-preserving abstraction rules

are utilised to denote active private events (with priority higher than

𝑛) in state 𝑥𝑇, respectively. Note that, unlike what has been implicitly

assumed so far, 𝜏, 𝜏 ′, ⋯ will now range over Υ ∪ Σ𝑇 \𝐺, but the natural

projection will still only remove events in Υ. Furthermore, a trace is

considered asynchronous if all event labels within this trace are from

Υ ∪ Σ𝑇 \𝐺.

3.2.1 Prioritised weak bisimulation

Based on the conventional process algebra CCS (Milner, 1989), a new process

algebra CCSch whichmodels concurrent systemswith global event prioritywas

introduced in (Lüttgen, 1998). In fact, the semantics of a shaped automaton

in our framework is synonymous to the operational semantics of CCSch. By

extending thewell-knownweak bisimulation (a.k.a. observational equivalence

in some contexts) from CCS, (Lüttgen, 1998) defined the prioritised weak

bisimulation (PWB) as a CCSch reasoning framework. For brevity, the abbre-

viation PW-bisimilar is also utilised to refer to as prioritised weak bisimilar.

Following the convention in (Lüttgen, 1998), several new types of transitions

are defined.

Definition 3.2.6. Given aΥ-shaped automaton𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩, define
the following extended transition relations:

(T1) −−→
Δ∶𝑛

⊆ 𝑄 × 𝐴 × 𝑄: 𝑥
𝛼

−−→
Δ∶𝑛

𝑦 if 𝑥
𝛼
−→ 𝑦 and 𝐺<𝑛

rglr(𝑥) ⊆ Δ;

(T2) ==⇒
Δ∶𝑛

⊆ 𝑄 × {𝜖} × 𝑄: 𝑥
𝜖

==⇒
Δ∶𝑛

𝑦 if 𝑥
𝜏1

−−→
Δ∶𝑛

𝜏2
−−→
Δ∶𝑛

⋯
𝜏𝑘

−−→
Δ∶𝑛

𝑦, 𝑘 ≥ 0 and

𝜏1 ⋯ 𝜏𝑘 ∈ (Υ≤𝑛)∗;

(T3) =⇒
𝑛

⊆ 𝑄 × {𝜖} × 𝑄: 𝑥
𝜖
=⇒
𝑛

𝑦 if 𝑥
𝜏1
−→

𝜏2
−→ ⋯

𝜏𝑘
−→ 𝑦, 𝑘 ≥ 0 and 𝜏1 ⋯ 𝜏𝑘 ∈

(Υ≤𝑛)∗.

In the following, notations −−→
Δ∶𝛼

, ==⇒
Δ∶𝛼

and =⇒
𝛼

for 𝛼 ∈ 𝐴 are utilised to refer to

as −−−−−→
Δ∶prio(𝛼)

, =====⇒
Δ∶prio(𝛼)

and ====⇒
prio(𝛼)

, respectively. Transition relations (T1) and

(T2) are generally more difficult to be preempted – when being synchronised

with another automaton, we wish that preemption caused by shared high-

priority events shall not take place before the target state is reached. Thus,

in (T1) and (T2), the set of active regular high-priority events is restricted

in respective states. Also note that 𝑥
𝜖

==⇒
Δ∶𝑛

𝑦 implies 𝑥
𝜖
=⇒
𝑛

𝑦 for any Δ ⊆ 𝔈.
Furthermore, although (T1) generally can not be extended to string-valued

labels, we still stipulate that 𝑥
𝜖

−−→
Δ∶𝑛

𝑥, 𝑥
𝜖

==⇒
Δ∶𝑛

𝑥 and 𝑥
𝜖
=⇒
𝑛

𝑥 hold for any state

81

3 Compositional verification with prioritised events

𝑥, any event set Δ and any priority value 𝑛. It is worth mentioning that in

these cases, there is in fact no restriction on the active event set in 𝑥. We are

now in the position to define PWB over automata as follows.

Definition 3.2.7. Let𝐺1 = ⟨𝑄1, Σ, →1, 𝑄∘
1, 𝑀⟩ and𝐺2 = ⟨𝑄2, Σ, →2, 𝑄∘

2, 𝑀⟩
be two Υ-shaped automata. A relation ≊ ⊆ 𝑄1 × 𝑄2 is a PWB between 𝐺1
and 𝐺2 if for any 𝑥1 ∈ 𝑄1 and 𝑥2 ∈ 𝑄2 so that 𝑥1 ≊ 𝑥2, all the following

statements hold:

(P1) If 𝐺<𝑛
1,slnt(𝑥1) = ∅ for some 𝑛 ∈ ℕ, then there exists 𝑦2 ∈ 𝑄2 so that

𝑥1 ≊ 𝑦2, 𝐺<𝑛
2,slnt(𝑦2) = ∅, 𝐺<𝑛

2,rglr(𝑦2) ⊆ Δ and 𝑥2
𝜖

==⇒
Δ∶𝑛 2 𝑦2 where Δ =

𝐺<𝑛
1,rglr(𝑥1);

(P2) For any 𝛼 ∈ 𝐴 and 𝑦1 ∈ 𝑄1 so that 𝑥1
𝛼
−→1 𝑦1, there exists 𝑦2 ∈ 𝑄2 so

that 𝑦1 ≊ 𝑦2 and 𝑥2
𝜖

==⇒
Δ∶𝛼 2

p(𝛼)
−−→
Δ∶𝛼 2

𝜖
=⇒
1 2 𝑦2 where Δ = 𝐺<𝛼

1,rglr(𝑥1);

(P3) If 𝐺<𝑛
2,slnt(𝑥2) = ∅ for some 𝑛 ∈ ℕ, then there exists 𝑦1 ∈ 𝑄1 so that

𝑥2 ≊ 𝑦1, 𝐺<𝑛
1,slnt(𝑦1) = ∅, 𝐺<𝑛

1,rglr(𝑦1) ⊆ Δ and 𝑥1
𝜖

==⇒
Δ∶𝑛 1 𝑦1 where Δ =

𝐺<𝑛
2,rglr(𝑥2);

(P4) For any 𝛼 ∈ 𝐴 and 𝑦2 ∈ 𝑄2 so that 𝑥2
𝛼
−→2 𝑦2, there exists 𝑦1 ∈ 𝑄1 so

that 𝑦1 ≊ 𝑦2 and 𝑥1
𝜖

==⇒
Δ∶𝛼 1

p(𝛼)
−−→
Δ∶𝛼 1

𝜖
=⇒
1 1 𝑦1 where Δ = 𝐺<𝛼

2,rglr(𝑥2).

Two automata 𝐺1 and 𝐺2 are PW-bisimilar, denoted 𝐺1 ≊ 𝐺2, if there exists

a PWB between 𝐺1 and 𝐺2 so that for each 𝑥∘
1 ∈ 𝑄∘

1, there exists 𝑥2 ∈ 𝑄2 so

that 𝐺2
𝜖
=⇒
1 2 𝑥2 and 𝑥∘

1 ≊ 𝑥2 and vice versa.

It has been shown in (Lüttgen, 1998) that PWB is a congruence w.r.t. com-

position “|” and restriction “/𝐿” in CCSch. Thus, following the observation

in (Malik, Streader et al., 2004), it is not surprising that two PW-bisimilar

automata are conflict equivalent. In the following, we provide a brief proof

to show that two PW-bisimilar automata are also conflict equivalent from an

automata perspective.2 In the following, the notation ≊ is concisely utilised

to denote a PWB between two automata.

Proposition 3.2.8. Let 𝐺1 = ⟨𝑄1, Σ𝐺, →1, 𝑄∘
1, 𝑀𝐺⟩ and 𝐺2 = ⟨𝑄2, Σ𝐺, →2,

𝑄∘
2, 𝑀𝐺⟩ be two Υ-shaped automaton so that 𝐺1 ≊ 𝐺2. For any automaton

2 Generally, combining the CCSch composition combinator and restriction combinator results

in a binary operation which is synonymous to shaping the synchronous composition of two

automata in our framework. This was also mentioned in the original CCS (Milner, 1989),

where the composition of automata was referred to as conjunction.

82

3.2 Conflict-preserving abstraction rules

𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩, any transition (𝑥1, 𝑥𝑇)

𝛼
−→𝒮 (𝑦1, 𝑦𝑇) in 𝒮(𝐺1 ∥ 𝑇)

and any 𝑥2 ∈ 𝑄2 so that 𝑥1 ≊ 𝑥2, there exists 𝑦2 ∈ 𝑄2 so that (𝑥2, 𝑥𝑇)
p(𝛼)
==⇒𝒮

(𝑦2, 𝑦𝑇) in 𝒮(𝐺2 ∥ 𝑇) and 𝑦1 ≊ 𝑦2.

Proof. There are two cases:

(Case 1) Let (𝑥1, 𝑥𝑇)
𝛼
−→𝒮 (𝑦1, 𝑦𝑇) be driven by 𝐺1 in 𝒮(𝐺1 ∥ 𝑇), i.e. 𝑥1

𝛼
−→1

𝑦1. By (P2), for all 𝑥2 so that 𝑥1 ≊ 𝑥2, we have 𝑥2
𝜖

==⇒
Δ∶𝛼 2 ̄𝑥2

p(𝛼)
−−→
Δ∶𝛼 2 ̄𝑦2

𝜖
=⇒
1 2

𝑦2 with Δ = 𝐺<𝛼
1,rglr(𝑥1) which drives the transition

(𝑥2, 𝑥𝑇)
𝜖
=⇒ (̄𝑥2, 𝑥𝑇)

p(𝛼)
−−→ (̄𝑦2, 𝑦𝑇)

𝜖
=⇒ (𝑦2, 𝑦𝑇) (108)

in 𝐺1 ∥ 𝑇. We shall show that at least one trace in (108) will not be

influenced by shaping. This holds trivially for the last fragment (̄𝑦2, 𝑦𝑇)
𝜖
=⇒

(𝑦2, 𝑦𝑇) by replacing it with (̄𝑦2, 𝑦𝑇)
𝜖
=⇒
1

(𝑦2, 𝑦𝑇). For the rest part, note

that (𝑥1, 𝑥𝑇)
𝛼
−→𝒮 (𝑦1, 𝑦𝑇) in 𝒮(𝐺1 ∥ 𝑇) implies that 𝑇 (𝑥𝑇) ∩ (Σ<𝛼

𝑇 \𝐺 ∪

𝐺<𝛼
1,rglr(𝑥1)) = ∅. Thus from 𝑥2

𝜖
==⇒
Δ∶𝛼 2 ̄𝑥2

p(𝛼)
−−→
Δ∶𝛼

̄𝑦2, we must have (𝑥2, 𝑥𝑇)
𝜖
=⇒𝒮 (̄𝑥2, 𝑥𝑇)

p(𝛼)
−−→𝒮 (̄𝑦2, 𝑦𝑇) in 𝒮(𝐺2 ∥ 𝑇).

(Case 2) Let (𝑥1, 𝑥𝑇)
𝛼
−→𝒮 (𝑦1, 𝑦𝑇) be not driven by 𝐺1. This implies that

𝐺<𝛼
1,slnt(𝑥1) = ∅. Let Δ = 𝐺<𝛼

1,rglr(𝑥1) and from (P1), for all 𝑥2 ∈ 𝑄2 so that

𝑥1 ≊ 𝑥2, there exists 𝑦2 ∈ 𝑄2 so that 𝐺<𝛼
2,slnt(𝑦2) = ∅, 𝐺<𝛼

2,rglr(𝑦2) ⊆ Δ and

𝑥2
𝜖

==⇒
Δ∶𝑛 2 𝑦2. Note that

(𝑥2, 𝑥𝑇)
𝜖
=⇒ (𝑦2, 𝑥𝑇)

𝛼
−→ (𝑦2, 𝑦𝑇) (109)

in 𝐺2 ∥ 𝑇. We clearly can guarantee that (𝑥2, 𝑥𝑇)
𝜖
=⇒𝒮 (𝑦2, 𝑥𝑇) in 𝒮(𝐺2 ∥

𝑇) from the proof of Case 1. In addition, from 𝐺<𝛼
2,slnt(𝑦2) = ∅ and

𝐺<𝛼
2,rglr(𝑦2) ⊆ Δ, we can also conclude that (𝑦2, 𝑥𝑇)

𝛼
−→𝒮 (𝑦2, 𝑦𝑇) in 𝒮(𝐺2 ∥

𝑇).

Theorem 3.2.9. Let 𝐺1 = ⟨𝑄1, Σ𝐺, →1, 𝑄∘
1, 𝑀𝐺⟩ and 𝐺2 = ⟨𝑄2, Σ𝐺, →2,

𝑄∘
2, 𝑀𝐺⟩ be two Υ-shaped automata so that 𝐺1 ≊ 𝐺2. It holds that 𝐺1 ≃𝒮 𝐺2.

Proof. Let 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ be any automaton. Suppose𝒮(𝐺1 ∥ 𝑇)

is non-blocking, we shall prove that 𝒮(𝐺2 ∥ 𝑇) is non-blocking as well (The

83

3 Compositional verification with prioritised events

proof of the symmetric case is identical). Pick any 𝑦2 ∈ 𝑄2 so that (𝑥∘
2, 𝑥∘

𝑇)
𝑠
=⇒𝒮

(𝑦2, 𝑦𝑇) in 𝒮(𝐺2 ∥ 𝑇) for some 𝑠 ∈ (Σ𝐺 ∪ Σ𝑇)∗, 𝑥∘
2 ∈ 𝑄∘

2, 𝑥∘
𝑇 ∈ 𝑄∘

𝑇 and

𝑦𝑇 ∈ 𝑄𝑇. Since 𝐺1 ≊ 𝐺2, there must exist some 𝑥1 ∈ 𝑄1 so that 𝐺1
𝜖
=⇒
1 1 𝑥1

and 𝑥1 ≊ 𝑥∘
2, directly implying 𝒮(𝐺1 ∥ 𝑇)

𝜖
=⇒𝒮 (𝑥1, 𝑥∘

𝑇). Furthermore, from

Proposition 3.2.8, it follows from induction on concatenated transitions of

any trace in (𝑥∘
2, 𝑥∘

𝑇)
𝑠
=⇒𝒮 (𝑦2, 𝑦𝑇) that there exists 𝑦1 ∈ 𝑄1 so that 𝑦1 ≊ 𝑦2 and

(𝑥1, 𝑥∘
𝑇)

𝑠
=⇒𝒮 (𝑦1, 𝑦𝑇) in 𝒮(𝐺1 ∥ 𝑇), i.e. 𝒮(𝐺1 ∥ 𝑇)

𝑠
=⇒𝒮 (𝑦1, 𝑦𝑇). Moreover,

since 𝒮(𝐺1 ∥ 𝑇) is non-blocking, for each Ω ∈ 𝑀𝐺 ∪ 𝑀𝑇, there exists 𝜔 ∈ Ω
so that (𝑦1, 𝑦𝑇)

𝑡𝜔
=⇒𝒮 in 𝒮(𝐺1 ∥ 𝑇) for some 𝑡 ∈ (Σ𝐺 ∪ Σ𝑇)∗. Again from

Proposition 3.2.8, we can conclude through induction that (𝑦2, 𝑦𝑇)
𝑡𝜔
=⇒𝒮 in

𝒮(𝐺2 ∥ 𝑇), which closes the proof.

In order to perform abstraction, given a Υ-shaped automaton, we are inter-

ested in how to construct a PW-bisimilar automaton. A first relative simple

observation is that removing any silent self-loop which does not form a com-

plete live-lock yields a PW-bisimilar automaton. Such silent self-loops are

considered redundant and are also implicitly removed by the quotient au-

tomaton construction.

Lemma 3.2.10. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be such a Υ-shaped automaton

that there exist 𝑥, 𝑦 ∈ 𝑄 and 𝜏 ∈ Υ so that 𝑥 ≠ 𝑦, 𝑥
𝜏
−→ 𝑥 and 𝑥

𝜏
−→ 𝑦. Let

𝐺′ = ⟨𝑄, Σ, → − {(𝑥, 𝜏, 𝑥)}, 𝑄∘, 𝑀⟩. It holds that 𝐺 ≊ 𝐺′.

Proof. The proof follows directly from (P1) and (P3). Note that𝐺′ isΥ-shaped

as well.

A more advanced way to construct a PW-bisimilar automaton is to construct

quotient automaton w.r.t. a slightly modified version of PWB.

Definition 3.2.11. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton. A

symmetric relation ≈ ⊆ 𝑄 × 𝑄 is a PWB on 𝐺 if for any 𝑥, 𝑥′ ∈ 𝑄 so that

𝑥 ≈ 𝑥′, the following two statements hold:

(P1’) If 𝐺<𝑛
slnt(𝑥) = ∅ for some 𝑛 ∈ ℕ, then there exists 𝑦′ so that 𝑥 ≈ 𝑦′,

𝐺<𝑛
slnt(𝑦

′) = ∅, 𝐺<𝑛
rglr(𝑦

′) ⊆ Δ and 𝑥′ 𝜖
==⇒
Δ∶𝑛

𝑦′ where Δ = 𝐺<𝑛
rglr(𝑥);

(P2’) For any 𝑦 ∈ 𝑄 and 𝛼 ∈ 𝐴 so that 𝑥
𝛼
−→ 𝑦, there exists 𝑦′ ∈ 𝑄 so that

𝑦 ≈ 𝑦′ and 𝑥′ 𝜖
==⇒
Δ∶𝛼

p(𝛼)
−−→
Δ∶𝛼

𝜖
=⇒
1

𝑦′ where Δ = 𝐺<𝛼
rglr(𝑥).

84

3.2 Conflict-preserving abstraction rules

Similar to (P3) and (P4), the symmetric part of Definition 3.2.11 can be supple-

mented directly and it is obvious that a PWB on an automaton 𝐺 is an equi-

valence relation. At this stage, we intend to prove that a Υ-shaped automaton

and its PWB-quotient automaton are indeed PW-similar. To this end, we first

prove some useful properties, including showing that the Υ-shapedness is

preserved in the PWB-quotient automaton.

Lemma 3.2.12. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton with a

PWB ≈ ⊆ 𝑄 × 𝑄 on 𝐺.

(i) For any 𝑥 ∈ 𝑄 and 𝑛 ∈ ℕ, if 𝐺<𝑛
slnt(𝑥) = ∅, then 𝐺/≈<𝑛

slnt([𝑥]) = ∅;

(ii) 𝐺/≈ is Υ-shaped;

(iii) For any 𝑥 ∈ 𝑄 and 𝑛 ∈ ℕ, if 𝐺<𝑛
slnt(𝑥) = ∅, then 𝐺/≈<𝑛

rglr([𝑥]) = 𝐺<𝑛
rglr(𝑥).

Proof. We prove all statements by contradiction:

(i) Suppose there exist 𝑥 ∈ 𝑄 and 𝑛 > 1 so that 𝐺<𝑛
slnt(𝑥) = ∅ but there also

exists 𝜏 ∈ 𝐺/≈<𝑛
slnt([𝑥]). There are two possibilities:

(Case 1) Suppose that there exists 𝑦 ∈ 𝑄 − [𝑥] so that [𝑥]
𝜏
−→

≈
[𝑦]. In this case,

from Lemma 3.2.5.(i), there must exist some 𝑥′ ∈ [𝑥] and some 𝑦′ ∈ [𝑦]
so that 𝑥′ 𝜏

−→ 𝑦′. From (P2’) and 𝑥 ≈ 𝑥′, there must exists some 𝑦″ ∈ [𝑦]
so that 𝑥

𝜖
=⇒
𝜏

𝑦″, which contradicts 𝐺<𝑛
slnt(𝑥) = ∅ since 𝑥 ≠ 𝑦″ must hold

but prio(𝜏) < 𝑛;

(Case 2) Since Case 1 does not hold, [𝑥]
𝜏
−→

≈
[𝑥] must hold, implying that

there is some 𝜏-live-lock 𝑋 ⊆ [𝑥] in 𝐺. From the definition of live-lock,

for any 𝑥″ ∈ 𝑋, there does not exist any 𝑦 ∈ 𝑄 so that 𝑥″ 𝜖
=⇒ 𝑦 and

𝐺<𝑛
slnt(𝑦) = ∅ (recall that prio(𝜏) < 𝑛). This is not allowed by (P1’) since

𝑥″ ≈ 𝑥 shall hold.

(ii) Suppose 𝐺/≈ is not Υ-shaped, i.e. there exist 𝑥 ∈ 𝑄 and 𝛼 ∈ 𝐺/≈([𝑥])
so that 𝐺/≈<𝛼

slnt([𝑥]) ≠ ∅. This implies that there must exist 𝑥′ ∈ [𝑥] so that
𝛼 ∈ 𝐺(𝑥′) from Lemma 3.2.5.(i). Since 𝐺 is Υ-shaped, 𝐺<𝛼

slnt(𝑥
′) = ∅ must

hold, which contradicts 𝐺/≈<𝛼
slnt([𝑥]) ≠ ∅ from statement (i).

(iii) It suffices to prove the “⊆” part of the current statement as the “⊇” part

holds trivially. Suppose there exists 𝜎 ∈ 𝐺/≈<𝑛
rglr([𝑥])−𝐺<𝑛

rglr(𝑥) for some 𝑥 ∈ 𝑄
and 𝑛 ∈ ℕ. Then there must exist some 𝑥′ ∈ [𝑥] so that 𝜎 ∈ 𝐺rglr(𝑥′). Since
𝑥 ≈ 𝑥′, from (P2’), 𝑥

𝜖
=⇒
𝜎

𝜎
−→
𝜎

𝜖
=⇒
1
must hold. This contradicts 𝐺<𝑛

slnt(𝑥) = ∅ since
prio(𝜎) < 𝑛 but 𝜎 ∉ 𝐺<𝑛

rglr(𝑥).

85

3 Compositional verification with prioritised events

Proposition 3.2.13. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton

with a PWB ≈ ⊆ 𝑄 × 𝑄 on 𝐺. It holds that 𝐺 ≊ (𝐺/≈).

Proof. We shall first attempt to prove that the relation R ∶= {(𝑥, [𝑥]) | 𝑥 ∈ 𝑄}
is a PWB between 𝐺 and 𝐺/≈. Note that the equivalence class [⋅] is defined
by ≈. We show that R satisfies all (P1)–(P4) in Definition 3.2.7:

(P1) Pick any 𝑥 ∈ 𝑄, 𝑛 ∈ ℕ so that 𝐺<𝑛
slnt(𝑥) = ∅. Trivially, we have [𝑥]

𝜖
−→

≈
[𝑥]

in 𝐺/≈. From Lemma 3.2.12.(i), 𝐺/≈<𝑛
slnt([𝑥]) = ∅ holds. Furthermore,

𝐺/≈<𝑛
rglr([𝑥]) ⊆ 𝐺<𝑛

rglr(𝑥) holds as well from Lemma 3.2.12.(iii).

(P2) Pick any transition 𝑥
𝛼
−→ 𝑦 in 𝐺. If 𝛼 ∈ Υ and 𝑥 ≉ 𝑦, or 𝛼 ∈ Σ, it holds

that [𝑥]
𝛼
−→

≈
[𝑦] in𝐺/≈. Otherwise, i.e. 𝛼 ∈ Υ and 𝑥 ≈ 𝑦, we have trivially

[𝑥]
𝜖
−→

≈
[𝑦]. It remains to show for both cases that 𝐺/≈<𝛼

rglr([𝑥]) ⊆ 𝐺<𝛼
rglr(𝑥)

hold. This is true from Lemma 3.2.12.(iii) since 𝑥
𝛼
−→ 𝑦 in 𝐺 (which is

Υ-shaped) implies 𝐺<𝛼
slnt(𝑥) = ∅.

(P3) Pick any 𝑥 ∈ 𝑄, 𝑛 ∈ ℕ so that 𝐺/≈<𝑛
slnt([𝑥]) = ∅. From Lemma

3.2.5.(ii), there exists 𝑥′ ∈ [𝑥] so that 𝐺<𝑛
slnt(𝑥

′) = ∅. Let Δ′ = 𝐺<𝑛
rglr(𝑥

′).
From (P1’), since 𝑥 ≈ 𝑥′, there exists 𝑦 ∈ 𝑄 so that 𝑥′ ≈ 𝑦, 𝑥

𝜖
===⇒
Δ′∶𝑛

𝑦,
𝐺<𝑛

slnt(𝑦) = ∅ and 𝐺<𝑛
rglr(𝑦) ⊆ Δ′. Note that 𝑦 R [𝑦] and [𝑦] = [𝑥]. Finally,

let Δ = 𝐺/≈<𝑛
rglr([𝑥]). Since Δ′ ⊆ Δ, it follows directly that 𝑥

𝜖
==⇒
Δ∶𝑛

𝑦 and
𝐺<𝑛

rglr(𝑦) ⊆ Δ.

(P4) Pick any transition [𝑥]
𝛼
−→

≈
[𝑦] in 𝐺/≈. This implies that there exists

𝑥′ ∈ [𝑥] and 𝑦′ ∈ [𝑦] so that 𝑥′ 𝛼
−→ 𝑦′ in 𝐺 from Lemma 3.2.5.(i). Let Δ′ =

𝐺<𝛼
rglr(𝑥

′). From (P2’), there must exist 𝑦″ ∈ [𝑦] so that 𝑥
𝜖

===⇒
Δ′∶𝛼

p(𝛼)
−−−→
Δ′∶𝛼

𝜖
=⇒
1

𝑦″.

By further letting Δ = 𝐺/≈<𝛼
rglr([𝑥]), it can be directly concluded that

𝑥
𝜖

==⇒
Δ∶𝛼

p(𝛼)
−−→
Δ∶𝛼

𝜖
=⇒
1

𝑦″ since Δ′ ⊆ Δ.

The remaining step of the proof is to show that 𝐺 ≊ (𝐺/≈) by relating their
initial states:

(1) Pick any 𝑥∘ ∈ 𝑄∘. 𝐺/≈
𝜖
=⇒
1

[𝑥∘] directly holds since [𝑥∘] ∈ 𝑄̃∘.

(2) Pick any [𝑥] ∈ 𝑄̃∘. There must exist some 𝑥∘ ∈ [𝑥] ∩ 𝑄∘ and 𝐺
𝜖
=⇒
1

𝑥∘

holds.

86

3.2 Conflict-preserving abstraction rules

It is worth mentioning that (Lüttgen, 1998) also introduced another identical

equivalence, the alternative prioritised weak bisimulation (APWB), to simplify

the computation of PWB. The definition of APWB is generally based on

expressing (P1’) and (P2’) using a single transition relation, which is given in

the following.

Definition 3.2.14. Given a Υ-shaped automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩,
define the extended transition relation ⇛ ⊆ 𝑄 × 𝐴 × 𝑄 as such that 𝑥

𝛼
≡⇛ 𝑦 if

either of the following holds:

(i) prio(𝛼) = 1 and 𝑥
𝜖
=⇒
1

p(𝛼)
−−→

𝜖
=⇒
1

𝑦, or

(ii) prio(𝛼) > 1 and there exists 𝑧 ∈ 𝑄 so that 𝐺<𝛼
slnt(𝑧) = ∅ and 𝑥

𝜖
=⇒
𝑛

𝑧
𝜖

==⇒
Δ∶𝛼

p(𝛼)
−−→
Δ∶𝛼

𝜖
=⇒
1

𝑦 where Δ = 𝐺<𝛼
rglr(𝑧) and 𝑛 = prio(𝛼) − 1.

We shall note that, unlike =⇒, a ⇛-transition can be labelled by a silent event.

In addition, it is worth mentioning that (P1’) has been implicitly encoded in

the requirement (ii) of Definition 3.2.14, where “𝐺<𝛼
slnt(𝑧) = ∅” is stipulated.

This implies that 𝑥
𝜏(𝑛)

≡≡⇛ 𝑥 generally does not hold for all 𝑥 and 𝑛. For example,

we envisage that {𝑥} is a 2-live-lock in a Υ-shaped automaton 𝐺, i.e. there

exists exactly one outgoing silent transition from 𝑥, which is 𝑥
𝜏(2)
−−→ 𝑥. In this

case, 𝑥
𝜏(𝑛)

≡≡⇛ 𝑥 holds only for 𝑛 = 1 or 𝑛 = 2. With this notion, APWB is

defined as follows.

Definition 3.2.15. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton. A

symmetric relation ≈∗ ⊆ 𝑄 × 𝑄 is an APWB on 𝐺 if for any 𝑥, 𝑥′ ∈ 𝑄 so that

𝑥 ≈∗ 𝑥′, it holds that:

(AP1) For any 𝑦 ∈ 𝑄 and 𝛼 ∈ 𝐴 so that 𝑥
𝛼
≡⇛ 𝑦, there exists 𝑦′ so that 𝑥′ 𝛼

≡⇛ 𝑦′

and 𝑦 ≈∗ 𝑦′.

Note that we have hidden the statement symmetric to (AP1) in Definition

3.2.15. It has been shown in (Lüttgen, 1998, Theorem 2.4.22) that PWB and

APWB are indeed identical.

Proposition 3.2.16. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton. A

relation ∼ ⊆ 𝑄 × 𝑄 on 𝐺 is a PWB if and only if it is an APWB.

Based on Proposition 3.2.16, the computation of PWB can be equivalently

considered as the computation of APWB. As long as the transition relation

87

3 Compositional verification with prioritised events

⇛ is available, APWB can be computed through any ordinary bisimulation

partition algorithms (Blom and Orzan, 2003; Fernandez, 1989; Paige and

Tarjan, 1987).

Complexity of the partition of APWB If ⇛ is available, the complexity

of computing APWB is 𝒪(|⇛| ⋅ log|𝑄|) based on the algorithm introduced

in (Fernandez, 1989). The relation ⇛ can be computed based on transition

saturation (Milner, 1989) where we additionally need to compare the active

regular event sets of the source state and target state of each transition before

saturation. Note that ⇛ generally has infinite transitions since for any state 𝑥

without outgoing silent transitions, 𝑥
𝜏(𝑛)

≡≡⇛ 𝑥 holds for all 𝑛 ∈ ℕ. Nevertheless,
for state partition, we only need to consider silent events Υ≤𝑁+1 where 𝑁
is the lowest priority value appearing in this automaton. The reason is that,

from Definition 3.2.14, 𝐴
𝜏(𝑁+1)

≡≡≡⇛ 𝐵 if and only if 𝐴
𝜏(𝑀)

≡≡⇛ 𝐵 where 𝑀 ≥ 𝑁 + 1.
However, computing ⇛ is not a trivial task. In our current implementation,

we first compute a transition relation

⇛′∶= {(𝑥, 𝑛, 𝑦) | 𝑛 = 1 ∨ (𝑛 > 1, 𝑥
𝜖

==⇒
𝑛−1

𝑦 and 𝐺<𝑛
slnt(𝑦) = ∅)} (110)

which has the worst case complexity of 𝒪(|𝑄|2 ⋅ 𝑁). This is the first half of
the transition relation ⇛. Each transition in ⇛′ is then a seed for transition

saturation, i.e. extended by
𝜖

==⇒
Δ∶𝛼

p(𝛼)
−−→
Δ∶𝛼

𝜖
=⇒
1
. This means that each transition in

⇛′ will be again maximally operated |𝐴| ⋅ |𝑄| times where |𝐴| = |Σ| + 𝑁.

In each such operation, we need to compare the set of active high-priority

regular events. This comparison has the complexity of 𝒪(|Σ|). Thus, our
implementation of computing ⇛ is 𝒪(|𝑄|3 ⋅ 𝑁 ⋅ |𝐴| ⋅ |Σ|). This complexity

dominates the complexity of partitioning APWB, which is 𝒪(|⇛| ⋅ log|𝑄|) =
𝒪(|𝑄|2 ⋅ |𝐴| ⋅ log|𝑄|).

From Definition 3.2.11, we note that PWB is defined as such that if a regular

event 𝜎 is to execute at some state, then an equivalent state must be able to

execute 𝜎 either directly or after a delay of several silent steps with priority not

lower than 𝜎. The reason of this restriction can be seen from the following

example. For brevity of examples in the remainder, we take the convention

that, if not explicitly specified, the marking set of any automaton is {{𝜔}}
with prio(𝜔) = 1.

Example 3.2.3. Consider the automaton 𝐺 given in Figure 27. It follows from

(P1’) directly that I ≉ II. If I and II are merged through some equivalence

relation ∼ which generates 𝐺/∼, a counterexample 𝑇 can be constructed as

88

3.2 Conflict-preserving abstraction rules

given in Figure 27 to witness that𝐺 ≄𝒮(𝐺/∼), since 𝒮(𝐺 ∥ 𝑇) is blocking while
𝒮(𝐺/∼ ∥ 𝑇) is not.

IIIτ(2)G G/∼I II [I] [III]
I∼II

σ(1) σ(1)

T i ii

ω(1)

I,iii

τ(2)

S(G ‖ T) I,i

τ(2)

III,iv

σ(1)

II,iii

S(G/∼ ‖ T) [I],i σ(1)
[III],ii

ω(1) ω(1)

ω(1)

σ(1)

τ(2)

σ(1)

iii iv

II,i III,iiτ(2) σ(1)

ω(1)

Figure 27: Silent step with priority lower than its delayed regular event may not be mergable

Consider the automaton 𝐺 given in Figure 27 again. The failure of the abstrac-

tion is in fact caused by the reachable state (I, i) in 𝒮(𝐺 ∥ 𝑇), since 𝜏(2) in i

will not be preempted by the shared event 𝜎, whose priority is higher than 𝜏(2).

However, this preemption indeed will happen in ([I], i) in 𝒮(𝐺/∼ ∥ 𝑇) due
to the state merging. In this regard, our idea to ensure conflict equivalence

is to add further restriction on the automaton so that such “bad” states will

always be unreachable. As for 𝐺 in Figure 27, consider adding a new state IV

with a new transition IV
𝜏(3)
−−→ I. Furthermore, let IV be the only new initial

state. For such an automaton 𝐺′ as given in Figure 28, merging I and II does

yield a conflict-preserving abstraction. The intuition behind this modification

is that, in order to visit II under synchronisation, IV must be visited at first.

However, when (IV, 𝑥𝑇)
𝜏(3)
−−→𝒮 (I, 𝑥𝑇) is executed for some 𝑥𝑇, the next step

must be (I, 𝑥𝑇)
𝜏(2)
−−→𝒮 (II, 𝑥𝑇) since I cannot execute any synchronised event

and 𝑥𝑇 cannot execute any private event with priority higher than 3 either.

This observation motivates the definition of redundant silent step and it is

shown in the following that merging a redundant silent step, which is referred

to as the redundant silent step rule, is a conflict-preserving abstraction.

Definition 3.2.17. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton. A

transition 𝑥
𝜏
−→ 𝑥′ with 𝑥, 𝑥′ ∈ 𝑄 and 𝜏 ∈ Υ is a redundant silent step if this is

89

3 Compositional verification with prioritised events

III

τ(2)

G′ G′/∼

I II

[IV]

[I]

I∼II

σ(1)

ω(1)

IV

τ(3)

[III]

σ(1)

ω(1)

τ(3)

Figure 28: Redundant silent step rule

the only transition outgoing from 𝑥, 𝑥 ∉ 𝑄∘ and 𝑦
𝛼
−→ 𝑥 for any 𝑦 ∈ 𝑄 implies

𝛼 ∈ Υ and prio(𝛼) > prio(𝜏). An equivalence ∼ ⊆ 𝑄 × 𝑄 on 𝐺 is induced by

the transition 𝑥
𝛼
−→ 𝑥′ if 𝑥 ∼ 𝑥′ and for all 𝑦 ∈ 𝑄 − {𝑥, 𝑥′}, [𝑦] is a singleton

class.

FromDefinition 3.2.17, we note that a silent self-loop can never be a redundant

silent step. In addition, the definition of redundant silent step does not

specifically handle the existence of live-locks. The reason is that the active

event set of the target state of a redundant silent step can be completely

preserved in the quotient automaton. This is stated by the following lemma.

Lemma 3.2.18. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton and the

equivalence ∼ ⊆ 𝑄×𝑄 is induced by the redundant silent step 𝑥
𝜏
−→ 𝑥′. It holds

that 𝐺(𝑥′) = 𝐺/∼([𝑥])

Proof. It suffices to consider the case that [𝑥]
𝜏′

−→
∼

[𝑥] in 𝐺/∼ for some 𝜏 ′ ∈ Υ.

In this case, [𝑥] contains a 𝜏 ′-live-lock from𝐺which is formed either by {𝑥, 𝑥′}
or solely by {𝑥′} (solely by {𝑥} is clearly impossible). The case of solely by

{𝑥′} is rather trivial, whilewhen {𝑥, 𝑥′} is a 𝜏 ′-live-lock, wemust have 𝑥′ 𝜏′

−→ 𝑥
since from the definition of redundant silent step, prio(𝜏 ′) > prio(𝜏) must

hold.

Consider a redundant silent step 𝑥𝐺
𝜏
−→ 𝑥′

𝐺 in a Υ-shaped automaton 𝐺
with some regular event 𝜎 so that prio(𝜎) < prio(𝜏), 𝜎 ∉ 𝐺(𝑥𝐺) and 𝜎 ∈
𝐺(𝑥′

𝐺), we can assert that 𝑥𝐺 and 𝑥′
𝐺 are never PW-bisimilar. Intuitively, this

invalidates the property given in Proposition 3.2.8 if it is assumed that the

resulting quotient automaton and the original one are “equivalent”. More

precisely, for some state 𝑥𝑇 in a test automaton 𝑇, if 𝑥𝑇
𝜏′

−→ for some 𝜏 ′ ∈ Σ𝑇 \𝐺

where prio(𝜏 ′) ≤ prio(𝜏), we must have (𝑥𝐺, 𝑥𝑇)
𝜏′

−→𝒮 in 𝒮(𝐺 ∥ 𝑇), while
([𝑥𝐺], 𝑥𝑇)

𝜏′

−→𝒮 may not hold in 𝒮(𝐺/∼ ∥ 𝑇) when 𝜎 ∈ 𝑇 (𝑥𝑇) and prio(𝜎) <
prio(𝜏 ′). Interestingly, such (𝑥𝐺, 𝑥𝑇) is never reachable in 𝒮(𝐺 ∥ 𝑇).
90

3.2 Conflict-preserving abstraction rules

Proposition 3.2.19. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automa-

ton and the equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 is induced by the redundant silent step

̄𝑥𝐺
𝜏
−→ ̄𝑥′

𝐺. Let 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ be any automaton. For all ̄𝑥𝑇 ∈ 𝑄𝑇

so that 𝑇 ≤𝜏
prvt(̄𝑥𝑇) ≠ ∅, (̄𝑥𝐺, ̄𝑥𝑇) is not reachable in 𝒮(𝐺 ∥ 𝑇).

Proof. We prove by contradiction. Pick any ̄𝑥𝑇 ∈ 𝑄𝑇 so that 𝑇 ≤𝜏
prvt(̄𝑥𝑇) ≠ ∅. To

reach (̄𝑥𝐺, ̄𝑥𝑇), one shall first reach some (𝑦𝐺, 𝑦𝑇) where 𝑦𝐺 ∈ 𝑄𝐺, 𝑦𝑇 ∈ 𝑄𝑇

so that 𝑦𝐺
𝜏′

−→ ̄𝑥𝐺 with some 𝜏 ′ ∈ Υ. From Definition 3.2.17, it is clear that

prio(𝜏 ′) ≥ 𝑛. This implies that (𝑦𝐺, ̄𝑥𝑇)
𝜏′

−→𝒮/ (̄𝑥𝐺, ̄𝑥𝑇). With this observation,

we continue the proof by attempting to construct a trace from (𝑦𝐺, 𝑦𝑇) to
(̄𝑥𝐺, ̄𝑥𝑇), which must fail. Consider the following cases:

(Case 1) 𝑇 ≤𝜏
prvt(𝑦𝑇) ≠ ∅. Let 𝑦𝑇

𝜏″

−→ ̄𝑦𝑇 for some ̄𝑦𝑇 ∈ 𝑄𝑇 and 𝜏″ ∈ 𝑇 ≤𝜏
prvt(𝑦𝑇).

Clearly, prio(𝜏″) < prio(𝜏 ′), and we concatenate (𝑦𝐺, 𝑦𝑇)
𝜏″

−→𝒮 (𝑦𝐺, ̄𝑦𝑇)
(without losing generality, we can assume that 𝑇 <𝜏″

prvt (𝑦𝑇) = ∅). If 𝑇 ≤𝜏
prvt(̄𝑦𝑇)

≠ ∅ always holds for such concatenation, then the construction is trapped
in Case 1 and ̄𝑥𝐺 can never be visited. Otherwise, let 𝑇 ≤𝜏

prvt(̄𝑦𝑇) = ∅, which
leads to Case 2.

(Case 2) 𝑇 ≤𝜏
prvt(𝑦𝑇) = ∅. From (𝑦𝐺, 𝑦𝑇), since only private events can be

executed, consider the possibility of concatenating (𝑦𝐺, 𝑦𝑇)
𝜏′

−→𝒮 (̄𝑥𝐺, 𝑦𝑇)
in 𝒮(𝐺 ∥ 𝑇), since executing a private transition in 𝑇 indeed rolls the

construction back to the beginning of either Case 1 or 2. However, if

(𝑦𝐺, 𝑦𝑇)
𝜏′

−→𝒮 (̄𝑥𝐺, 𝑦𝑇), it implies that the next transition which can be

concatenated must be (̄𝑥𝐺, 𝑦𝑇)
𝜏
−→𝒮 (̄𝑥′

𝐺, 𝑦𝑇) since prio(𝜏) < prio(𝜏 ′) and
executing any shared event with priority higher than 𝜏 in (̄𝑥𝐺, 𝑦𝑇) is not
possible. Recall that 𝑦𝑇 ≠ ̄𝑥𝑇 due to 𝑇 ≤𝜏

prvt(̄𝑥𝑇) ≠ ∅, i.e. for any 𝑧𝑇 ∈ 𝑄𝑇
so that (̄𝑥𝐺, 𝑧𝑇) is reachable in 𝒮(𝐺 ∥ 𝑇), 𝑇 ≤𝜏

prvt(̄𝑧𝑇) = ∅ must hold. This

indeed closes the proof.

When merging a redundant silent step, states characterised in Proposition

3.2.19 are exactly the “bad” states which potentially invalidate conflict equi-

valence. With this observation, the following proposition is derived which is

similar to Proposition 3.2.8.

Proposition 3.2.20. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automa-

ton and the equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 is induced by the redundant silent step

̄𝑥𝐺
𝜏
−→ ̄𝑥′

𝐺. Let 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ be any automaton.

91

3 Compositional verification with prioritised events

(i) For any transition ([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮 ([𝑦𝐺], 𝑦𝑇) in 𝒮(𝐺/∼ ∥ 𝑇), at least one

of the following two statements is true for any 𝑥′
𝐺 ∈ [𝑥𝐺]:

a) There exists some 𝑦′
𝐺 ∈ [𝑦𝐺] so that (𝑥′

𝐺, 𝑥𝑇)
p(𝛼)
==⇒𝒮 (𝑦′

𝐺, 𝑦𝑇) in 𝒮(𝐺 ∥
𝑇), or

b) (𝑥′
𝐺, 𝑥𝑇) is not reachable in 𝒮(𝐺 ∥ 𝑇).

(ii) For any transition (𝑥𝐺, 𝑥𝑇)
𝛼
−→𝒮 (𝑦𝐺, 𝑦𝑇) in 𝒮(𝐺 ∥ 𝑇), at least one of the

following two statements is true:

a) ([𝑥𝐺], 𝑥𝑇)
p(𝛼)
−−→𝒮 ([𝑦𝐺], 𝑦𝑇) in 𝒮(𝐺/∼ ∥ 𝑇), or

b) (𝑥𝐺, 𝑥𝑇) is not reachable in 𝒮(𝐺 ∥ 𝑇).

Proof. (i) If [𝑥𝐺] is a singleton, then statement a) holds trivially. Thus, we let

[𝑥𝐺] = [̄𝑥𝐺]. In this case, note that if ([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮 ([𝑦𝐺], 𝑦𝑇) is not driven by

𝐺, then statement a) must be true as well since either (̄𝑥𝐺, 𝑥𝑇)
𝛼
−→𝒮 (̄𝑥𝐺, 𝑦𝑇)

or (̄𝑥𝐺, 𝑥𝑇)
𝜏
−→𝒮 (̄𝑥′

𝐺, 𝑥𝑇)
𝛼
−→𝒮 (̄𝑥′

𝐺, 𝑦𝑇) holds in 𝒮(𝐺 ∥ 𝑇) from Lemma 3.2.18.

Thus, let ([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮 ([𝑦𝐺], 𝑦𝑇) be driven by 𝐺. This implies 𝛼 ∈ 𝐺(̄𝑥′

𝐺)
due to Lemma 3.2.18 and we pick 𝑥′

𝐺 ∈ [𝑥𝐺]. There are two cases:

(Case 1) 𝑥′
𝐺 = ̄𝑥′

𝐺. We shall note that 𝐺(̄𝑥′
𝐺) = 𝐺/∼([̄𝑥′

𝐺]) from Lemma

3.2.18. Thus, in this case, statement a) must hold.

(Case 2) 𝑥′
𝐺 = ̄𝑥𝐺. We directly suppose that statement a) is not true,

i.e. (̄𝑥𝐺, 𝑥𝑇)
p(𝛼)
==⇒𝒮/ (𝑦′

𝐺, 𝑦𝑇) in 𝒮(𝐺 ∥ 𝑇) for any 𝑦′
𝐺 ∈ [𝑦𝐺]. This

implies that 𝑇 <𝜏
prvt(𝑥𝑇) ≠ ∅, since otherwise, we must be able to execute

(̄𝑥𝐺, 𝑥𝑇)
𝜏
−→𝒮 (̄𝑥′

𝐺, 𝑥𝑇), which leads to Case 1. Note that 𝑇 <𝜏
prvt(𝑥𝑇) ≠ ∅

implies 𝑇 ≤𝜏
prvt(𝑥𝑇) ≠ ∅. Thus, in this case, statement b) must hold from

Proposition 3.2.19.

(ii) Note that statement a) must hold if [𝑥𝐺] is a singleton. In addition, state-
ment a) holds for 𝑥𝐺 = ̄𝑥′

𝐺 as well from Lemma 3.2.18. Let 𝑥𝐺 = ̄𝑥𝐺. If

(𝑥𝐺, 𝑥𝑇)
𝛼
−→𝒮 (𝑦𝐺, 𝑦𝑇) is driven by 𝐺, then 𝑦𝐺 = ̄𝑥′

𝐺 and statement a) holds

from a trivial transition ([𝑥𝐺], 𝑥𝑇)
𝜖
−→ ([𝑦𝐺], 𝑥𝑇). Let (𝑥𝐺, 𝑥𝑇)

𝛼
−→𝒮 (𝑦𝐺, 𝑦𝑇) be

not driven by 𝐺. In this case, statement b) must hold from Proposition 3.2.19

since prio(𝛼) ≤ prio(𝜏), i.e. 𝛼 ∈ 𝑇 ≤𝜏
prvt(𝑥𝑇).

In Proposition 3.2.20, both statements (i).a) and (ii).a) are synonymous to

Proposition 3.2.8. In fact, replacing the equivalence relation in Proposition

3.2.20 by PWB (on 𝐺) results in a true proposition as well where both a)

92

3.2 Conflict-preserving abstraction rules

statements are always true. We are now in the position to state the redundant

silent step rule as follows.

Theorem 3.2.21 (redundant silent step rule). Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be
a Υ-shaped automaton and the equivalence ∼ ⊆ 𝑄 × 𝑄 is induced by some

redundant silent step. It holds that 𝐺 ≃𝒮 (𝐺/∼).

Proof. The proof is indeed the same as the proof of Theorem 3.2.9 up to

uniform substitution of the equivalence relation. Note that for all states

reached by the induction, statements (i).a) and (ii).a) of Proposition 3.2.20

must hold.

Complexity of the redundant silent step rule The redundant silent step

rule can be applied by checking whether all incoming transitions of a state are

silent (which is of order |𝑄| in a Υ-shaped automaton since from one state,

there is maximally one silent transition to a given target state) and redirecting

these incoming transitions (which is again of order |𝑄|, since all transitions
are silent). Since this procedure should be repeated for each state, the overall

complexity is 𝒪(|𝑄|3).

3.2.2 Abstraction rules based on incoming equivalence

In the ordinary context without prioritised events, (Flordal and Malik, 2009)

introduced several abstraction rules based on incoming equivalence. The

current section attempts to adapt these rules for prioritised events, which is

in general not as trivial as one might imagine.

The motivation of introducing incoming equivalence is to pre-partition states

that can be reached in the same way; namely, when a state can be reached

under synchronisation with some test, an incoming equivalent state must be

reachable under the synchronisation with the same test as well. Incoming

equivalence does not necessarily imply (ordinary) conflict equivalence, but

serves as a filter to enable two conflict-preserving abstraction rules, i.e. the

active events rule and the silent continuation rule. The key property of incom-

ing equivalence in the ordinary context is, all states in the same class can be

reached from the same state with a regular event, possibly with some silent

events before or after the regular event. Since this property is rather cumber-

some to achieve when considering prioritised events, a formal definition of

this property is first given and named as redirectability.

93

3 Compositional verification with prioritised events

Definition 3.2.22. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automa-

ton. An equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 is redirectable if and only if for any au-

tomaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩, 𝑦𝐺 ∈ 𝑄𝐺, 𝑦𝑇 ∈ 𝑄𝑇 and 𝑠𝑇 ∈ Σ∗

𝑇 \𝐺, the

following two statements hold:

(R1) (𝑥𝐺, 𝑥𝑇)
𝜎
−→𝒮

𝑠𝑇
=⇒𝒮 (𝑦𝐺, 𝑦𝑇) in 𝒮(𝐺 ∥ 𝑇) for any 𝑥𝐺 ∈ 𝑄𝐺, 𝑥𝑇 ∈ 𝑄𝑇

and 𝜎 ∈ Σ𝐺 implies that for all 𝑦′
𝐺 ∈ [𝑦𝐺], (𝑥𝐺, 𝑥𝑇)

𝜎𝑠𝑇
==⇒𝒮 (𝑦′

𝐺, 𝑦𝑇) in
𝒮(𝐺 ∥ 𝑇);

(R2) 𝒮(𝐺 ∥ 𝑇)
𝑠𝑇
=⇒𝒮 (𝑦𝐺, 𝑦𝑇) implies that for all 𝑦′

𝐺 ∼ 𝑦𝐺, 𝒮(𝐺 ∥ 𝑇)
𝑠𝑇
=⇒𝒮

(𝑦′
𝐺, 𝑦𝑇).

It is to observe from Definition 3.2.22 that, for a redirectable equivalence

relation, the synchronised behaviour can choose any state in a class to proceed

if at least one state in the class can be reached by a regular event followed

by some private events (or the synchronised behaviour is currently in the

initial state). From this observation, redirectability can commonly be utilised

in such scenarios where a transition need to be redirected to a successor,

in which desired future behaviour is guaranteed. This feature is especially

useful when reasoning the original behaviour from the abstracted behaviour.

In this regard, we review Lemma 3.2.5.(i), which is a general property for

any arbitrary equivalence stating that a transition in the original behaviour

can always be reconstructed from the abstracted behaviour. Note that the

existence statement “there exists 𝑦′ ∈ [𝑦]...” in Lemma 3.2.5 does not allow

concatenating multiple reconstructed transitions, i.e. we can not guarantee

that e.g. ([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮 ([𝑦𝐺], 𝑦𝑇)

𝛼′

−→𝒮 ([𝑧𝐺], 𝑧𝑇) implies the existenceof 𝑥′
𝐺 ∈

[𝑥𝐺], 𝑦′
𝐺 ∈ [𝑦𝐺] and 𝑧′

𝐺 ∈ [𝑧𝐺] so that (𝑥′
𝐺, 𝑥𝑇)

𝛼
−→𝒮 (𝑦′

𝐺, 𝑦𝑇)
𝛼′

−→𝒮 (𝑧′
𝐺, 𝑧𝑇).

Nevertheless, this problem can be solved by requiring redirectability on an

equivalence if a trace begins with a regular event from 𝐺. This is stated by the

following proposition which is inspired by (Flordal and Malik, 2009, Lemma

2).

Proposition 3.2.23. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automa-

ton with a redirectable equivalence ∼ ⊆ 𝑄 × 𝑄 on 𝐺. For any automaton

𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩, the following two statements hold:

(i) For any trace

([𝑥𝐺0], 𝑥𝑇 0)
𝛼1
−→𝒮 ([𝑥𝐺1], 𝑥𝑇 1)

𝛼2
−→𝒮 ⋯

𝛼𝑘
−→𝒮 ([𝑥𝐺𝑘], 𝑥𝑇 𝑘) (111)

94

3.2 Conflict-preserving abstraction rules

in 𝒮(𝐺/∼ ∥ 𝑇) where 𝑘 ≥ 1, 𝛼1 ∈ Σ𝐺 and 𝛼𝑖 ∈ 𝐴𝐺 ∪ 𝐴𝑇 for all 𝑖 ∈
{2, ⋯ , 𝑘}, there exist 𝑥′

𝐺0 ∈ [𝑥𝐺0] and 𝑥′
𝐺𝑘 ∈ [𝑥𝐺𝑘] so that (𝑥′

𝐺0, 𝑥𝑇 0)
p(𝛼1⋯𝛼𝑘)
======⇒𝒮 (𝑥′

𝐺𝑘, 𝑥𝑇 𝑘) in 𝒮(𝐺 ∥ 𝑇);

(ii) If 𝒮(𝐺/∼ ∥ 𝑇)
𝑠
=⇒𝒮 ([𝑥𝐺], 𝑥𝑇) for some 𝑠 ∈ (Σ𝐺 ∪ Σ𝑇)∗, then there exists

𝑥′
𝐺 ∈ [𝑥𝐺] so that 𝒮(𝐺 ∥ 𝑇)

𝑠
=⇒𝒮 (𝑥′

𝐺, 𝑥𝑇).

Proof. (i) We prove by induction:

(Base case) For 𝑘 = 1, it holds immediately that there exists 𝑥′
𝐺0 ∈ [𝑥𝐺0] and

𝑥′
𝐺1 ∈ [𝑥𝐺1] so that (𝑥′

𝐺0, 𝑥𝑇 0)
𝛼1
−→𝒮 (𝑥′

𝐺1, 𝑥𝑇 1) in 𝒮(𝐺 ∥ 𝑇) from Lemma

3.2.5.(i) since 𝛼1 ∈ Σ𝐺.

(Inductive step) Suppose the proposition holds for some 𝑘 ≥ 1, i.e. for some

trace
([𝑥𝐺0], 𝑥𝑇 0)

𝛼1
−→𝒮 ([𝑥𝐺1], 𝑥𝑇 1)

𝛼2
−→𝒮 ⋯

𝛼𝑘
−→𝒮 ([𝑥𝐺𝑘], 𝑥𝑇 𝑘) (112)

in 𝒮(𝐺/∼ ∥ 𝑇) where 𝛼1 ∈ Σ𝐺 and 𝛼𝑖 ∈ 𝐴𝐺 ∪ 𝐴𝑇 for all 𝑖 ∈ {2, … , 𝑘}, there
exist 𝑥′

𝐺0 ∈ [𝑥𝐺0] and 𝑥′
𝐺𝑘 ∈ [𝑥𝐺𝑘] so that

(𝑥′
𝐺0, 𝑥𝑇 0)

p(𝛼1⋯𝛼𝑘)
======⇒𝒮 (𝑥′

𝐺𝑘, 𝑥𝑇 𝑘) (113)

in 𝒮(𝐺 ∥ 𝑇). From this hypothesis, we show that the proposition holds for

𝑘 + 1 as well. Consider any successive transition

([𝑥𝐺𝑘], 𝑥𝑇 𝑘)
𝛼𝑘+1
−−−→𝒮 ([𝑥𝐺𝑘+1], 𝑥𝑇 𝑘+1) (114)

of trace (112). This indeed implies the existence of 𝑥″
𝐺𝑘 ∈ [𝑥𝐺𝑘] and 𝑥′

𝐺𝑘+1 ∈
[𝑥𝐺𝑘+1] so that (𝑥″

𝐺𝑘, 𝑥𝑇 𝑘)
𝛼𝑘+1
−−−→𝒮 (𝑥′

𝐺𝑘+1, 𝑥𝑇 𝑘+1) in 𝒮(𝐺 ∥ 𝑇) due to either
Lemma 3.2.5.(i) (if (114) is driven by𝐺) or Lemma 3.2.5.(ii) (if (114) is notdriven

by 𝐺). Now if [𝑥𝐺𝑘] is a singleton, the proof closes directly since 𝑥′
𝐺𝑘 = 𝑥″

𝐺𝑘.

Otherwise, from trace (112), we shall find the last regular transition driven by

𝐺, i.e. we consider the trace fragment

([𝑥𝐺𝑖−1], 𝑥𝑇 𝑖−1)
𝛼𝑖
−→𝒮 ([𝑥𝐺𝑖], 𝑥𝑇 𝑖)

𝛼𝑖+1⋯𝛼𝑘
−−−−−→𝒮 ([𝑥𝐺𝑘], 𝑥𝑇 𝑘) (115)

from (112)where𝛼𝑖 ∈ Σ𝐺 and𝛼𝑖+1 ⋯ 𝛼𝑘 ∈ (Σ𝑇 \𝐺∪Υ)∗. Let 𝑠𝑇 = p(𝛼𝑖+1 ⋯ 𝛼𝑘).
From this and due to the inductive hypothesis, we can extract the fragment

(̄𝑥𝐺, ̄𝑥𝑇)
𝛼𝑖
−→

𝑠𝑇
=⇒𝒮 (𝑥′

𝐺𝑘, 𝑥𝑇 𝑘) (116)

95

3 Compositional verification with prioritised events

from (113) for some ̄𝑥𝐺 ∈ 𝑄𝐺 and ̄𝑥𝑇 ∈ 𝑄𝑇. Since ∼ is redirectable, we have

(̄𝑥𝐺, ̄𝑥𝑇)
𝛼𝑖𝑠𝑇
===⇒𝒮 (𝑥″

𝐺𝑘, 𝑥𝑇 𝑘) (117)

from (R1), which can be concatenated by (𝑥″
𝐺𝑘, 𝑥𝑇 𝑘)

𝛼𝑘+1
−−−→𝒮 (𝑥′

𝐺𝑘+1, 𝑥𝑇 𝑘+1).

(ii) We separate the proof into two cases:

(Case 1) 𝑠 ∈ Σ∗
𝑇 \𝐺. This case holds directly from (R2). Note that we have

proven an even more general version of the current statement, i.e. the

statement holds for all states in [𝑥𝐺] instead of the existence of some state

in [𝑥𝐺], which will be utilised in the proof for the next case.

(Case 2) 𝑠 ∉ Σ∗
𝑇 \𝐺. Then let

𝒮(𝐺/∼ ∥ 𝑇)
𝑠𝑇
=⇒𝒮 ([𝑦𝐺], 𝑦𝑇)

𝜎
−→𝒮 ([𝑧𝐺], 𝑧𝑇)

𝑡
=⇒𝒮 ([𝑥𝐺], 𝑥𝑇) (118)

where 𝑠𝑇 ∈ Σ∗
𝑇 \𝐺, 𝜎 ∈ Σ𝐺 and 𝑡 ∈ (Σ𝐺 ∪ Σ𝑇)∗ so that 𝑠𝑇𝜎𝑡 = 𝑠. From

Case 1, for all 𝑦′
𝐺 ∈ [𝑦𝐺], 𝒮(𝐺 ∥ 𝑇)

𝑠𝑇
=⇒𝒮 (𝑦′

𝐺, 𝑦𝑇). From statement (i),

there exists 𝑦″
𝐺 ∈ [𝑦𝐺] and 𝑥′

𝐺 ∈ [𝑥𝐺] so that (𝑦″
𝐺, 𝑦𝑇)

𝜎𝑡
=⇒𝒮 (𝑥′

𝐺, 𝑥𝑇),
which closes the proof.

In order to achieve redirectability, we are going to define incoming equivalence

for prioritised events by adapting the ordinary version introduced in (Flordal

and Malik, 2009, Definition 7). From the notion of PWB, intuitively, the

transition relation
𝜖

==⇒
Δ∶𝛼

p(𝛼)
−−→
Δ∶𝛼

𝜖
=⇒
1
is tolerant against preemption and can possibly

be utilised for the definition of incoming equivalence w.r.t. prioritised events.

In particular, the execution of
𝜖
=⇒
1

cannot be disturbed by any rest part due

to preemption. In fact, this requirement can be relaxed when considering

redirectability. Consider some new transition relations as follows.

Definition 3.2.24. Given a Υ-shaped automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩,
define the following extended transition relations:

(T4) −→
!

⊆ 𝑄 × Υ × 𝑄: 𝑥
𝜏
−→
!

𝑦 if 𝑥
𝜏
−→ 𝑦 and 𝐺<𝜏

rglr(𝑥) = ∅.

(T5) ↪−→
𝑛

⊆ 𝑄 × {𝜖} × 𝑄: 𝑥
𝜖
↪−→
𝑛

𝑦 if either of the following holds:

(i) 𝑛 = 1 and 𝑥
𝜖
=⇒
1

𝑦, or

(ii) 𝑛 ≥ 2, 𝑥
𝜏1
−→

!

𝜏2
−→

!
⋯

𝜏𝑘
−→

!
𝑦, 𝑘 ≥ 1 and lo({𝜏1 ⋯ 𝜏𝑘}) = 𝑛.

96

3.2 Conflict-preserving abstraction rules

Transition relations introduced in Definition 3.2.24 are generally more restrict-

ive than those in Definition 3.2.6 in that preemption through regular events

shall never take place on a ↪-transition before the last state. Note that the

new transition symbol “↪” is utilised intentionally to differ from → and ⇒
since when 𝑛 ≥ 2, 𝑥

𝜖
↪−→
𝑛

𝑥 generally does not hold for an arbitrary state 𝑥,

because at least one 𝜏(𝑛) transition must exist within
𝜖
↪−→
𝑛
. Based on Definition

3.2.24, the adapted definition of incoming equivalence is presented as follows.

Definition 3.2.25. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton. An

equivalence ∼inc ⊆ 𝑄 × 𝑄 on 𝐺 is an incoming equivalence if and only if for

any 𝑥, 𝑥′ ∈ 𝑄 so that 𝑥 ∼inc 𝑥′, all the following statements hold:

(I1) For any 𝜎 ∈ Σ, 𝑛 ∈ ℕ and 𝑦 ∈ 𝑄, 𝑦
𝜖

==⇒
Δ∶𝜎

𝜎
−−→
Δ∶𝜎

𝜖
↪−→
𝑛

𝑥 ⇔ 𝑦
𝜖

==⇒
Δ∶𝜎

𝜎
−−→
Δ∶𝜎

𝜖
↪−→
𝑛

𝑥′

where Δ = 𝐺<𝜎
rglr(𝑦);

(I2) For any 𝑛 ∈ ℕ, 𝑄∘ 𝜖
↪−→
𝑛

𝑥 ⇔ 𝑄∘ 𝜖
↪−→
𝑛

𝑥′;

(I3) If 𝑥 ≠ 𝑥′, then for any 𝑦 ∈ 𝑄 and 𝜏 ∈ Υ, 𝑦
𝜏
−→

𝜖
=⇒ 𝑥 or 𝑦

𝜏
−→

𝜖
=⇒ 𝑥′ implies

𝐺<𝜏
rglr(𝑦) = ∅.

Clearly, incoming equivalence distributes over arbitrary union. Hence, it is

legit to utilise ∼inc to denote the coarsest incoming equivalence of an automa-

ton. In addition, any equivalence finer as an incoming equivalence is an

incoming equivalence as well. Thus, the notation of ∼ ⊆ ∼inc is often utilised

to indicate that ∼ is an incoming equivalence. Similar to the ordinary version

in (Flordal and Malik, 2009), Definition 3.2.25 attempts to equalise states

which can be reached in the same way, i.e. only the past of a state is con-

sidered and its future behaviour is totally ignored. However, such intuition is

inadequate when prioritised events are taken into consideration, since redir-

ectability requires that the same state 𝑦𝑇 from some test 𝑇 should be reached

before and after abstraction. If no restrictions over the future behaviour of

incoming equivalent states are given, redirectability can be easily invalidated if

two equivalent states have different preemptive power. In addition, we notice

that when abstracting an automaton through quotient automaton construc-

tion, it is almost always required that the quotient automaton of a Υ-shaped

automaton shall be Υ-shaped as well, which can not be guaranteed solely

by incoming equivalence. To this end, we first introduce our definitions of

active-event equivalence and silent-continuation equivalence.

Definition 3.2.26. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton.

An equivalence ∼ae ⊆ 𝑄 × 𝑄 on 𝐺 is an active-event equivalence if for any

𝑥, 𝑥′ ∈ 𝑄 so that 𝑥 ∼ae 𝑥′ and 𝑥 ≠ 𝑥′, the following two statements hold:

97

3 Compositional verification with prioritised events

(AE1) 𝐺slnt(𝑥) = 𝐺slnt(𝑥′) = ∅;

(AE2) 𝐺rglr(𝑥) = 𝐺rglr(𝑥′).

Definition 3.2.27. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton. An

equivalence ∼sc ⊆ 𝑄 × 𝑄 on 𝐺 is a silent-continuation equivalence if for any

𝑥, 𝑥′ ∈ 𝑄 so that 𝑥 ∼sc 𝑥′ and 𝑥 ≠ 𝑥′, all the following statements hold for

some 𝜏 ∈ Υ:

(SC1) 𝜏 ∈ 𝐺(𝑥) ∩ 𝐺(𝑥′);

(SC2) 𝐺<𝜏
rglr(𝑥) = 𝐺<𝜏

rglr(𝑥
′) = ∅;

(SC3) Neither 𝑥 nor 𝑥′ is in any live-lock.

Similar to ∼inc, we utilise ∼ae, ∼sc to denote the coarsest active-event equiva-

lence and silent-continuation equivalence and write ∼ ⊆ ∼ae or ∼ ⊆ ∼sc to

denote that ∼ is an equivalence of the corresponding type, respectively. By

combining ∼inc with either ∼ae or ∼sc, the redirectability can be achieved.

Proposition 3.2.28. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-shaped automaton

with an equivalence ∼ ⊆ 𝑄 × 𝑄 on 𝐺 be such that either ∼ ⊆ ∼inc ∩ ∼ae or

∼ ⊆ ∼inc ∩∼sc. It holds that ∼ is redirectable.

Before proceeding to prove Proposition 3.2.28, note that ∼ae imposes a rela-

tively strong restriction on equivalent states that silent events are never active

on any state in a non-singleton class. Readers familiar with (Flordal and

Malik, 2009) may be curious about the possibility of relaxing Definition 3.2.26

to equate states with regular active events delayed by
𝜖
=⇒
1
, i.e., by defining

Δae(𝑥) ∶= {𝜎 ∈ Σ | 𝑥
𝜖
=⇒
1

𝜎
−→}, one may expect that 𝑥 ∼ 𝑥′ when Δae(𝑥) =

Δae(𝑥′). However, combining such a “relaxed” active-event equivalence with

incoming equivalence does not guarantee conflict equivalence. Consider the

following example:

Example 3.2.4. Consider automata 𝐺 and 𝑇 given in Figure 29. Note that

𝐺 is Υ-shaped and I ∼inc III clearly holds since state III can be reached from

the initial state through 𝜏∗
(1). Furthermore, from Δae(𝑥) = Δae(𝑥′), we are

able to equate I and III which results in 𝐺/∼. In this case, although ([II], ii) is
reachable in 𝒮(𝐺/∼ ∥ 𝑇), (II, ii) is not reachable in 𝒮(𝐺 ∥ 𝑇) since i

𝜏(2)
−−→ ii

cannot happen before I
𝜏(1)
−−→ III and the transition I

𝜎
−→ II is labelled by a shared

event 𝜎. One observes that in this example, I
𝜏(1)
−−→ III somewhat “disables”

I
𝜎
−→ II although both events are with the same priority. In this case, equating

98

3.2 Conflict-preserving abstraction rules

III

σ(1)

τ(1)

G

IV

G/∼I II [I] [II]

[IV]

I∼III

σ(1)

σ(1)

σ(1)

τ(2)T i ii

σ(1), ω(1)

III,i

τ(1)

S(G ‖ T) I,i

τ(2)

IV,ii

σ(1)

III,ii

S(G/∼ ‖ T) [I],i τ(1) [II],iiσ(1)[I],ii

[IV],ii

σ(1)

ω(1) ω(1)

ω(1) ω(1)

Figure 29: Counterexample of equating incoming equivalent stateswith the same set of delayed

active events

I and III is unacceptable, especially when both states have different future

behaviour, e.g. one leads to a non-blocking future while another blocks. Finally,

it is also worth noting that “preserving” I
𝜏(1)
−−→ III into a 𝜏(1)-self-loop (which is

against the quotient automaton construction) in 𝐺/∼ does not solve the issue,

since the trapping power is rendered inconsistent.

As a counterexample, Example 3.2.4 infers that for two incoming equivalent

states, additionally requiring them to have the same preemptive power is

essential to achieve redirectability. Otherwise, private transitions in 𝑇 may

be inconsistently preempted. This can be guaranteed by ∼ae or ∼sc, as being

stated in the following lemma.

Lemma 3.2.29. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton.

Let ∼ ⊆ 𝑄 × 𝑄 be an equivalence on 𝐺 so that either ∼ ⊆ ∼ae or ∼ ⊆ ∼sc holds.

For any automaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ and any trace

(𝑥𝐺, 𝑥𝑇 0)
𝜏1
−→𝒮 (𝑥𝐺, 𝑥𝑇 1)

𝜏2
−→𝒮 ⋯

𝜏𝑘
−→𝒮 (𝑥𝐺, 𝑥𝑇 𝑘) (119)

in 𝒮(𝐺 ∥ 𝑇) where 𝑘 ≥ 0 and 𝜏𝑖 ∈ Σ𝑇 \𝐺 for all 𝑖 ∈ {1, … , 𝑘}, it holds that for
any 𝑥′

𝐺 ∈ [𝑥𝐺], a trace

(𝑥′
𝐺, 𝑥𝑇 0)

𝜏1
−→𝒮 (𝑥′

𝐺, 𝑥𝑇 1)
𝜏2
−→𝒮 ⋯

𝜏𝑘
−→𝒮 (𝑥′

𝐺, 𝑥𝑇 𝑘) (120)

99

3 Compositional verification with prioritised events

exists in 𝒮(𝐺 ∥ 𝑇) as well.

Proof. The current statement is trivially true from (AE2), (SC1) and (SC2).

At thecurrent stage, the fundamental components forachieving redirectability

have indeed been collected. In fact, by strengthening Definition 3.2.25 as such

that

� all ↪-transitions are uniformly replaced by
𝜖
=⇒
1

(strengthens (I1) and

(I2)) and

� “implies 𝐺<𝜏
rglr(𝑦) = ∅” in (I3) is uniformly replaced by “implies 𝜏 = 𝜏(1)”

(strengthens (I3)),

redirectability would be easily achieved by the conjunction of a strengthened

incoming equivalence with either ∼ae or ∼sc. In particular, the strengthened

version only allows 𝜏(1) to appear before reaching some state in a non-trivial

equivalence class. Consider the following example.

III

σ(1)

τ(1)

G

IV

I II

σ(1)

T i ii

III,ii

S(G ‖ T) I,i

τ(1)

IV,iii

τ(1)

III,iii

τ(1) iii

III′

σ(1)

τ(2)

G′

IV′

I′ II′

σ(1)(II ∼ IV)

σ(1)

(II′ ∼′ IV′)

σ(1)

II,iiσ(1) τ(1) II,iii

τ(1)

τ(1)

IV,ii

III′, ii

S(G′ ‖ T) I′, i

τ(1)

IV′, iii

τ(2)

III′, iii

σ(1)

II′, iiσ(1) τ(1) II′, iii

Figure 30: The conjunction of a strengthened incoming equivalence and an active-event equiva-

lence is redirectable

Example 3.2.5. Consider automata 𝐺 and 𝑇 given in Figure 30. Note that in 𝐺,

states are partitioned by the equivalence∼ so that (II, IV) ∈ ∼ ⊆ ∼inc ∩ ∼ae. In

100

3.2 Conflict-preserving abstraction rules

this case, ∼ is indeed redirectable, which can be “witnessed” by the automaton

𝑇. In particular, since state (II, ii) is reachable, the reachability of state (IV, ii)
should be guaranteed as well to achieve redirectability since II ∼ IV. This must

hold since the only silent predecessor of IV, i.e. III, reaches IV via 𝜏(1). Thus,

regardless the priority of successive transition in 𝑇, 𝐺 can always execute all

its 𝜏(1)-transitions first, then 𝑇 executes its private transitions. However, this

is not the case if we replace the transition label of III
𝜏(1)
−−→ IV by e.g. 𝜏(2), which

results in 𝐺′. The resulting equivalence relation ∼′ is no longer redirectable,

since (IV′, ii) is rendered unreachable.

Despite the awareness that the strengthened incoming equivalence contrib-

utes to achieve redirectability, we are interested in a more relaxed definition,

i.e. utilising the original Definition 3.2.25. By reviewing Example 3.2.5, the

statement “𝐺 can always execute all its 𝜏(1)-transitions first, then 𝑇 executes

its private transitions” can be relaxed by ↪-transitions while still preserving

redirectability. In the following, we consider the properties of ↪-transitions

by mainly focusing on traces under synchronisation with only private events.

Such traces are referred to as asynchronous traces. Note that temporarily

in Lemma 3.2.30 and Proposition 3.2.31, we do not require either automaton

to be Υ-shaped since the discussed properties are stated for traces instead

of for automata. This benefits some proofs in that two traces from their

corresponding automata can be freely swapped.

Lemma 3.2.30. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ and 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇,

𝑄∘
𝑇, 𝑀𝑇⟩ be two arbitrary automata and

(𝑥𝐺, 𝑥𝑇 0)
𝜏1
−→𝒮 (𝑥𝐺, 𝑥𝑇 1)

𝜏2
−→𝒮 ⋯

𝜏𝑘
−→𝒮 (𝑥𝐺, 𝑥𝑇 𝑘)

𝜏𝑘+1
−−→𝒮 (𝑦𝐺, 𝑥𝑇 𝑘) (121)

be an asynchronous trace in 𝒮(𝐺 ∥ 𝑇) so that 𝑘 ≥ 0 and for all 𝑖 ∈ {1, ⋯ , 𝑘},
(𝑥𝐺, 𝑥𝑇 𝑖−1)

𝜏𝑗
−→𝒮 (𝑥𝐺, 𝑥𝑇 𝑗) is driven by 𝑇 and (𝑥𝐺, 𝑥𝑇 𝑘)

𝜏𝑘+1
−−→𝒮 (𝑦𝐺, 𝑥𝑇 𝑘) is

driven by 𝐺. It holds that prio(𝜏𝑘+1) ≥ lo({𝜏1, ⋯ , 𝜏𝑘}).

Proof. Note that for all 𝑖 ∈ {1, ⋯ , 𝑘}, (𝑥𝐺, 𝑥𝑇 𝑖)
𝜏𝑘+1
−−→ in 𝐺 ∥ 𝑇. Thus, the

current statement must hold as the trace is in a shaped automaton 𝒮(𝐺 ∥
𝑇).

The statement of Lemma 3.2.30 may seem verbose at first glance. Never-

theless, it induces an interesting property of asynchronous traces in shaped

synchronous compositions: each time when the “transition-driving” automa-

ton alternates, the priority of the silent event on the next transition cannot

101

3 Compositional verification with prioritised events

QG

QT

xGi xGi+1 xG j xG j+1 xGk

xTi

xT j

xT j+1

xTk

τ(m)
τ(n)

τ(r)

Figure 31: An asynchronous trace in shaped synchronous composition

elevate. Consider the sketch in Figure 31, where an asynchronous trace under

shaped synchronous composition is given in grid. Points on the horizontal

axis correspond to states in 𝑄𝐺, while those on the vertical axis correspond to

states in 𝑄𝑇. Consider those states at which the driving automaton alternates,

i.e. the “direction” of the trace changes. It is easy to conclude from Lemma

3.2.30 that 𝑚 ≤ 𝑛 ≤ 𝑟 must hold. More importantly, if the trace ends with a

transition driven by 𝐺 (this is indeed the case in Figure 31), it can be imme-

diately concluded that the last “𝑇-state” of the last state (𝑥𝑇 𝑘 in Figure 31)

cannot execute any private events whose priority is higher than any transition

in the trace. At the same time, the lowest priority of all transitions driven

by 𝐺 cannot be higher than the lowest priority of any transition driven by 𝑇.
These properties are formalised by the following proposition.

Proposition 3.2.31. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ and 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇,

𝑄∘
𝑇, 𝑀𝑇⟩ be two arbitrary automata and

(𝑥𝐺0, 𝑥𝑇 0)
𝜏1
−→𝒮 (𝑥𝐺1, 𝑥𝑇 1)

𝜏2
−→𝒮 ⋯

𝜏𝑘
−→𝒮 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) (122)

be an asynchronous trace in 𝒮(𝐺 ∥ 𝑇) where 𝑘 ≥ 1 and the last transition

(𝑥𝐺𝑘−1, 𝑥𝑇 𝑘−1)
𝜏𝑘
−→𝒮 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) is driven by 𝐺.

(i) Let 𝑛 = lo({𝜏1, ⋯ , 𝜏𝑘}). It holds that 𝑇 <𝑛
prvt(𝑥𝑇 𝑘) = ∅;

(ii) If at least one transition in (122) is driven by 𝑇 ,then 𝑛𝐺 ≥ 𝑛𝑇 where

𝑛𝐺 =lo({𝜏𝑖 | (𝑥𝐺𝑖−1, 𝑥𝑇 𝑖−1)
𝜏𝑖
−→𝒮 (𝑥𝐺𝑖, 𝑥𝑇 𝑖) is driven by 𝐺}); (123)

𝑛𝑇 =lo({𝜏𝑖 | (𝑥𝐺𝑖−1, 𝑥𝑇 𝑖−1)
𝜏𝑖
−→𝒮 (𝑥𝐺𝑖, 𝑥𝑇 𝑖) is driven by 𝑇 }). (124)

102

3.2 Conflict-preserving abstraction rules

Proof. Note that both statements hold trivially if all transitions in (122) are

driven by 𝐺. Thus, we assume that there exists at least one transition driven

by 𝑇 in (122).

(i) Let 𝜏 ∈ 𝑇prvt(𝑥𝑇 𝑘) and consider the trace fragment

(𝑥𝐺𝑖, 𝑥𝑇 𝑖)
𝜏𝑖+1
−−→𝒮 ⋯

𝜏𝑗
−→𝒮 (𝑥𝐺𝑗, 𝑥𝑇 𝑗)

𝜏𝑗+1
−−→𝒮 ⋯

𝜏𝑘
−→𝒮 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) (125)

where 0 ≤ 𝑖 < 𝑗 < 𝑘 and all transitions before (𝑥𝐺𝑗, 𝑥𝑇 𝑗) are driven by 𝑇while

all transitions after (𝑥𝐺𝑗, 𝑥𝑇 𝑗) are driven by 𝐺. It follows immediately that

prio(𝜏) ≥ lo{𝜏𝑗+1, ⋯ , 𝜏𝑘} ≥ prio(𝜏𝑗+1). Furthermore, from Lemma 3.2.30,

we have prio(𝜏𝑗+1) ≥ lo{𝜏𝑖+1, ⋯ , 𝜏𝑗} ≥ prio(𝜏𝑖+1). This is sufficient for an

induction to reason the entire trace.

(ii) Consider the trace fragment (𝑥𝐺𝑖, 𝑥𝑇 𝑖)
𝜏𝑖+1
−−→𝒮 ⋯

𝜏𝑘
−→𝒮 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) where

0 < 𝑖 < 𝑘 and all transitions aredriven by𝐺 but (𝑥𝐺𝑖−1, 𝑥𝑇 𝑖−1)
𝜏𝑖
−→𝒮 (𝑥𝐺𝑖, 𝑥𝑇 𝑖)

is driven by 𝑇. The current statement is clearly true since prio(𝜏𝑖+1) ≥ 𝑛𝑇
from statement (i) by swapping 𝐺 and 𝑇, and 𝑛𝐺 ≥ prio(𝜏𝑖+1) must hold as

well.

Combining Proposition 3.2.31 and Lemma 3.2.29, we are now in the position

to conclude the following property. In particular, the statement (ii) of the

following proposition covers the
𝜖
=⇒
1
-transition in the strengthened incoming

equivalence as a special case which was mentioned in Example 3.2.5. Note

that we again require 𝐺 to be Υ-shaped from now on.

Proposition 3.2.32. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automa-

ton and

(𝑥𝐺0, 𝑥𝑇 0)
𝜏1
−→𝒮 (𝑥𝐺1, 𝑥𝑇 1)

𝜏2
−→𝒮 ⋯

𝜏𝑘
−→𝒮 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) (126)

be an asynchronous trace in 𝒮(𝐺 ∥ 𝑇) where 𝑘 ≥ 0. Let 𝑛 = lo({𝜏𝑖 | (𝑥𝐺𝑖−1,
𝑥𝑇 𝑖−1)

𝜏𝑖
−→ (𝑥𝐺𝑖, 𝑥𝑇 𝑖) is driven by 𝐺}) and

𝑥′
𝐺0

𝜏′
1

−→ 𝑥′
𝐺1

𝜏′
2

−→ ⋯
𝜏′

𝑘′

−−→ 𝑥′
𝐺𝑘′ (127)

with 𝑘′≥ 0 be a trace in 𝐺 so that all events on this trace are silent, lo({𝜏 ′
1, ⋯ ,

𝜏 ′
𝑘′}) = 𝑛 and for all 𝑖′ ∈ {1, ⋯ , 𝑘′}, 𝐺<𝜏′

𝑖
rglr (𝑥′

𝐺𝑖′−1) = ∅. The following two
statements hold:

103

3 Compositional verification with prioritised events

(i) For (126), if 𝑘 ≥ 1 and the last transition (𝑥𝐺𝑘−1, 𝑥𝑇 𝑘−1)
𝜏𝑘
−→𝒮 (𝑥𝐺𝑘, 𝑥𝑇 𝑘)

is driven by 𝐺, then (𝑥′
𝐺0, 𝑥𝑇 0)

p(𝜏1⋯𝜏𝑘)
=====⇒𝒮 (𝑥′

𝐺𝑘′ , 𝑥𝑇 𝑘) in 𝒮(𝐺 ∥ 𝑇) where
the last transition is driven by 𝐺;

(ii) Let ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 be an equivalence on 𝐺 so that either ∼ ⊆ ∼ae or ∼ ⊆

∼sc. If 𝑥𝐺𝑘 ∼ 𝑥′
𝐺𝑘′ , then (𝑥′

𝐺0, 𝑥𝑇 0)
p(𝜏1⋯𝜏𝑘)
=====⇒𝒮 (𝑥′

𝐺𝑘′ , 𝑥𝑇 𝑘) in 𝒮(𝐺 ∥ 𝑇).

Proof. Note that the restriction 𝐺<𝜏′
𝑖

rglr (𝑥′
𝐺𝑖′−1) = ∅ for 𝑖′ ∈ {1, ⋯ , 𝑘′} excludes

the possibility of preemption through regular events before reaching 𝑥′
𝐺𝑘′ .

For convenience, let 𝑛′ = lo({𝜏 ′
1, ⋯ , 𝜏 ′

𝑘′}).

(i) It suffices to construct an asynchronous trace from (𝑥′
𝐺0, 𝑥𝑇 0) to (𝑥′

𝐺𝑘′ , 𝑥𝑇 𝑘)
which will not be influenced by shaping and the last transition is driven

by 𝐺. Let 𝑖′ = 𝑗 = 0 and we start the construction from the first state

(𝑥′
𝐺𝑖′ , 𝑥𝑇 𝑗) = (𝑥′

𝐺0, 𝑥𝑇 0). Note that due to Case 2 of Step 2 in the following, it
is not possible to reach 𝑥′

𝐺𝑘′ before 𝑥𝑇 𝑘 is reached.

(Step 1) Consider two possible cases:

(Case 1) Only 𝑗 = 𝑘 holds, i.e. 𝑥𝑇 𝑘 is reached. Consider the trace given

in (126) and from Proposition 3.2.31.(i), it follows that 𝑇 <𝑛
prvt(𝑥𝑇 𝑘) =

∅. Since 𝑛 = 𝑛′ is required, we are able to directly complete the

construction by concatenating the remaining transitions driven by 𝐺
to reach 𝑥′

𝐺𝑘′ , i.e. wemust have (𝑥′
𝐺𝑖′ , 𝑥𝑇 𝑘)

𝜖
=⇒𝒮 (𝑥′

𝐺𝑘′ , 𝑥𝑇 𝑘)where all
transitions aredriven by𝐺 in𝒮(𝐺 ∥ 𝑇), sincepriority of all remaining

transitions driven by 𝐺 cannot be lower than any 𝜏 ∈ 𝑇prvt(𝑥𝑇 𝑘) and
preemption through shared events is impossible. This terminates

the construction.

(Case 2) Neither 𝑖′ = 𝑘′ nor 𝑗 = 𝑘 holds. Proceed to Step 2.

(Step 2) Since preemption through shared prioritised events is not possible,

we can proceed from (𝑥′
𝐺𝑖′ , 𝑥𝑇 𝑗) with either one transition driven by 𝐺 or

one driven by 𝑇, or both. Consider the two possible cases:

(Case 1) prio(𝜏 ′
𝐺𝑖′+1) ≠ 𝑛′. Then concatenate either (𝑥′

𝐺𝑖′ , 𝑥𝑇 𝑗)
𝜏′

𝑖′+1
−−−→𝒮

(𝑥′
𝐺𝑖′+1, 𝑥𝑇 𝑗) or (𝑥′

𝐺𝑖′ , 𝑥𝑇 𝑗)
𝜏𝑗+1
−−→𝒮 (𝑥′

𝐺𝑖′ , 𝑥𝑇 𝑗+1) according to their

priority and update either 𝑖′ ∶= 𝑖′ + 1 or 𝑗 ∶= 𝑗 + 1, respectively.
Note that each time when the current case is met, we must have not

reached 𝑥′
𝐺𝑘′ yet since the transition with the lowest priority in (127)

has not been reached yet. Go back to Step 1.

104

3.2 Conflict-preserving abstraction rules

(Case 2) prio(𝜏 ′
𝐺𝑖′+1) = 𝑛′. Since𝑛 = 𝑛′ was required, from Proposition

3.2.31.(ii), it follows thatprio(𝜏 ′
𝐺𝑖′+1) = 𝑛 ≥ lo({𝜏𝑖 | (𝑥𝐺𝑖−1, 𝑥𝑇 𝑖−1)

𝜏𝑖
−→𝒮

(𝑥𝐺𝑖, 𝑥𝑇 𝑖) is driven by 𝑇 }). Thus, we are able to concatenate the

remaining transitionsdrivenby𝑇 to reach𝑥𝑇 𝑘, i.e. wehave (𝑥′
𝐺𝑖′ , 𝑥𝑇 𝑗)

𝑠𝑇
=⇒𝒮 (𝑥′

𝐺𝑖′ , 𝑥𝑇 𝑘) where all transitions are driven by 𝑇 in 𝒮(𝐺 ∥ 𝑇)
and 𝑠𝑇 ∈ Σ∗

𝑇 \𝐺 is the remaining private event sequence in 𝑇. Update
𝑗 ∶= 𝑘 and go to Step 1. We will be in Case 1 of Step 1.

(ii) The current statement holds trivially if all transitions in (126) are driven by

𝐺. In addition, the current statement holds directly if all transitions in (126)

are driven by 𝑇 from Lemma 3.2.29. Moreover, if the last transition in (126)

is driven by 𝐺, the current statement holds directly as well from statement

(i). The only remaining case is that (126) ends with such a trace fragment

(𝑥𝐺𝑖, 𝑥𝑇 𝑖)
𝜏𝑖+1
−−→𝒮 ⋯

𝜏𝑘
−→𝒮 (𝑥𝐺𝑘, 𝑥𝑇 𝑘)with 𝑖 ∈ {1, ⋯ , 𝑘−1}whereall transitions

are driven by 𝑇 (i.e. 𝑥𝐺𝑖 = 𝑥𝐺𝑘) and (𝑥𝐺𝑖−1, 𝑥𝑇 𝑖−1)
𝜏𝑖
−→𝒮 (𝑥𝐺𝑖, 𝑥𝑇 𝑖) is driven

by 𝐺. From statement (i), (𝑥′
𝐺0, 𝑥𝑇 0)

p(𝜏1⋯𝜏𝑖)
=====⇒𝒮 (𝑥′

𝐺𝑘′ , 𝑥𝑇 𝑖) in 𝒮(𝐺 ∥ 𝑇)
holds. Furthermore, due to Lemma 3.2.29, we must be able to concatenate the

remaining transitions driven by 𝑇 to reach 𝑥𝑇 𝑘, i.e. (𝑥′
𝐺𝑘′ , 𝑥𝑇 𝑖)

p(𝜏𝑖+1⋯𝜏𝑘)
======⇒𝒮

(𝑥′
𝐺𝑘′ , 𝑥𝑇 𝑘).

Proposition 3.2.32.(ii) shows us an important property between asynchronous

traces when preemption through shared events is excluded: for two traces

with the same lowest priority and both final states are equivalent w.r.t. either

∼ae or ∼sc, they can be utilised to synchronise the same private-event trace.

This matches the definition of ↪-transition which is utilised in Definition

3.2.25. With all the preparation, we are now ready to prove that Proposition

3.2.28 is true.

Proof of Proposition 3.2.28. Weprove (R1) as follows: let (𝑥𝐺, 𝑥𝑇)
𝜎
−→𝒮 (̄𝑥𝐺, ̄𝑥𝑇)

𝑠𝑇
=⇒𝒮 (𝑦𝐺, 𝑦𝑇) in 𝒮(𝐺 ∥ 𝑇) for some ̄𝑥𝐺 ∈ 𝑄𝐺 and ̄𝑥𝑇 ∈ 𝑄𝑇. By (I3), we have

̄𝑥𝐺
𝜖
↪−→
𝑛

𝑦𝐺 in 𝐺 with some 𝑛 ∈ ℕ. From (I1), for each 𝑦′
𝐺 ∈ [𝑦𝐺], we must

have some ̄𝑥′
𝐺 ∈ 𝑄𝐺 so that 𝑥𝐺

𝜖
==⇒
Δ∶𝜎

𝒮 𝜎
−−→
Δ∶𝜎

𝒮 ̄𝑥′
𝐺

𝜖
↪−→
𝑛

𝑦′
𝐺 where Δ = 𝐺<𝜎

rglr(𝑥𝐺).

Clearly, we directly have (𝑥𝐺, 𝑥𝑇)
𝜎
=⇒𝒮 (̄𝑥′

𝐺, ̄𝑥𝑇). In addition, (̄𝑥′
𝐺, ̄𝑥𝑇)

𝑠𝑇
=⇒𝒮

(𝑦′
𝐺, 𝑦𝑇) can also be guaranteed from Proposition 3.2.32.(ii) or directly from

Lemma 3.2.29. This indeed shows that (R1) of Definition 3.2.22 is fulfilled.

105

3 Compositional verification with prioritised events

The proof for (R2) is similar by only considering (̄𝑥𝐺, ̄𝑥𝑇)
𝑠𝑇
=⇒𝒮 (𝑦𝐺, 𝑦𝑇) and

letting (̄𝑥𝐺, ̄𝑥𝑇) be any initial state in 𝒮(𝐺 ∥ 𝑇).

With Proposition 3.2.28 being proved, the conjunction of ∼inc with either ∼ae

or ∼sc guarantees that a trace in the original behaviour can be reconstructed

from a trace after abstraction. To imply conflict-equivalence (which is an

if-and-only-if statement), a similar property in the converse direction is to

clarify as well.

Proposition 3.2.33. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automa-

ton with an equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 on 𝐺 so that either ∼ ⊆ ∼ae or ∼ ⊆ ∼sc

holds. For any automaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ and any transition

(𝑥𝐺, 𝑥𝑇)
𝛼
−→𝒮 (𝑦𝐺, 𝑦𝑇) in 𝒮(𝐺 ∥ 𝑇), it holds that ([𝑥𝐺], 𝑥𝑇)

p(𝛼)
−−→𝒮 ([𝑦𝐺], 𝑦𝑇) in

𝒮(𝐺/∼ ∥ 𝑇).

Proof. If 𝑥𝐺 ∼ 𝑦𝐺, 𝛼 ∈ Υ and (𝑥𝐺, 𝑥𝑇)
𝛼
−→𝒮 (𝑦𝐺, 𝑦𝑇) is driven by 𝐺, we will

have a trivial transition ([𝑥𝐺], 𝑥𝑇)
𝜖
−→𝒮 ([𝑦𝐺], 𝑦𝑇) = ([𝑥𝐺], 𝑥𝑇) in 𝒮(𝐺/∼ ∥ 𝑇).

Otherwise, ([𝑥𝐺], 𝑥𝑇)
𝛼
−→ ([𝑦𝐺], 𝑦𝑇) in 𝐺/∼ ∥ 𝑇. This transition will clearly

not be shaped due to the definition of ∼ae and ∼sc.

We are now in the position to state two conflict-preserving abstraction rules,

i.e. the active events rule and the silent continuation rule, in Theorems 3.2.35

and 3.2.36. For the active events rule, the following lemma is given to simplify

the proof.

Lemma 3.2.34. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton

with an equivalence ∼ ⊆ ∼ae. For any automaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩,

if ([𝑥𝐺], 𝑥𝑇)
𝑠𝑇p(𝛼)
====⇒𝒮 in 𝒮(𝐺/∼ ∥ 𝑇) for some 𝑥𝐺 ∈ 𝑄𝐺, 𝑥𝑇 ∈ 𝑄𝑇, 𝑠𝑇 ∈ Σ∗

𝑇 \𝐺

and 𝛼 ∈ 𝐴𝐺, then for all 𝑥′
𝐺 ∈ [𝑥𝐺], (𝑥′

𝐺, 𝑥𝑇)
𝑠𝑇p(𝛼)
====⇒𝒮 in 𝒮(𝐺 ∥ 𝑇).

Proof. Recall that for any non-singleton class [𝑥𝐺], 𝐺slnt(𝑥𝐺) = ∅ must hold.

Consider two cases:

(Case 1) 𝛼 ∈ Υ. If there is some trace in ([𝑥𝐺], 𝑥𝑇)
𝑠𝑇
=⇒𝒮 where all transitions

are not driven by 𝐺, the current statement is directly true due to Lemma

3.2.29. Otherwise, let

([𝑥𝐺], 𝑥𝑇)
𝑡𝑇
=⇒𝒮 ([̄𝑥𝐺], 𝑦𝑇)

𝜏
−→𝒮 ([𝑦𝐺], 𝑦𝑇)

𝑢𝑇
==⇒𝒮 (128)

106

3.2 Conflict-preserving abstraction rules

in 𝒮(𝐺/∼ ∥ 𝑇) for some 𝜏 ∈ Υ, ̄𝑥𝐺, 𝑦𝐺 ∈ 𝑄𝐺, 𝑦𝑇 ∈ 𝑄𝑇, 𝑡𝑇𝑢𝑇 =
𝑠𝑇, ([̄𝑥𝐺], 𝑦𝑇)

𝜏
−→𝒮 ([𝑦𝐺], 𝑦𝑇) is driven by 𝐺 and all transitions in the

fragment ([𝑦𝐺], 𝑦𝑇)
𝑢𝑇
==⇒𝒮 are not driven by 𝐺. Note that all states on

[𝑥𝐺]
𝜖
=⇒

∼
[̄𝑥𝐺] in 𝐺/∼ are singletons. Thus, there must exist 𝑦′

𝐺 ∈ [𝑦𝐺]

so that (𝑥𝐺, 𝑥𝑇)
𝑡𝑇
=⇒𝒮 (̄𝑥𝐺, 𝑦𝑇)

𝜏
−→𝒮 (𝑦′

𝐺, 𝑦𝑇) in 𝒮(𝐺 ∥ 𝑇). In addition,

(𝑦′
𝐺, 𝑦𝑇)

𝑢𝑇
==⇒ in 𝒮(𝐺/∼ ∥ 𝑇) must hold due to Lemma 3.2.29.

(Case 2) 𝛼 ∈ Σ𝐺, i.e. p(𝛼) = 𝛼 and we have ([𝑥𝐺], 𝑥𝑇)
𝑠𝑇
=⇒𝒮 𝛼

−→𝒮 in 𝒮(𝐺/∼ ∥

𝑇). Following Case 1, if there exists a traceon the fragment ([𝑥𝐺], 𝑥𝑇)
𝑠𝑇
=⇒𝒮

where all transitions are not driven by𝐺, then the current statement holds

directly in that for all 𝑥′
𝐺 ∈ [𝑥𝐺], 𝛼 ∈ 𝐺(𝑥′

𝐺) holds. Otherwise, consider
concatenating an 𝛼 transition at the end of (128), i.e.

([𝑥𝐺], 𝑥𝑇)
𝑡𝑇
=⇒𝒮 ([̄𝑥𝐺], 𝑦𝑇)

𝜏
−→𝒮 ([𝑦𝐺], 𝑦𝑇)

𝑢𝑇
==⇒𝒮 𝛼

−→𝒮 . (129)

Recall that all transitions on the fragment ([𝑦𝐺], 𝑦𝑇)
𝑢𝑇
==⇒𝒮 are not driven

by 𝐺, i.e. before executing the final
𝛼
−→𝒮-transition, [𝑦𝐺] will not execute

any transition. Thus, from Lemma 3.2.29, (𝑥𝐺, 𝑥𝑇)
𝑡𝑇
=⇒𝒮 (̄𝑥𝐺, 𝑦𝑇)

𝜏
−→𝒮

(𝑦′
𝐺, 𝑦𝑇)

𝑢𝑇
==⇒𝒮 𝛼

−→𝒮 for some 𝑦′
𝐺 ∈ [𝑦𝐺] must hold.

Theorem 3.2.35 (active events rule). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be

a Υ-shaped automaton with an equivalence ∼ ⊆ ∼ae ∩ ∼inc on 𝐺. It holds

𝐺 ≃𝒮 (𝐺/∼).

Proof. Let 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ be any automaton:

(⇒) Suppose 𝒮(𝐺 ∥ 𝑇) is non-blocking. Pick 𝑥𝐺 ∈ 𝑄𝐺, 𝑥𝑇 ∈ 𝑄𝑇 and

𝑠 ∈ (Σ𝐺 ∪ Σ𝑇)∗ so that 𝒮(𝐺/∼ ∥ 𝑇)
𝑠
=⇒𝒮 ([𝑥𝐺], 𝑥𝑇). By Proposition 3.2.23.(ii),

there exists 𝑥′
𝐺 ∈ [𝑥𝐺] so that 𝒮(𝐺 ∥ 𝑇)

𝑠
=⇒𝒮 (𝑥′

𝐺, 𝑥𝑇) and due to the non-

blockingness of 𝒮(𝐺 ∥ 𝑇), for each Ω ∈ 𝑀𝐺 ∪ 𝑀𝑇, there exists 𝜔 ∈ Ω so that

(𝑥′
𝐺, 𝑥𝑇)

𝑡𝜔
=⇒𝒮 in 𝒮(𝐺 ∥ 𝑇) for some 𝑡 ∈ (Σ𝐺 ∪ Σ𝑇)∗. By Proposition 3.2.33, it

holds that ([𝑥𝐺], 𝑥𝑇)
𝑡𝜔
=⇒𝒮.

(⇐) Suppose 𝒮(𝐺/∼ ∥ 𝑇) is non-blocking and pick 𝑥𝐺 ∈ 𝑄𝐺, 𝑥𝑇 ∈ 𝑄𝑇 and

𝑠 ∈ (Σ𝐺 ∪ Σ𝑇)∗ so that 𝒮(𝐺 ∥ 𝑇)
𝑠
=⇒𝒮 (𝑥𝐺, 𝑥𝑇). From Proposition 3.2.33 and

107

3 Compositional verification with prioritised events

the non-blockingness of 𝒮(𝐺/∼ ∥ 𝑇), for each Ω ∈ 𝑀𝐺 ∪ 𝑀𝑇, there exists

𝜔 ∈ Ω and 𝑡 ∈ (Σ𝐺 ∪ Σ𝑇)∗ so that 𝒮(𝐺/∼ ∥ 𝑇)
𝑠
=⇒𝒮 ([𝑥𝐺], 𝑥𝑇)

𝑡𝜔
=⇒𝒮. There

are two cases:

(Case 1) 𝑡 ∈ Σ∗
𝑇 \𝐺. This case holds directly from Lemma 3.2.34. Note that

the sub-case of 𝜔 ∈ Σ𝑇 \𝐺 holds as well.

(Case 2) For any 𝑡, Case 1 does not hold. Thenwemust have ([𝑥𝐺], 𝑥𝑇)
𝑠𝑇
=⇒

𝜎
−→

for some 𝜎 ∈ Σ𝐺 − Ω and 𝑠𝑇 ∈ Σ∗
𝑇 \𝐺. By applying Lemma 3.2.34, we have

(𝑥𝐺, 𝑥𝑇)
𝑠𝑇
=⇒𝒮 (̄𝑥𝐺, ̄𝑥𝑇)

𝜎
−→𝒮 (𝑦𝐺, 𝑦𝑇) (130)

in 𝒮(𝐺 ∥ 𝑇) for some ̄𝑥𝐺, 𝑦𝐺 ∈ 𝑄𝐺 and ̄𝑥𝑇, 𝑦𝑇 ∈ 𝑄𝑇 so that 𝑠𝑇𝜎 ⩽
𝑡. From Proposition 3.2.33 and the non-blockingness of 𝒮(𝐺/∼ ∥ 𝑇),
([𝑦𝐺], 𝑦𝑇)

𝑡′𝜔′

==⇒𝒮 musthold forsome 𝑡′ ∈ (Σ𝐺∪Σ𝑇)∗ and𝜔′ ∈ Ω. Consider
the following two sub-cases (which are comparable with Case 1 and Case

2), i.e. either

(i) 𝑡′𝜔′ ∈ Σ+
𝑇 \𝐺. From Lemma 3.2.34, we directly have (𝑦𝐺, 𝑦𝑇)

𝑡′𝜔′

==⇒𝒮.

(ii) Case 2.(i) does not hold for any 𝑡′𝜔′. By applying Proposition 3.2.33

and then Lemma 3.2.34 again, we have altogether

(𝑥𝐺, 𝑥𝑇)
𝑠𝑇
=⇒𝒮 (̄𝑥𝐺, ̄𝑥𝑇)

𝜎
−→𝒮

𝑡𝑇
=⇒𝒮 (̄𝑦𝐺, ̄𝑦𝑇)

𝜎′

−→𝒮 (131)

in 𝒮(𝐺 ∥ 𝑇) for some ̄𝑦𝐺 ∈ 𝑄𝐺, ̄𝑦𝑇 ∈ 𝑄𝑇, 𝑡𝑇 ∈ Σ∗
𝑇 \𝐺 and 𝜎′ ∈

Σ𝐺. From Proposition 3.2.33, Proposition 3.2.23.(i) and the non-

blockingness of 𝒮(𝐺/∼ ∥ 𝑇), there exists ̄𝑦′
𝐺 ∈ [̄𝑦𝐺], 𝜔″ ∈ Ω and

𝑢 ∈ (Σ𝐺 ∪ Σ𝑇)∗ so that (̄𝑦′
𝐺, ̄𝑦𝑇)

𝑢𝜔″

==⇒𝒮 and 𝜎′ ⩽ 𝑢𝜔″. Note that

(̄𝑥𝐺, ̄𝑥𝑇)
𝜎
−→𝒮

𝑡𝑇
=⇒𝒮 (̄𝑦𝐺, ̄𝑦𝑇). FromProposition 3.2.28, ∼ is redirectable

and we thus have (̄𝑥𝐺, ̄𝑥𝑇)
𝜎𝑡𝑇
==⇒𝒮 (̄𝑦′

𝐺, ̄𝑦𝑇)
𝑢𝜔″

==⇒𝒮.

Example 3.2.6. Consider the automaton 𝐺 given in Figure 32. I ∼inc IIImust

hold since they both are initial states and can be reached from IV via 𝜌. Besides,
since they cannot execute silent events and they have the same set of active

regular events, I ∼ae III holds. Thus, I and III can be merged through the active

events rule which results in the conflict equivalent 𝐺/∼.

108

3.2 Conflict-preserving abstraction rules

III

G
G/∼

I II

[I]

[II]

I∼III

σ(1)

σ(1)

σ(1)

ρ(2)

ρ(2)

IV ρ(2) [IV]

σ(1)

ω(1) ω(1)

Figure 32: Active events rule

Theorem 3.2.36 (silent continuation rule). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩

be a Υ-shaped automaton with an equivalence ∼ ⊆ ∼inc ∩ ∼sc. It holds 𝐺 ≃𝒮
(𝐺/∼).

Proof. Let 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ be any automaton:

(⇒) Same as the proof of Theorem 3.2.35

(⇐) Suppose 𝒮(𝐺/∼ ∥ 𝑇) is non-blocking. Pick 𝑥𝐺 ∈ 𝑄𝐺 and 𝑥𝑇 ∈ 𝑄𝑇 so

that𝒮(𝐺 ∥ 𝑇)
𝑠
=⇒𝒮 (𝑥𝐺, 𝑥𝑇) for some 𝑠 ∈ (Σ𝐺 ∪Σ𝑇)∗. From Proposition 3.2.33

and the non-blockingness of 𝒮(𝐺/∼ ∥ 𝑇), for all Ω ∈ 𝑀𝐺 ∪ 𝑀𝑇, there exists

𝑡 ∈ (Σ𝐺 ∪ Σ𝑇)∗ and 𝜔 ∈ Ω so that 𝒮(𝐺/∼ ∥ 𝑇)
𝑠
=⇒𝒮 ([𝑥𝐺], 𝑥𝑇)

𝑡𝜔
=⇒𝒮. Consider

three cases:

(Case 1) [𝑥𝐺] is a singleton and there exists some trace in ([𝑥𝐺], 𝑥𝑇)
𝑡𝜔
=⇒𝒮

which begins with ([𝑥𝐺], 𝑥𝑇)
𝜎
−→𝒮 for some 𝜎 ∈ Σ𝐺. From Propositions

3.2.28, ∼ is redirectable. Thus, this case is directly true from 3.2.23.(i).

(Case 2) [𝑥𝐺] is not a singleton. Since 𝑥𝐺 is not in any live-lock but there

exists 𝜏 ∈ 𝐺slnt(𝑥𝐺), there must exist some 𝑦𝐺 ∈ 𝑄𝐺 so that 𝑥𝐺
𝜖
=⇒ 𝑦𝐺

and 𝐺slnt(𝑦𝐺) = ∅ in 𝐺. There are two further possibilities:

(i) There exists some 𝑠𝑇 ∈ Σ∗
𝑇 \𝐺, 𝑦𝑇 ∈ 𝑄𝑇 and 𝜎 ∈ Σ𝐺 so that (𝑥𝐺, 𝑥𝑇)

𝑠𝑇
=⇒𝒮 (𝑦𝐺, 𝑦𝑇)

𝜎
−→𝒮 in 𝒮(𝐺 ∥ 𝑇). Note that ([𝑦𝐺], 𝑦𝑇) must be co-

reachable since from Proposition 3.2.33, ([𝑦𝐺], 𝑦𝑇) is reachable in
𝒮(𝐺/∼ ∥ 𝑇) which is non-blocking. In addition, since 𝐺slnt(𝑦𝐺) = ∅,
[𝑦𝐺] must be a singleton. Thus we have reached a Case 1 situation.

(ii) If Case 2.(i) does not hold, then there exist 𝑧𝐺 ∈ 𝑄𝐺−{𝑦𝐺}, 𝑧𝑇 ∈ 𝑄𝑇

and 𝑡𝑇 ∈ Σ∗
𝑇 \𝐺 so that (𝑥𝐺, 𝑥𝑇)

𝑡𝑇
=⇒𝒮 (𝑧𝐺, 𝑧𝑇) and 𝑧𝐺

𝜏′

−→
𝜖
=⇒ 𝑦𝐺 for

some 𝜏 ′ ∈ Υ. In addition, the execution of 𝑧𝐺
𝜏′

−→𝒮 in (𝑧𝐺, 𝑧𝑇) is
disallowed. This could be caused by

109

3 Compositional verification with prioritised events

a) (𝑧𝐺, 𝑧𝑇)
𝜎
−→𝒮 in 𝒮(𝐺 ∥ 𝑇) for some 𝜎 ∈ Σ𝐺 so that prio(𝜎) <

prio(𝜏 ′). This again implies that [𝑧𝐺] is a singleton state from

(SC1) and (SC2), i.e. a Case 1 situation is reached; or

b) 𝑧𝑇 is in some 𝑛-live-lock3 in 𝑇 with 𝑛 < prio(𝜏 ′). Note that

([𝑧𝐺], 𝑧𝑇) must be co-reachable since from Proposition 3.2.33,

([𝑧𝐺], 𝑧𝑇) is reachable in 𝒮(𝐺/∼ ∥ 𝑇) which is non-blocking. In

this situation, [𝑧𝐺] cannot execute any transition driven by 𝐺 in

𝒮(𝐺/∼ ∥ 𝑇) as well (this is clear if [𝑧𝐺] is a singleton; otherwise
[𝑧𝐺] is not a singleton, then from (SC2), all its active events are

not executable due to the 𝑛-live-lock in 𝑇, which includes 𝑧𝑇).

This implies 𝑀𝐺 = ∅. In addition, ([𝑧𝐺], 𝑧𝑇) is co-reachable in
𝒮(𝐺/∼ ∥ 𝑇) implies that (𝑧𝐺, 𝑧𝑇) is co-reachable in 𝒮(𝐺 ∥ 𝑇).

Note that we do not need to take special care to the situation where

the execution of 𝑧𝐺
𝜏′

−→𝒮 in (𝑧𝐺, 𝑧𝑇) is preempted by a private active

event in 𝑧𝑇 whose priority is higher than 𝜏 ′. This situation must lead

to either (i), (ii).a) or (ii).b) in the current case.

(Case 3) [𝑥𝐺] is a singleton and all traces in ([𝑥𝐺], 𝑥𝑇)
𝑡𝜔
=⇒𝒮 begin with an

event 𝛼 ∉ Σ𝐺. If there exists some trace in ([𝑥𝐺], 𝑥𝑇)
𝑡𝜔
=⇒𝒮 where each

state consists of a singleton state from 𝑄𝐺/∼, the current statement is

trivially true. Otherwise, let

([𝑥𝐺],𝑥𝑇) = ([𝑥𝐺0], 𝑥𝑇 0)
𝛼1
−→𝒮 ([𝑥𝐺1], 𝑥𝑇 1)

𝛼2
−→𝒮 ⋯

⋯
𝛼𝑘
−→𝒮 ([𝑥𝐺𝑘], 𝑥𝑇 𝑘)

𝛼𝑘+1
−−−→𝒮 ([𝑥𝐺𝑘+1], 𝑥𝑇 𝑘+1)

𝛼𝑘+2
−−−→𝒮 ⋯ (132)

be a trace in ([𝑥𝐺], 𝑥𝑇)
𝑡𝜔
=⇒𝒮 where 𝑘 ≥ 0, [𝑥𝐺𝑘+1] is not a singleton and

all [𝑥𝐺𝑖] with 𝑖 ∈ {0, … , 𝑘} are singletons. Clearly, ([𝑥𝐺𝑘], 𝑥𝑇 𝑘)
𝛼𝑘+1
−−−→𝒮

([𝑥𝐺𝑘+1], 𝑥𝑇 𝑘+1) is driven by 𝐺/∼ since [𝑥𝐺𝑘] is a singleton while [𝑥𝐺𝑘+1]
is not. Clearly, there exists 𝑥′

𝐺𝑘+1 ∈ [𝑥𝐺𝑘+1] so that (𝑥𝐺𝑘, 𝑥𝑇 𝑘)
𝛼𝑘+1
−−−→𝒮

(𝑥′
𝐺𝑘+1, 𝑥𝑇 𝑘+1) in 𝒮(𝐺 ∥ 𝑇). This indicates that Case 3 always reaches a

Case 2 situation if at least one non-singleton state is visited in ([𝑥𝐺], 𝑥𝑇)
𝑡𝜔
=⇒𝒮.

Example 3.2.7. Consider the automaton 𝐺 given in Figure 33. Clearly, II ∼inc

III holds. In addition, 𝜏(2) ∈ 𝐺slnt(II)∩𝐺slnt(III)while𝐺<2
rglr(II) = 𝐺<2

rglr(III) = ∅.

3 Here, we slightly abuse the definition of live-lock in 𝑇 in that we uniformly substitute all

𝐺slnt with 𝑇prvt in Definition 3.2.3.

110

3.2 Conflict-preserving abstraction rules

This implies that II ∼sc III and merging II and III yields a conflict-preserving

abstraction.

III

G G/∼I II [I] [II]

II∼III

σ(1)

IV [IV]

σ(1)

ρ(2)

τ(2)

σ(1)

ρ(2)

τ(2)

τ(2)

ω(1) ω(1)

Figure 33: Silent continuation rule

Remark 3.2.2. Recall that
𝜖
↪−→
𝑛
requires for 𝑛 ≥ 2 at least one silent transition

with priority 𝑛. This requirement can be implicitly fulfilled by adding redun-

dant silent self-loops, which is a PW-bisimilar operation from Lemma 3.2.10.

Consider the automaton 𝐺 given in Figure 34. At first glance, II ≁inc III

since I
𝜎
−→

𝜖
↪−→

2
II holds but I

𝜎
−→

𝜖
↪−→

2
III does not hold. Nevertheless, the latter

can be rendered valid through appending a 𝜏(2)-self-loop in III, which is a

redundant silent self-loop. This operation enables merging II and III through

silent continuation rule. Thus, when computing the set of ↪-transitions, we

always have 𝑥
𝜖
↪−→
𝑛

𝑥 if 𝑥
𝜏(𝑛)
−−→ and no regular event with priority higher than 𝑛

is active in 𝑥.

IV

G I II

σ(1) τ(2)

τ(2)

ω(1)

u

G′/∼

II∼III

III

σ(1)

IV

G′ I II

σ(1) τ(2)

τ(2)

ω(1)III

σ(1)

[IV]

[I] [II]

τ(2), ρ(2)

ω(1)

σ(1)

ρ(2) ρ(2)τ(2)

Figure 34: Combining silent continuation rule with redundant silent self-loops

Remark 3.2.3 (A discussion on relaxing ↪). At the end of this subsection,

we provide a short discussion on the possibility of relaxing the definition of

↪, from which Definition 3.2.25 can potentially be relaxed while the redirect-

ability is still preserved. In particular, ↪-transitions exclude the possibility

of preemption through regular events, which is required in Proposition 3.2.32

where we attempted to equate traces that can be synchronised with a same

trace from a test. Nevertheless, an obvious situation which is not covered by

Proposition 3.2.32 achieves the same goal. We consider the automaton frag-

ment 𝐺 given in Figure 35, where II and III are not incoming equivalent from

111

3 Compositional verification with prioritised events

III

G I II

σ(1)

τ(2)

τ(2)

Figure 35: A case of redirectable equivalence which is not strictly incoming equivalent

(I3) since 𝐺<2
rglr(I) ≠ ∅. Nevertheless, an equivalence only equating II and III is

obviously redirectable (if there are no other incoming transitions in II and III),

since traces I
𝜏(2)
−−→ II and I

𝜏(2)
−−→ III are “the same”, not only because their lengths

and the silent events on both transitions are the same, but also because the set

of active regular events with priority higher than the silent event to execute in

each state is the same. In other words, traces I
𝜏(2)
−−→ II and I

𝜏(2)
−−→ III qualify the

property stated in Proposition 3.2.32 as well. This observation indeed extends

active events rule and silent continuation rule, where the latter one will be

exploited in the only silent out going rule below; see Definition 3.2.38.

At the current stage, one may be interested in finding a general relaxation of

Definition 3.2.25 which considers preemption through regular events while still

achieves redirectability. We believe, however, that such a relaxation is with

relatively few practical value. Consider the automaton fragment 𝐺 given in

Figure 36. Consider the trace I
𝜏(2)
−−→ II

𝜏(3)
−−→ III in 𝐺 where 𝐺<2

rglr(I) = {𝜎} and

𝐺<3
rglr(II) = {𝜌} hold. In this regard, one asks whether an equivalence equating

III and VI is redirectable. In particular, the trace IV
𝜏(3)
−−→ V

𝜏(2)
−−→ VI results from

swapping states I and II in I
𝜏(2)
−−→ II

𝜏(3)
−−→ III, including their set of active regular

events. Unfortunately, even such a conservative approach cannot achieve

redirectability, which can bewitnessed by the trace in𝑇 as shown in Figure 36. In

G I II

σ(1)

τ(2) IIIτ(3)

ρ(2)

IV Vτ(3) VIτ(2)

σ(1)ρ(2)

T i ii

σ(1)

τ(3)

Figure 36: Invalidating redirectability through preemption

112

3.2 Conflict-preserving abstraction rules

particular, when considering the trace IV
𝜏(3)
−−→ V

𝜏(2)
−−→ VI, preemption through 𝜎

can be avoided by first executing i
𝜏(3)
−−→ ii in 𝑇, while this preemption is inevitable

in state (I, i). We observe from this example that when preemption through

regular events is accounted, the order of the silent transitions is relevant, which

in addition requires recording all active regular events in each state on the

trace. Recall that given a target state, one only needs to record one incoming

↪-transition through its source state and the lowest priority value among

all silent transitions on it. However, allowing preemption through regular

events requires recording each silent transition with preemption possibility

through regular events explicitly. This drastically enlarges the set of incoming

transitions required to compute incoming equivalence. This is from a practical

perspective an obvious drawback and thus abandoned in the scope of the current

dissertation.

Complexity of the partition of incoming equivalence From the observa-

tion in (Flordal and Malik, 2009), the complexity of computing an incoming

equivalence is the same as the complexity of computing the entire incoming

transition set, which in our case is the transition relation
𝜖

==⇒
Δ∶𝜎

𝜎
−−→
Δ∶𝜎

𝜖
↪−→
𝑛
. Thus,

the overall complexity of computing an incoming equivalence is𝒪(|𝑄|2 ⋅ |Σ|2 ⋅
𝑁), where |𝑄|2 ⋅|Σ|⋅𝑁 is themaximal sizeof the transition relation

𝜖
==⇒
Δ∶𝜎

𝜎
−−→
Δ∶𝜎

𝜖
↪−→
𝑛

and is multiplied by |Σ| for the active regular event set comparison.

Complexity of the partition of active-event equivalence The worst case

of computing an active-event equivalence is 𝒪(|𝑄| ⋅ |Σ|), i.e. we shall record
the set of active regular events for each state.

Complexity of the partition of silent-continuation equivalence As

required in (SC3), we first compute all silent SCCs of the automatonwhich has

the complexityof 𝒪(|→|) = 𝒪(|𝑄|2 ⋅|Σ|) based onTarjan’s algorithm (Tarjan,

1972a). This dominates the complexity of comparing whether two states both

have outgoing silent transitions, which has the complexity of 𝒪(|𝑄|). Thus,
the overall complexity of computing an silent-continuation equivalence is

𝒪(|𝑄|2 ⋅ |Σ|). Note that → has at most |𝑄|2 ⋅ (|Σ| + 1) transitions (instead of
|𝑄| ⋅ |𝐴|) in a Υ-shaped-automaton.

3.2.3 Further abstraction rules

In this subsection, we extend and modify further abstraction rules introduced

in (Flordal and Malik, 2009). First, two abstraction rules resulting from

113

3 Compositional verification with prioritised events

III

G I II

σ(2) ω(1)
ω(1) u

IV

τ(1)

τ(1)

σ(2)

τ(1)

III

G′ I II

σ(2) ω(1)

IV′′

τ(1)

ω(1)

τ(1)

σ(2)

τ(1)

IV′

ω(1)

τ(1)

[III]

G′/∼ [I] [II]

σ(2)
ω(1), τ(1)

ω(1)

σ(2)

τ(1)

II∼IV′
III∼IV′′

ω(1)

Figure 37: Only silent incoming rule

III

G I II

ω(1)

ω(1), τ(2)

∼

IV

[III]

G′/≈ [I]

[IV]

II′≈III
II′′≈IV

τ(1)

ω(1)

III

G′ I II′

ω(1)

ω(1), τ(2)

IV

τ(1)

ω(1)

II′′
ω(1), τ(2)

ω(1), τ(2)

ω(1)

ω(1), τ(2)
ω(1)

τ(1)τ(1)

Figure 38: Only silent outgoing rule

combining PWB and the silent continuation rule are to address, i.e. the only

silent incoming rule and the only silent outgoing rule. The idea of modifying

the former rule can be illustrated by the following example.

Example 3.2.8. Consider the automaton 𝐺 given in Figure 37, from which

we construct 𝐺′ by splitting the state IV into two states IV′ and IV″. It holds

114

3.2 Conflict-preserving abstraction rules

that 𝐺 ≊ 𝐺′. Afterwards, II and IV′ as well as III and IV″ qualify the silent

continuation rule. Merging both classes results in 𝐺′/∼.

The observation in the above example inspires the following theorem. The

proof is synonymous to that of (Flordal and Malik, 2009, Proposition 2).

Theorem 3.2.37 (only silent incoming rule). Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a
Υ-shaped automaton and let ̄𝑥 ∈ 𝑄 be such that ̄𝑥 is not in any live-lock, 𝜏(1) ∈
𝐺(̄𝑥) and 𝑦

𝛼
−→ ̄𝑥 implies 𝛼 = 𝜏(1). For the automaton 𝐺′ = ⟨𝑄, Σ, →′, 𝑄∘, 𝑀⟩

with

→′= {(𝑥, 𝛼, 𝑦) | 𝑥
𝛼
−→ 𝑦 and 𝑦 ≠ ̄𝑥} ∪ {(𝑥, 𝛼, 𝑦) | 𝑥

𝜏
−→ ̄𝑥

𝛼
−→ 𝑦}, (133)

it holds that 𝐺 ≃𝒮 𝐺′.

Note that the silent event utilised to enable the only silent incoming rule must

be 𝜏(1). As for 𝐺′ in Figure 37, this ensures that II ∼inc IV
′ (and III ∼inc IV

″).

Replacing e.g. all transition labels 𝜏(1) with 𝜏(2) in 𝐺′ results in a situation

where II
𝜖
↪−→

1
II but II

𝜖
↪−→

1
/ IV′, which invalidates the incoming equivalence. In

addition, it is worth mentioning that in Theorem 3.2.37, it suffices to check

that ̄𝑥 is not in any live-lock, since this implies that none of its predecessors is

in any live-lock.

Complexity of the only silent incoming rule The only silent incoming

rule can be implemented as such that for each state, we first check whether

all its incoming transitions are labelled by 𝜏(1) and redirect all its outgoing

transitions to its predecessor states. The operations for a single state has thus

the complexity of 𝒪(|𝑄|2 ⋅ |𝐴|), which implies that the overall complexity of

the current implementation is 𝒪(|𝑄|3 ⋅ |𝐴|).

We now consider the only silent outgoing rule, which first conversely applies

thesilentcontinuation rule, thenutilises PWB. Consider the followingexample.

Example 3.2.9. Consider the automaton 𝐺 given in Figure 37. By conversely

applying the silent continuation rule, state II is split into two states II′ and II″

in 𝐺′ so that II′ and II″ qualify the silent continuation rule. Note that II′ and

II″ are not strictly incoming equivalent from Definition 3.2.25. Nevertheless,

silent continuation rule can still be applied through the observation in Remark

3.2.3 and Figure 35. Afterwards, a PWB ≈ on 𝐺′ can be found where II′ ≈ III

and II″ ≈ IV. By constructing the quotient automaton of 𝐺′ w.r.t. ≈, 𝐺′/≈ is

obtained.

115

3 Compositional verification with prioritised events

The observation in the above example inspires the following theorem. Its

proof is synonymous to that of (Flordal and Malik, 2009, Proposition 3).

Theorem 3.2.38 (only silent outgoing rule). Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a
Υ-shaped automaton and let ̄𝑥 ∈ 𝑄 be such that ̄𝑥 is not in any live-lock and

𝐺(̄𝑥) = {𝜏(1)}. Let 𝑄̄ ∶= {𝑦 ∈ 𝑄 | ̄𝑥
𝜏(1)
−−→ 𝑦} and𝐺′ = ⟨𝑄−{ ̄𝑥}, Σ, →′, 𝑄∘′, 𝑀⟩

with

𝑄∘′ = {
𝑄∘ if ̄𝑥 ∉ 𝑄∘

(𝑄∘ − { ̄𝑥}) ∪ 𝑄̄ if ̄𝑥 ∈ 𝑄∘
; (134)

→′ = {(𝑥, 𝛼, 𝑦) | 𝑥
𝛼
−→ 𝑦 and ̄𝑥 ∉ {𝑥, 𝑦}} ∪ {(𝑥, 𝛼, 𝑦) | 𝑥

𝛼
−→ ̄𝑥 and 𝑦 ∈ 𝑄̄}.

(135)

It holds that 𝐺 ≃𝒮 𝐺′.

Note that in Theorem 3.2.38, again, all outgoing transitions of a state for

applying the only silent outgoing rule must be 𝜏(1). This is caused by the
𝜖
=⇒
1
-fragment in transitions defining PWB; see Definition 3.2.7.

Complexity of the only silent outgoing rule Similar to the only silent

incoming rule, the only silent outgoing rule can be implemented as such that

for each state, we check whether all its outgoing transitions are labelled by

𝜏(1) and redirect all its incoming transitions to its successor states. The overall

complexity of the current implementation is thus 𝒪(|𝑄|3 ⋅ |𝐴|) as well.

Another powerful conflict-preserving abstraction rule is the certain conflicts

rule. Basically, if only the non-blockingness is to check, the exact structure

of the blocking part of the automaton is not of our interest and thus can

be merged into a single blocking state. In addition, upon reaching some

co-reachable states, blockage under synchronisation is inevitable. Outgoing

transitions from such states are thus (partially) removed. Consider the follow-

ing two examples.

Example 3.2.10. Consider the automaton 𝐺 given in Figure 39, where III is a

blocking state while all other states are non-blocking. For any automaton 𝑇
so that 𝒮(𝐺 ∥ 𝑇) can reach II in 𝐺, 𝜌 in IImust be executable in order to let

𝒮(𝐺 ∥ 𝑇) be non-blocking. However, in this case, 𝜏(2) must be executable in

the same state as well, which leads to the blocking state III. Thus, reaching II

under shaped synchronous composition certainly leads to a blocking situation.

We thus remove all outgoing transitions from II which renders II blocking and

116

3.2 Conflict-preserving abstraction rules

subsequently renders I blocking as well. By merging all blocking states, 𝐺′ is

constructed.

III

σ(1)

τ(2)

G

IV

G′

I II

ρ(2)

ω(1)

I
II blocks

Figure 39: Blocking silent transition

Example 3.2.11. Consider the automaton 𝐺 given in Figure 40, where III is

blocking state while all other states are non-blocking. For any automaton 𝑇
so that 𝒮(𝐺 ∥ 𝑇) can reach II in 𝐺, 𝜌 in IImust be executable in order to let

𝒮(𝐺 ∥ 𝑇) be non-blocking by reaching IV. However, in this case, the blocking

III can be reached by 𝜌 as well. Thus, the transition II
𝜎
−→ IV does not contribute

to the non-conflictingness and could be removed.

III

ρ(2)

σ(2)

G

IV

I II

ρ(2), σ(2)

ω(1)

σ in II blocks

III

ρ(2)

σ(2)

G′

IV

I II

ω(1)

ρ(2)

Figure 40: Blocking non-deterministic regular transitions

The above two examples are inspired by the limited certain conflicts rule intro-

duced in (Malik andWare, 2020), which motivates the following statement.

Note that merging blocking states is omitted for brevity.

Theorem 3.2.39 (certain conflicts rule). Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be a Υ-

shaped automaton. Let 𝑄c ⊆ 𝑄 be the set of co-reachable states in 𝐺 and

𝑄uc ∶= 𝑄 − 𝑄c the set of non-co-reachable states in 𝐺. Define two transition

sets as

→1∶= {𝑥
𝛼
−→ 𝑦 | 𝑥 ∈ 𝑄c, 𝛼 ∈ 𝐴, 𝑦 ∈ 𝑄 and

∃𝑦′ ∈ 𝑄uc, 𝜏 ∈ Υ. 𝐺<𝜏
rglr(𝑥) = ∅ ∧ 𝑥

𝜏
−→ 𝑦′ }; (136)

→2∶= {𝑥
𝜎
−→ 𝑦 | 𝑥 ∈ 𝑄c, 𝜎 ∈ Σ, 𝑦 ∈ 𝑄c, 𝐺<𝜎

rglr(𝑥) = ∅ and ∃𝑦′ ∈ 𝑄uc. 𝑥
𝜎
−→ 𝑦′ }

(137)

and let 𝐺′ = ⟨𝑄, Σ, → − (→1 ∪ →2), 𝑄∘, 𝑀⟩. It holds that 𝐺 ≃𝒮 𝐺′.

117

3 Compositional verification with prioritised events

It is worth mentioning that the certain conflicts rule as suggested in Theorem

3.2.39 abstracts an automaton through transition removal, which may render

co-reachable states non-co-reachable. Thus, the certain conflicts rule can

be iteratively applied until reaching the fix-point, as the transition removal

operation in Theorem 3.2.39 is obviously monotonic.

Complexity of the certain conflicts rule The transition removal is based

on finding blocking states in an automaton. This can be achieved by a back-

ward depth-first search on states marked by each marking set, which has the

complexity of 𝒪(| → | ⋅ |𝑀|) = 𝒪(|𝑄|2 ⋅ |Σ| ⋅ |𝑀|). In addition, the tran-

sition removal can be iteratively performed. In the worst case, each iteration

renders one co-reachable state un-co-reachable, which leads to maximally

|𝑄| iterations. Thus, the overall complexity of the certain conflicts rule is

𝒪(|𝑄|3 ⋅ |Σ| ⋅ |𝑀|).

3.3 Compositional verification

With the abstraction rules developed in the previous section, we are now in

the position to perform compositional non-blockingness verification w.r.t.

prioritised events. Recall that given a family of automata (𝐺𝑖)1≤𝑖≤𝑘, the global

behaviour amounts to 𝐺 ∶= 𝒮(𝐺1 ∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑘), where each 𝐺𝑖 is to

abstract through the developed abstraction rules. Afterwards, by iteratively

choosing modules to compose and perform abstraction on the composed

automaton, only one automaton lefts, whose non-blockingness coincideswith

the non-conflictingness of the input family of automata. Following (Pilbrow

and Malik, 2015, Algorithm 1), this procedure is illustrated by pseudo codes

in Algorithm 2 where the main function ISNONCONFLICTING performs the

compositional verification procedure and invokes the function CONFLICTPRE-

SERVINGABSTRACTION to apply individual abstraction rules. In the following,

we clarify Algorithm 2 in detail.

The main function ISNONCONFLICTING takes a family of automata 𝔊 =
{𝐺1, … , 𝐺𝑘} whose non-conflictingness is to check. For at least two auto-

mata in 𝔊, each 𝐺 ∈ 𝔊 is abstracted through conflict-preserving abstractions,

which is addressed by the for-loop in Line 3. To introduce silent events, recall

from Definition 3.1.6 that transition hiding is to perform. In addition, the

automaton to abstract should be in Υ-shaped form. To achieve these two pre-

requisites, the set of private events Π (which includes silent events) is figured

out. From Remark 3.2.1, we can shape w.r.t. private events, which not only

implies Υ-shapedness but also renders more states unreachable. This shaping

operation is performed by the 𝒮Π(⋅)-operator in Line 5, whose definition can

118

3.3 Compositional verification

Algorithm 2 Compositional non-blockingness verification

1: function ISNONCONFLICTING(𝔊)

2: if |𝔊| > 1 then
3: for all 𝐺 ∈ 𝔊 do

4: Π ← {𝛼 ∈ 𝔈 | 𝛼 is private in 𝐺 w.r.t. 𝔊}
5: 𝐺 ← 𝒮Π(𝐺) ▷ Shape w.r.t. to private events

6: 𝐺 ← HIDE(𝐺, Π)
7: 𝐺 ← CONFILCTPRESERVINGABSTRACTION(𝐺)
8: end for

9: while |𝔊| > 1 do
10: pick 𝐺𝑖, 𝐺𝑗 ∈ 𝔊 and let 𝐻 = 𝐺𝑖 ∥ 𝐺𝑗 ▷ Strategically choose

modules to compose

11: Π ← {𝛼 ∈ 𝔈 | 𝛼 is private in 𝐻 w.r.t. 𝔊 − {𝐺𝑖, 𝐺𝑗} }
12: 𝐻 ← 𝒮Π(𝐻)
13: 𝐻 ← HIDE(𝐻, Π)
14: 𝐻 ← CONFILCTPRESERVINGABSTRACTION(𝐻)
15: 𝔊 ← (𝔊 − {𝐺𝑖, 𝐺𝑗}) ∪ {𝐻}
16: end while

17: end if

18: let 𝐺 be the only automaton left in 𝔊
19: return ISNONBLOCKING(𝒮(𝐺))
20: end function

21: function CONFILCTPRESERVINGABSTRACTION(𝐺)

22: 𝐺 ←CERTAINCONFLICTSRULE(𝐺)

23: 𝐺 ←REDUNDANTSILENTSTEP(𝐺)

24: 𝐺 ←ONLYSILENTRULES(𝐺) ▷ only silent incoming and outgoing

rules

25: 𝐺 ←PRIORITISEDWEAKBISIMULATION(𝐺)

26: 𝐺 ←INCOMINGEQUIVALENCERULES(𝐺) ▷ active event rule and silent

continuation rule

27: return 𝐺
28: end function

be synonymously obtained from Definition 3.2.1 through uniform substitu-

tions. Afterwards, transition hiding is performed through the function HIDE.

Note that since 𝒮Π has been performed, hiding any private regular transition

into a silent transition preserves Υ-shapedness.

119

3 Compositional verification with prioritised events

At this stage, we shall take a deeper look into the transition hiding operation.

Generally, function HIDE shall iterate over all transitions and check whether

it is hidable; see Definition 3.1.7. To this end, Proposition 3.1.8 suggested that

transitions labelled byprivate regularevents notcarryingmarking information

can be hidden. This conservative statement can be relaxed by analysing the

following example.

Example 3.3.1. Consider the automaton 𝐺 given in Figure 41 and suppose that

the event 𝜔, which carries marking information, is private w.r.t. some given

rest part 𝐻 in a modular system. In this circumstance, hiding I
𝜔
−→ II in 𝐺

preserves the non-conflictingness with 𝐻. If 𝒮(𝐺 ∥ 𝐻) is non-blocking, then
upon reaching I in 𝐺, executing 𝜔 in Imust be possible under synchronisation.

If this is possible, then since 𝜔 is private in 𝐺, subsequently executing 𝜔 in II

must be possible as well. Thus, transition II
𝜔
−→ III is sufficient for reasoning

non-conflictingness from any state being in I, indicating that I
𝜔
−→ II can be

hidden. Indeed, I and II in 𝐺′ can be merged through e.g. PWB, which was not

possible in 𝐺.

II
σ(2)

G IIII ω(1) hide (I,ω,II)
ω(1) II

σ(2)

G′ IIII τ(1) ω(1)

Figure 41: Hiding private transition with marking information

From the above example, it can be concluded that for a private marking

transition, it can be hidden if it is ensured that in the future, another private

marking transition (within thesamemarking set) can be reached. This require-

ment can be fulfilled by the
𝜖

==⇒
Δ∶𝑛

-transition, which motivates the following

proposition.

Proposition 3.3.1. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped auto-

maton and𝐻 = ⟨𝑄𝐻, Σ𝐻, →𝐻, 𝑄∘
𝐻, 𝑀𝐻⟩ be an automaton. Let 𝑡 = (̄𝑥𝐺, 𝜎, ̄𝑦𝐺)

∈ →𝐺 with 𝜎 ∈ Σ𝐺 − Σ𝐻 be such that for all Ω𝐺 ∈ 𝑀𝐺 so that 𝜎 ∈ Ω𝐺, there

exists 𝜎′ ∈ Ω𝐺 − Σ𝐻 so that the following two statements hold:

(i) prio(𝜎′) ≤ prio(𝜎);

(ii) ̄𝑦𝐺
𝜖

==⇒
Δ∶𝜎

̄𝑧𝐺
𝜎′

−−−→
Δ∶𝜎′

for some ̄𝑧𝐺 ∈ 𝑄𝐺 − { ̄𝑥𝐺} and Δ = Σ(̄𝑥𝐺).

It holds that 𝑡 is hidable w.r.t. 𝐻.

Proof. Since the (⇐) case is trivial, we only prove the (⇒) case, i.e. we assume

that 𝒮(𝐺 ∥ 𝐻) is non-blocking and attempt to prove that 𝒮(𝐺/𝑡 ∥ 𝐻) is non-
blocking. Note that 𝒮(𝐺 ∥ 𝐻) and 𝒮(𝐺/𝑡 ∥ 𝐻) have the same set of reachable

120

3.3 Compositional verification

states. Let 𝑥𝐺 ∈ 𝑄𝐺 and 𝑥𝐻 ∈ 𝑄𝐻 be such that (𝑥𝐺, 𝑥𝐻) is reachable in
𝒮(𝐺/𝑡 ∥ 𝐻). Obviously, (𝑥𝐺, 𝑥𝐻) is reachable in 𝒮(𝐺 ∥ 𝐻) as well. For all
Ω𝐺 ∈ 𝑀𝐺 so that 𝜎 ∈ Ω𝐺 and

(𝑥𝐺, 𝑥𝐻)
𝑠
=⇒𝒮 (̄𝑥𝐺, ̄𝑥𝐻)

𝜎
−→𝒮 (̄𝑦𝐺, ̄𝑥𝐻) (138)

in 𝒮(𝐺 ∥ 𝐻) for some ̄𝑥𝐻 ∈ 𝑄𝐻 and 𝑠 ∈ (Σ𝐺 ∪ Σ𝐻)∗, we must have

(̄𝑥𝐺, ̄𝑥𝐻)
𝜏
−→𝒮 (̄𝑦𝐺, ̄𝑥𝐻)

𝜖
=⇒𝒮 (̄𝑧𝐺, ̄𝑥𝐻)

𝜎′

−→𝒮 (139)

in 𝒮(𝐺/𝑡 ∥ 𝐻) where 𝜏 = hide(𝜎). Note that (̄𝑥𝐺, ̄𝑥𝐻) can be reached from

(𝑥𝐺, 𝑥𝐻) in 𝒮(𝐺/𝑡 ∥ 𝐻) as well.

Complexity of searching hidable transitions For each transition, all its

multi-step silent successor states are to determine (maximally |𝑄|) where
a comparison of the active regular event set is necessary (with complexity

𝒪(|Σ|)). For each furthest silent successor, one check for each marking set

(maximally |𝑀|) whether some private active regular event is in this marking

set (with the complexity 𝒪(|Σ|)). The overall complexity of transition hiding

is thus 𝒪(|𝑄| ⋅ |→| ⋅ |Σ|2 ⋅ |𝑀|) = 𝒪(|𝑄|3 ⋅ |Σ|3 ⋅ |𝑀|).

Note that Proposition 3.3.1 covers Proposition 3.1.8, i.e. it includes the trivial

case where the transition to hide is irrelevant to marking. In addition, in (ii)

of Proposition 3.3.1, ̄𝑧𝐺 ≠ ̄𝑥𝐺 ensures that ̄𝑧𝐺
𝜎′

−→ and ̄𝑥𝐺
𝜎
−→ ̄𝑦𝐺 must be two

distinct transitions. With the help of Proposition 3.3.1, we are now able to

achieve more abstraction possibilities due to the potentially enlarged set of

silent transitions.

We now resume the clarification of Algorithm 2. After hiding in Line 6, 𝐺
can be abstracted by applying abstraction rules developed in Section 3.2. This

invokes the function CONFLICTPRESERVINGABSTRACTION in Line 21 which

performs individual abstraction rules in a strategical order. After all automata

have been abstracted, the while-loop in Line 9 is entered. The loop start with

the composition of a strategically picked pair of modules, which may drastic-

ally influence the verification performance. In the context with prioritised

events, it is heuristically preferred that choosing the modules shall render as

many regular events private as possible. The reason for applying this strategy

is such that this benefits the 𝒮Π-shaping operation, which itself is very effi-

cient to perform (with the complexity 𝒪(|𝑄| ⋅ |𝐴|)). After composing the

chosen modules 𝐺𝑖 and 𝐺𝑗 into 𝐻, private events in 𝐻 are figured out and the

abstraction procedure is applied to 𝐻 again. Overall, the while-loop in Line 9

121

3 Compositional verification with prioritised events

reduces the size of 𝔊 by one in each iteration. Finally, only one automaton

is left in 𝔊, say 𝐺. The non-conflictingness of the input 𝔊 coincides with

the non-blockingness of 𝒮(𝐺), which is returned as the result of the entire

algorithm.

3.4 Case studies

In this section, two typical use-cases are considered where the behaviour of

a modular discrete event system is restricted by prioritised events. The first

case addresses the SBD verification problem, where the model established

in Section 2.4 is utilised. The second case handles the problem of mim-

icking executor semantics, where an executor always discards low-priority

events when other high-priority events are active. For relevant performance

evaluations where the computation duration is mentioned, the verification

algorithm is implemented and tested on an office computerwith an Intel Core

i7-10510U 2.30 GHz CPU and 16 GB RAMwithin the C++ framework of the

libFAUDES library (Moor, Schmidt et al., 2008).

3.4.1 Synchronised SBDs

We recall the example modelled in Section 2.4 where five (partially) nested

SBDs describe the control sequences of a modular system. Following the

translation procedure in Section 2.2, the global closed-loop behaviour is

represented by five automata, whose non-conflictingness is to verify. The five

automata translated from the five SBDs 𝑆PROC, 𝑆TAKE, 𝑆SEND, 𝑆1 and 𝑆2 are

named 𝐹PROC, 𝐹TAKE, 𝐹SEND, 𝐹1 and 𝐹2, respectively. By recalling Sections

2.2.3 and 2.3.1, it is clear that for the current example, all hyper-edge events

and done events are with the highest priority 1 while all other events (i.e.

variable events) are with priority 2; see Table 3.

Table 3: Priority assignment of the SBD example

events priority

ΣGL
HEs 1

ΣGL
D 1

ΣGL
VAR 2

To verify the non-conflictingness, themarking set of each automaton is first to

determine. From a practical perspective, it is to expect that each SBD always

has the opportunity to proceed, i.e. firing hyper-edges is always possible in

122

3.4 Case studies

the future. This motivates the following marking set assignment of 𝐹PROC,

𝐹TAKE, 𝐹SEND, 𝐹1 and 𝐹2, respectively:

𝑀PROC = 𝑀TAKE = 𝑀SEND = ∅; (140)

𝑀1 = { { HE[S[101]T[102] } }; (141)

𝑀2 = { { HE[S[201]T[206] }, { HE[S[205]T[206] } }. (142)

Note that it is safe to aggressively let 𝑀PROC = 𝑀TAKE = 𝑀SEND = ∅. If their
invokers can be reached indefinitely in the root SBD 𝑆1, then each non-root

SBD can be indefinitely started as well. On the other hand, the termination of

all non-root SBDs is necessary for 𝑆1 to proceed. Besides, for 𝑆1, it suffices

to choose any hyper-edge in the sole loop for an event set in the marking set

𝑀1, e.g. HE[S[101]T[102]. However, this is not the case for SBD 𝑆2, since it

contains two branching loops. To guarantee that both loops can be entered

in the future, it is necessary to assign two event sets in the marking set 𝑀2,

where each event set corresponds to one branch. In addition, recall from Line

10 of Algorithm 2 that a wise choice of composing modules may drastically

influence the duration of verification. In particular, we shall attempt to render

as much regular events private as possible. To this end, we arrange all input

automata in a given sequential order and implement Line 10 of Algorithm 2

as such that always the first two automata of the sequence are composed. In

addition, Line 15 always pushes the newly composed abstracted automaton to

the first position of the sequence. In this regard, we arrange the five automata

in the order of

𝐹1, 𝐹PROC, 𝐹TAKE, 𝐹SEND, 𝐹2. (143)

This order attempts to handle M1 and its submodules first, which will effi-

ciently render events in M1 private. Under the current set-up, the verification

terminates in 1.03s, which shows that the global closed-loop behaviour is in
fact blocking.

Toanalysehowblocking statesare reached, it is sometimesdesired toconstruct

a trace as a counterexample to show how blocking states can be reached. Note

that the final automaton resulting from the compositional verification is

normally much smaller than the explicit monolithic representation. Thus,

computing counterexample based on the final automaton only results in a too

abstract trace, which is difficult for the user to diagnose how blocking states

are reached, since such an abstract counterexample cannot be executed in the

monolithic representation. To this end, we experimentally implement the

State Merging Expansion (SME) algorithm introduced in (Malik andWare,

2020) to compute a trace that reaches some blocking state in the monolithic

123

3 Compositional verification with prioritised events

cb1_ar

HE[S[10]T[11, 13]]

Figure 42: Hypothesis which resolves the blockage

representation.4 From the resulting counterexample, it can be diagnosed

that the blockage can be caused by lacking preconditions for CB1 to take a
workpiece. From the plant model in Appendix A, especially 𝐺1−2_1 in Figure

59, CB1 can receive a workpiece as long as no workpiece is currently available
at the workpiece sensor of CB1 and the motor of CB1 is off. This indicates

the possibility that, when SBD 𝑆TAKE is active with the token configuration

[11, 13], more than one workpiece can pass through CB1. This contradicts the
design purpose, since it is intended that each time when 𝑆TAKE is invoked,

onlyoneworkpiece is transported from SF1 to CB2. To solve the issue, consider
the hypothesis illustrated in Figure 42, which sets firing HE[S[10]T[11, 13]]
as a precondition for CB1 to receive a workpiece. This requirement can be

realised by externally restricting the behaviour of SF1. By considering the
automaton in Figure 42 as an additional plant component when translating

𝑆TAKE, the global behaviour turns out to be non-conflicting.

Table 4: Verification duration of the SBD example

orig. order, full abst. orig. order, shape only bad order, full abst.

1.03s 10.40s 20.75s

To evaluate the performance of compositional verification, we consider two

suboptimal configurations for the compositional verification of the current

example. Note that the troubleshooting automaton in Figure 42 is not taken

into consideration. The resulting verificationdurations are recorded inTable 4.

4 If only state-merging abstraction rules (i.e. all abstraction rules introduced in Section

3.2.1, 3.2.2 and 3.2.3 except the certain conflicts rule) are considered, we could utilise SME

to expand a counterexample: suppose a 𝒮Π-shaped automaton 𝐺 is abstracted into 𝐺′,

and the rest part of the synchronisation is 𝐻. If a counterexample in 𝒮(𝐺′ ∥ 𝐻) is given,
SME expands the counterexample so that it can be executed in 𝒮(𝐺 ∥ 𝐻). Technically, by
performing A∗-search (Hart et al., 1968), SME searches successors within each equivalence

class, which were merged into a single state in the abstract counterexample. Meanwhile,

reaching the silent successor should also be allowed by the rest part 𝐻. In this regard, SME

effectively unfolds each equivalence class so that abstracted information (such as merged

non-deterministic choices and merged silent sequences) are reconstructed.

124

3.4 Case studies

� Skip the function CONFLICTPRESERVINGABSTRACTION in Algorithm 2,

i.e. we only utilise 𝒮Π-shaping as a naive abstraction rule. In this situ-

ation, the monolithic global behaviour is indeed explicitly constructed

and the verification procedure takes 10.40s to terminate.

� All abstraction steps are executed, but the input order of automata is

rearranged by

𝐹1, 𝐹2, 𝐹PROC, 𝐹TAKE, 𝐹SEND. (144)

Conceivably, this sequence is rather inefficient in that the local behaviour

in M1, i.e. taking and sending workpieces from M1 which are specified
in 𝐹TAKE and 𝐹SEND, comes at the end of the sequence. In this case, the

verification procedure takes 20.75s to terminate.

3.4.2 Priority in control hardware

In this subsection, we investigate the scenarioswhen finite automata are imple-

mented as control programmes in hardware; see e.g. (Fabian and Hellgren,

1998; Moor, 2022). In particular, we focus on the choice of simultaneously

activated events, i.e. at some state in an automaton, multiple outgoing tran-

sitions labelled by different events can be executed. We envisage the following

cases:

� Consider implementing afiniteautomatonas thecontrollerof aconveyor

belt (see Figure 20). In particular, the usermaywish to stop the conveyor

belt whenever a workpiece arrives. Figure 43 shows a fragment of the

controlled behaviour, where events ar, lv and off denote the arrival /

departure of the workpiece at / from the workpiece sensor and turning

off the conveyor belt motor, respectively. Note that ar and lv correspond
to the behaviour of the workpiece sensor, while off is associated with
some control instruction. In fact, similar concept of “writable variables”

was proposed for SBDs in Section 2.3.2 as well. At the current stage, one

may ask why event lv is active at state II while event off is active. This

ar lv

off

I II

Figure 43: A fragment of the controlled behaviour of a conveyor belt

125

3 Compositional verification with prioritised events

can be caused by the synthesis rule of the controller, e.g. in Supervisory

Control Theory, sensoreventsaregenerally notallowed tobedisabled. In

particular, if other automata are to synchronously operate the conveyor

belt, off may be disabled by othermodules in the state II, which possibly

need to be verified. To this end, it is natural to propose that control

instructions shall have higher priority over sensor events (Qamsane

et al., 2016). This can indeed be considered as an assumption over the

timed behaviour of the automata (Brandin and W. M. Wonham, 1994),

i.e. control instructions are always taken sufficiently rapidly without

“waiting” for subsequent sensor events.

� In addition to the above situation, one may also expect to assign differ-

ent priorities to different instructions. This enables more flexibility in

expressing the control specification as well.

SF CB1 CBk XS

Figure 44: Concatenated conveyor belts

Similar to Figure 20, we consider another practical use-case as depicted in

Figure 44 where workpieces are transported from a stack feeder (SF) on the

left to an exit slide (XS) on the right via 𝑘 concatenated conveyor belts (CB𝑖).
Each component is equipped with a sensor to indicate the availability of a

workpiece, while each CB is driven by a motor. The plant behaviour of each

conveyor belt is described by 𝐺𝑖 in Figure 45, where 𝐶𝑖 additionally describes

Table 5: Events in the conveyor belts example

event description priority

on𝑖 turn on the motor of CB𝑖 2
off𝑖 turn off the motor of CB𝑖 2

ar𝑖
workpiece arrival at the sensor of CB𝑖
(𝑖 = 0 for SF, 𝑖 = 𝑘 + 1 for XS)

3

lv𝑖
workpiece departure from the sensor of CB𝑖
(𝑖 = 0 for SF, 𝑖 = 𝑘 + 1 for XS)

3

sd𝑖 send workpiece from CB𝑖 to CB𝑖 + 1 (𝑖 = 0 for SF) 1

126

3.4 Case studies

ari

Gi

oni

offi

Ci

sdi−1 oni ari

Hi

ar0 sd0

lv0

F0

offi

offioffi oni oni

ari+1

lvi lvi sdk
Fk+1 ark+1

lvk+1

ark+1

sdi onioffi ari+1

offi
sdi

ari
ari+1

lvi oni

ari
ari+1

ari+1
ari

ari+1
ari

ari+1
ari

ari+1
ari

ari
ari+1

Figure 45: Automata of the conveyor belts example

the coupling between CB𝑖 and CB𝑖 + 1. To control each conveyor belt CB𝑖 in a
modular fashion, a modular controller 𝐻𝑖 for each CB𝑖 is given in Figure 45

as well. In particular, the event sd𝑖−1 constitutes an internal synchronisation

instruction, by executing which a workpiece is sent from CB𝑖 to CB𝑖 + 1. Each
modular controller 𝐻𝑖 cyclically

(i) takes a workpiece from CB𝑖 − 1 (or SF as CB0) by turning on the motor;

(ii) when a workpiece arrives, either proceeds sending the workpiece to

CB𝑖 + 1 (or XS as CB𝑘 + 1) by directly executing sd𝑖, or stops CB𝑖 until
sd𝑖 becomes executable, and

(iii) stops CB𝑖 after CB𝑖 has received the workpiece.5

It is worth mentioning that the event sd𝑖 appears both in 𝐻𝑖 and 𝐻𝑖+1. Thus,

sd𝑖 in 𝐻𝑖 may be deactivated by 𝐻𝑖+1, i.e. CB𝑖 + 1 is not ready to receive

a workpiece. It is of course safe to always first execute off𝑖, then wait until

sd𝑖 becomes executable. However, this implementation causes a “stutter” if

CB𝑖 + 𝑖 is indeed directly ready for receiving, i.e. the motor of CB𝑖 is turned
off and then immediately turned on. To solve this issue, the user can specify

that the priority of sd𝑖 is higher than that of off𝑖, i.e. if sd𝑖 is executable, the

possibility of executing off𝑖 should be discarded. Finally, we note that each

5 A branching similar to (ii) can be realised here as well, which is omitted for simplicity.

127

3 Compositional verification with prioritised events

controller 𝐻𝑖 rejects all unexpected occurrence of sensor events, which lead

to a dedicated blocking state.

With all the events appearing in the current example listed in Table 5, we are

in the position to consider their priority assignment. As discussed above, we

assume that the controller always reacts immediately upon the occurrence of

sensor events. This motivates us to set sensor events with the lowest priority.

Furthermore, we assume that the controller always prefer internal instructions

(sd𝑖) to actuator manipulations (on𝑖, off𝑖), indicating that sd𝑖 are assigned

with the highest priority. In addition, each conveyor belt CB𝑖, 1 ≤ 𝑖 ≤ 𝑘 forms

a local closed-loop

𝐹𝑖 ∶= 𝐺𝑖 ∥ 𝐻𝑖. (145)

Besides, SF and XS in Figure 44 are considered being controlled externally

which result in individual local closed loops 𝐹0 and 𝐹𝑘+1 in Figure 45, respect-

ively. In this regard, the overall closed-loop behaviour with 𝑘 conveyor belts
complies with

𝐹 ∶= 𝒮 ⎛⎜
⎝

∥0≤𝑖≤𝑘(𝐹𝑖 ∥ 𝐶𝑖⏟
𝐸𝑖

) ∥ 𝐹𝑘+1⏟
𝐸𝑘+1

⎞⎟
⎠

, (146)

whose non-blockingness is to verify.

Again, to prepare for the verification, we shall first determine the marking

set of each input automaton. From (146), it is considered that 𝑘 + 2 automa-

ta 𝐸0, 𝐸1, … , 𝐸𝑘+1 are available as input for the compositional verification.

These are assigned with marking sets

𝑀𝑖 = {{ar𝑖}} (147)

for all 𝑖 ∈ {0, 1, … , 𝑘 + 1}. In addition, the input order of the automata for

the verification is

𝐸0, 𝐸1, … , 𝐸𝑘+1. (148)

This order iteratively packs the left side of the plant into a single module

and localises all plant events in the left most module. The elapsed time

for verification as well as the final state count are listed in Table 6, where

the first column shows the count of conveyor belts and the second column

shows the state count of the monolithic behaviour. Column “mono time”

lists the elapsed time for compositional verification in second if only 𝒮Π-

shaping is applied as the single abstraction rule, while the entire function

CONFLICTPRESERVINGABSTRACTION in Algorithm 2 is skipped. In this case,

the complete monolithic behaviour is indeed constructed at the end. It can

be observed that both the second and the third column grow exponentially

128

3.4 Case studies

Table 6: State count and elapsed time

𝑘 mono. state cnt. mono. time abst. state cnt. abst. time

5 3.4 × 103 0.28s 35 0.06s
6 9.9 × 103 0.81s 40 0.09s
7 2.8 × 104 2.79s 45 0.12s
8 7.7 × 104 8.60s 50 0.17s
9 2.1 × 105 26.23s 55 0.22s

w.r.t. to the count of conveyor belts. Contrarily, the last two columns show the

information when the entire Algorithm 2 is applied, i.e. we do not skip the

function CONFLICTPRESERVINGABSTRACTION. The fourth column shows the

state count in the final automaton while the last column shows the elapsed

time for the entire verification procedure. We observe that, when all available

abstraction rules are applied, the state count of the final automata (as well as

the elapsed time) grows linearly, which is caused by the fact that the global

behaviour only depends on the availability of a workpiece at each sensor. In

addition, a significant reduction of computational cost can be observed aswell

by comparing the third and the fifth column. Finally, it is worth mentioning

that assigning the marking sets as

𝑀0 = {{ar0}}; (149)

𝑀1 = 𝑀2 = ⋯ = 𝑀𝑘+1 = ∅ (150)

is indeed reasonable for the current example, since if SF never receives a

workpiece any more, all subsequent CBs will eventually block due to the

lack of workpiece supply; on the other hand, if any CB jams, all preceding

CBs will eventually jam as well, which prevents SF to take a new workpiece.

In this situation, if all available abstraction rules are applied and the input

order suggested in (148) is adopted, the final state count of the abstraction is

constantly 10 for any 𝑘 ∈ ℕ. The reason is that the global behaviour now only

depends on whether CB1 currently owns a workpiece (w.r.t. to the marking

requirement) and the subsystem consisting of all components from CB2 to XS
behaves equivalently to a single XS. In other words, due to relaxed marking

requirements, more transitions are hidable in this situation.

129

3 Compositional verification with prioritised events

Concluding remarks

In this section, the compositional non-blockingness verification problemw.r.t.

prioritised events has been addressed. To verify the non-conflictingness of a

modular system, compositional verification iteratively alternates between per-

forming conflict-preserving abstractions and composing strategically chosen

modules until there is only one module left, whose non-blockingness is essen-

tially the non-conflictingness of the original modular system. Although this

framework has been intensively studied in recent years, the available results

do not consider prioritised events, which is not only essential for SBD models,

but also useful in other general application scenarios. In this context, we have

extended and modified existing abstraction rules in the current chapter to

adapt the semantic restriction imposed by prioritised events. Afterwards, the

new abstraction rules have applied to various practical examples, where the

entire state spaceaswell as the timeneed forverification have been successfully

reduced.

130

4 Sequential function chart

In industrial manufacturing, a great number of logic control programmes

are implemented in programmable logical controllers (PLCs), which is a type

of computer specialised in reliable operation in industrial environments. In

particular, the IEC 61131 − 3 standard defines five programming languages

for control programmes in PLCs, among which the Sequential Function Chart

(SFC) is specifically of our interest due to its similarity to SBD. Basically, both

SFC and SBD are structured based on Petri-nets. In addition, various concepts

in SBDs, e.g. hyper-edges, conditions, writable variables, have corresponding

similar counterparts in SFCs as well. These observations naturally raise the

question of whether the compositional verification procedure developed so

far in Chapter 3 can be applied to verify modular SFC programmes as well.

Similar to Chapter 2, we first consider the problem of formalizing SFC se-

mantics. This has been addressed in various articles (Bauer, Engell et al.,

2004; Bauer, Huuck et al., 2004; Blech and Ould Biha, 2011; Stursberg et al.,

2005) since the original IEC 61131 − 3 standard does not sufficiently formalise

SFC semantics. Generally, as a programming language designed for a specific

platform, the formal semantics of SFCs strongly rely on the operation rules of

PLCs. By cyclically reading input from the plant, manipulating actions, firing

enabled SFC transitions and bringing values to outputs, SFC dynamics is cycle-

triggered (Stursberg et al., 2005) and runs over the physical timeaxis. However,

the compositional verification method introduced in Chapter 3 is based on

finite automata which suits event-based models. To minimise this gap, we

attempt to interpret the cycle-triggered SFC semantics over the dense logic

time axis, which is the first major challenge to handle in the current chapter.

Technically, this is achieved by taking several reasonable assumptions, from

which explicit enumeration of PLC cycles can be avoided while critical logical

structures of SFCs are still preserved.

With SFC semantics over the dense time axis, a modular SFC programme can

be translated into a collection of synchronised finite automata. However, the

compositional verification approach introduced in Chapter 3 turns out to

be not directly applicable due to issues with the priority assignment. Recall

that in each PLC cycle, a PLC always first manipulates all executable actions

and then fire all enabled transitions afterwards. By following the idea in

Section 2.2, we consider each action execution and SFC transition as an event.

Besides, action execution events are with higher priorities than transition

events. However, this approach is problematic if multiple SFC transitions, say

131

4 Sequential function chart

Trans1 and Trans2, are to fire in the same PLC cycle. Recall from Section 2.2

that firing multiple enabled transitions is modelled as alternative interleaving

sequences in finite automata. In this regard, if e.g. Trans1 is fired first,

some subsequent action execution events (which are in the subsequent PLC

cycle) may preempt Trans2 (which is still to fire in the current PLC cycle). To

prevent any event from happening before all enabled SFC transitions are fired,

we introduce the unification operator 𝒰(⋅) on an automaton which unifies

alternative interleaving sequences into a single simultaneous transition. In

this context, the global monolithic behaviour is not solely restricted by 𝒮(⋅),
but by 𝒮(𝒰(⋅)). Nevertheless, the introduction of the unification operator also
indicates that the compositional verification procedure introduced in Chapter

3 needs careful revision. Fortunately, all results in Chapter 3 are either directly

applicable or only need subtle changes.

The current chapter is organised as follows: in Section 4.1, we clarify SFC

semantics over the dense time axis, based on which the closed-loop behaviour

of a system controlled by a modular SFC programme can be translated into

finite automata utilising the translation procedure for SBDs. At the end of

Section 4.1, we formally introduce the unification operator, which is necessary

to illustrate the global closed-loop behaviour. In Section 4.2, we revisit the

results in Chapter 3 to show that the compositional verification method is

applicable for modular SFC programmes as well, where the global behaviour

is restricted by 𝒮(𝒰(⋅)) instead of 𝒮(⋅). The current chapter is closed by a case

study in Section 4.3 with some concluding remarks.

4.1 Correlating SFCs with SBDs

To apply compositional non-blockingness verification to modular SFC pro-

grammes, in this section, we exploit the SBD semantics introduced in Chapter

2 to interpret SFC semantics, which lays the foundation of translating SFCs

into finite automata. In particular, through syntax mapping from SFCs to

SBDs and comparing the subtle differences between their semantics, SFC

translation can be handled by modifying and extending the translation pro-

cedure for SBD introduced in Section 2.2. This procedure is represented in

detail in the following.

4.1.1 Syntaxmapping from SFCs to SBDs

Generally, SFCs are syntactically extended from Petri-nets where firing tran-

sitions are guarded by specified conditions and each place, a.k.a. step in an

132

4.1 Correlating SFCs with SBDs

SFC, specifies a sequence of actions to execute. Thus, to semantically interpret

an SFC as an SBD, we first briefly introduce the syntactic elements in SFC and

introduce their intended semantics by mapping them into SBD components.

Before starting, we shall first mention that hierarchical structures similar to

invocation in SBDs are not defined for SFCs. Although the terminology of

“hierarchical SFC” is utilised in some contexts, e.g. in (Bauer, Huuck et al.,

2004), this is in fact more closely related to activation, i.e. an SFC step can

activate another programme, which may again be an SFC. The difference

between invocation and activation is that the step which activates another

SFC simply proceeds its operation or token propagation without waiting for

the termination of the activated programme. This is beyond the scope of the

current thesis and we only consider modular SFCs in the following.

Step1

Step1

button = 0

Step2

Trans1button = 0

Step3

Trans2button = 1

Trans3

S motor1

R motor1

S motor2

S motor1

R motor2

initial step

step

guard
transition

action qualifier action name

action block

Step2

button = 1

Step3

ID: 1

ID: 2

ID: 3

sequence end

Figure 46: Syntactic interpretation of an SFC (left) as an SBD (right)

In Figure 46, a compact example SFC is given on the left side where most basic

SFC elements are illustrated. The SBD resulting from the syntax mapping is

demonstrated on the right side of Figure 46. By taking the convention that

tokens generally propagate from top to bottom in an SFC, arrows are omitted

in SFCs. In the following, we briefly introduce the syntax mapping of each

component demonstrated in Figure 46.

133

4 Sequential function chart

Steps and transitions Basically, an SFC consists of alternatively connected

steps and transitions, which are synonymous to places and transitions

from a Petri-net perspective. Thus, it is natural to map an SFC step into

an SBD process. Besides, each SFC transition corresponds to an SBD

hyper-edge. For the situation in Figure 46, each SFC transition is directly

mapped into a single SBD edge since no branching structures are present.

Initial step Each SFC can define a unique initial step, in which a token is

placed when the SFC programme is activated. We can indeed match

an SFC initial step analogously into an SBD initial process, which is a

dedicated SBD process owning a token upon activation and can have

zero or one predecessor. In Figure 46, the initial step Step1 of the SFC
is mapped into an initial process Step1 with ID = 1 in the SBD, which,

similar to an initial step, is denoted with a doubled contour.

Sequence ends Some SFC derivatives also suggest terminals for SFCs which

eliminate tokens, e.g. sequence end as in GRAPH from Siemens TIA. Such

elements can be directly mapped into SBD terminal nodes.

Guards For each SFC transition, a guard is specified (which can be trivially

true) so that the transition can fire only if its guard evaluates true. An SFC
guard can either bemapped to the precondition or the postcondition of an

SBD process, since they both guards the firing of hyper-edges. Technically,

we choose to map an SFC guard into the postcondition of the preceding

SBD process, which benefits handling merged flows, as we will see in

the following. As for the case in Figure 46, the guard of the transition

Trans1 is mapped into the postcondition of the SBD process Step1 in the

resulting SBD.

Actions Foreach SFCstep, a listof actions this stepexecutes is specified. Each

action is given in the form of an action blockwhich typically consists of an

action qualifier and an action name. The action name of an action block

specifies the variable which should be manipulated, typically an output

bit or a memory bit. On the other hand, the action qualifier specifies

the type of the action. For simplicity, we assume that an action name

always refers to a binary variable, while only the two most basic qualifiers

are considered, namely S for “setting a bit to 1” and R for “resetting a

bit to 0”. Basically, actions associated with a step are executed from top

to bottom. This can be reflected in an SBD by assigning immediate

instructions introduced in Section 2.3.3. As for the SBD in Figure 46, a

possible assignment is

immediate(1, motor1, 1) = 1;

134

4.1 Correlating SFCs with SBDs

immediate(2, motor1, 0) = 1;
immediate(2, motor2, 1) = 2;
immediate(3, motor1, 1) = 1;
immediate(3, motor2, 0) = 2.

Step1

Step1

guard1

Step2

Trans1guard1

Step2

guard2

Step2

Trans2

Trans2guard2

jump

Figure 47: Mapping a jumpwith a preceding transition

Wenowconsider furtheressential SFCcomponents SFCwhichare not involved

in Figure 46.

Sequence loops To realise cyclic executions, SFC supports looping structures

which is the only situation that a token can be propagated from bottom

to top. This is also referred to as a jump in GRAPH, as we can specify

a transition to jump to an arbitrary target step. If the target step does

not have any preceding transition (i.e. an initial step), such a jump can

directly bemapped to an SBD edge; otherwise, amerge is necessary before

the SBD process mapped from the target step; see Figure 47.

Divergences and convergences SFC divergences and convergences are syn-

onymous to branches and merges in SBDs, respectively. Note that for

an SFC divergence, guards of all successive transitions are mapped to

the corresponding branch condition (instead of postcondition of some

preceding process) in the resulting SBD; see Figure 48.

Simultaneous divergences and simultaneous convergences SFC simultan-

eous divergences and simultaneous convergences are synonymous to forks

135

4 Sequential function chart

Step1 Step2

Trans3guard3 Trans4guard4

Trans1guard1 Trans2guard2

divergence

convergence

guard3 guard4

[guard1]

[guard2]

Step1 Step2

Figure 48: Mapping a divergence and a convergence

Step1 Step2

simultaneous divergence

guard2 guard2

Step1 Step2

Trans1guard1

Trans2guard2 simultaneous convergence

Figure 49: Mapping a simultaneous divergence and a simultaneous convergence

and joins in SBDs, respectively. Note that for a simultaneous convergence,

if only one successive transition exists, its guard is copied to the post-

condition of all preceding SBD processes; see Figure 49. Otherwise, the

simultaneous convergence must be followed directly by a divergence, in

which situation we shall map successive guards into SBD branch condi-

tions.

4.1.2 Dense-time SFC semantics

Based on the syntax mapping, we attempt to translate a given modular SFC

programme into finite automata by properly extending and modifying the

136

4.1 Correlating SFCs with SBDs

translation procedure for SBDs introduced in Section 2.2. This requires a

careful discussion of the subtle semantic differences between SFCs and SBDs.

As clarified in Section 2.1.2, SBD semantics is based on the discrete dense

time axis ℕ0 × ℕ0 (which can also be simplified to the one-dimensional logic

time axis ℕ0). Reaction upon the occurrence of any input event is assumed

instantaneous, which leads to the following two relevant effects:

(F1) Token propagation (i.e. firing hyper-edges) must happen immediately

as soon as it becomes possible;

(F2) Token propagation is triggered by events.

In comparison with SBDs, SFCs are defined specifically for PLCs which is

operated over thephysical timeaxis. In particular, theoperationof PLCs follow

the so-called PLC-cycle which must last for a positive duration of physical

time.1 In each PLC-cycle, the following four procedures are sequentially

executed:

(C1) Read values of PLC inputs;

(C2) Execute all specified actions in all active steps;

(C3) Figure out the set of enabled SFC transitions2 and fire these transitions;

(C4) Set values to PLC outputs.

Note that the above cycle applies to a family of modular SFCs as well, i.e. for

multiple SFCs running in parallel, a PLC cycle will first execute actions in all

SFCs, then fire enabled transitions in all SFCs.

Consider the situation illustrated in Figure 50, where we focus on the system

behaviour over PLC cycles based on the physical time axis. In particular, the

topmost axis includes a complete PLC cycle lasting from 𝜄0 to 𝜄5. Ideally, the

value of 𝜄5 − 𝜄0 should be as low as possible in a high-performance PLC, but

can never be reduced to zero. Most prominently, after all input values have

been read, the PLC becomes somewhat “blind” until the beginning of the next

PLC-cycle. Consider the value changes of three binary sensors as illustrated in

Figure 50, where we interpret each positive or negative edge in input bits as an

event. This indicates that four events in1, in2, in3 and in4 sequentially happen

in the same PLC cycle. In this case, although the occurrence of in1 at 𝜄1 may

enable some transitions, such transitions cannot be fired at 𝜄1 since the input

1 A similar issue exists when comparing SFC with Grafcet defined in the IEC 60848 standard

as well; see also (Provost, J.-M. Roussel et al., 2011).

2 An SFC transition is enabled if all its preceding steps are currently active and its guard

evaluates true

137

4 Sequential function chart

read inputs execute actions fire transitions set outputs read inputs

i-th PLC cycle

0

1

0

1

in1

in4

0

1
in2 in3

sensor 1

sensor 2

sensor 3

ι0 ι1 ι2 ι3 ι4 ι5

Figure 50: PLC cycles on the physical time axis

value change of sensor 1 can only be detected after 𝜄5, i.e. the start of the next

PLC-cycle. In addition, the input event in4, which occurs in the current PLC

cycle as well, may also disable such transitions. Moreover, for sensor 3, the
positive edge in2 and the negative edge in3 occur in the same PLC cycle. In this

situation, since the bit value of sensor 3 appears the same at the beginning

and end of this PLC cycle, both events in2 and in3 will be missed by the PLC.

In order to adopt SBD semantics as a framework to formalise SFC semantics,

we recall the two-dimensional dense time axis ℕ0 × ℕ0 from Section 2.1.2,

where we utilised the horizontal axis ℕ0 to represent the progress in physical

time while the vertical axis ℕ0 enables finitely stacking ordered sequences of

events that occur at the same physical time instance. To abstractly describe

the behaviour of an SFC over the dense time axis, we impose the following

two assumptions considering the horizontal progress on the dense time axis:

(A1) PLC operations are instantaneous, i.e. upon detecting any input event,

procedures (C2) – (C4) all take place at the same physical time instance;

(A2) In each PLC cycle, at most one input event can happen.

By assuming that PLCs react sufficiently rapidly upon the occurrence of any

sensor event, assumption (A1) enables stacking (finitely many) PLC cycles

vertically on the dense time axis. This is a reasonable simplification since the

138

4.1 Correlating SFCs with SBDs

ini

ι0 ι1

execute actions - 1
fire transitions - 1
set outputs - 1

execute actions - 2
fire transitions - 2
set outputs - 2 in j

PLC cycle 1

PLC cycle 2

Figure 51: PLC cycles on the dense time axis

actual duration of a PLC cycle is generally available a-priori. This information

can be utilised to validate that the additional delay of action manipulation

will not affect the operation of the physical plant. For relatively simple plants,

assumption (A2) is proposed froma similarmotivation: since input events can

generally be seen as a physical consequence of some preceding output edges, a

minimum positive duration in between is conceivable (which can be checked

a-priori as well). This can be further compared with the duration of a PLC

cycle to validatewhether (A2) is fulfilled. Indeed, for some large-scale systems,

this assumption is somewhat vulnerable if multiple independent input events

await. This situation is beyond the scope of the current dissertation.

We are now in the position to take a deeper look into vertical event stacks on

the dense time axis, where we specifically mentioned that only a finite stack

is allowed. Figure 51 illustrates the behaviour of some closed-loop systems

controlled by SFCs with the dense-time interpretation, where assumptions

(A1) and (A2) are already taken into consideration. As for (A2), the two input

events in𝑖 and in𝑗 occuratdifferent physical time instances 𝜄0 and 𝜄1. Moreover,

upon the occurrence of in𝑖, internal actions involved in possibly multiple PLC

cycles are vertically stacked below in𝑖. However, for the vertical line-up, an

infinite number of cycles need to be stacked from (A1). Technically, a infinite

stack can be avoided by requiring SFCs to always attain stable states after a

finite count of transitions, i.e. states in which only input events cause changes

in token configurations and/or variable evaluations. This can be guaranteed

by assuming the following:

139

4 Sequential function chart

(A3) Given the set of active steps in an SFC and the corresponding variable

evaluation, executing the actions in active steps always results in the

same subsequent variable evaluation;

(A4) There is a finite upper bound of the number of SFC transitions that can

be fired without any changes of input variables.

Assumption (A3) effectively allows us to avoid repetition of action executions

in a stable state, i.e. when in a stable state, repeating action executions in

subsequent PLC cycles does not change the evaluation of variables (unless

some input event occurs) and thus can be ignored. This is a commonly

assumed prerequisite for logic control programmes, which is comparable

with determinism in (Bauer, Huuck et al., 2004). Furthermore, together with

assumption (A4), only a finite numberof transitions and action executionswill

be stacked on any physical time instance in the dense time axis. In particular,

at the end of each stack, a stable state is reached.

Remark 4.1.1. Typically, a PLC has a set of specific internal memory locations

which are associatedwith the output bits. Within one PLC cycle, different values

may be assigned to the memory multiple times while only the final value will

be actually brought to the output bit. Nevertheless, this feature is irrelevant to

non-blockingness verification of the closed-loop behaviour, thus not explicitly

reflected in our model.

Remark 4.1.2. For a more detailed SFC semantics, one may be interested

in the order of action execution (if multiple steps are currently active) and

transition firing within each PLC cycle. Since the action execution order is not

addressed by the original IEC 61131, we envisage that actions are executed in a
shuffled order (which preserves the “local order” of each step), i.e. we consider

all possible resulting variable evaluations. From this perspective, all events

corresponding to action executions can be assigned with the same priority.

As for diverging transitions, IEC 61131 stipulated that transitions sharing a

same preceding step shall have different priorities, i.e. if multiple diverging

transitions are enabled, the PLC shall deterministically choose one of them to

fire. This feature can easily be reflected, as we will see below in Section 4.1.3.

4.1.3 Translating SFCs into automata

With the dense-time SFC semantics as well as the syntax mapping, we are in

the position to translate SFCs into finite automata. By exploiting the trans-

lation procedure for SBDs introduced in Section 2.2 and 2.3, a modular SFC

programme can be translated into synchronised finite automata where several

modifications and extensions due to the semantic features carried by PLC

140

4.1 Correlating SFCs with SBDs

cycles are necessary. In particular, since SFC steps do not have process states

as in SBDs, translation procedures concerning process states are generally

discarded.

We recall from Figure 11 that the local closed-loop behaviour of an SBD is

constructed by synchronising (through synchronous composition) a couple

of automata. In the following, we concisely introduce the construction of the

automata to synchronise when translating an SBD mapped from an SFC:

Reachability automaton extended with controlled variables The construc-

tion of a reachability automaton remains unchanged as introduced in

Section 2.2.1. In particular, since the concept of SBD process states is

dropped for SFCs, the extension regarding termination flags asmentioned

in Remark 2.2.2 is ignored. Nevertheless, we still need the concept of

controlled variables, i.e. in each state, self-loops of actions specified in

active steps are appended.

Constraint automata The construction of condition automata remains un-

changed as introduced in Section 2.2.2 by interpreting each input bit,

memory bit and output bit as a binary variable. Particularly, the modified

construction of variable automata suggested in Figure 19 is adopted as

well. Since process states are not considered, the concept of termination

condition is dropped in the translation and process state automata are

not constructed either.

Immediate instructions As proposed in Section 4.1.1, actions assigned to a

step are mapped into immediate instructions of an SBD process. The

representation of immediate instructions mapped from an SFC is slightly

simplified from (84) in Section 2.3.3, i.e. for each SBD process 𝑛, we
generate

(Σ∗
prio ⋅ ΣTARGET

𝑛 ⋅ 𝑃𝑛 ⋅ ΣSOURCE
𝑛)∗. (151)

Two details in (151) are worth noting:

(i) Recall from (85) thatΣprio ∶= {𝜎𝑣,𝑙, 𝜎𝑣,𝑙,𝑛′ | 𝑣 is utilised in precond(𝑛)}
∪{𝜎𝑣,𝑙,𝑛 | (𝑣, 𝑙) ∈ CVariables(𝑛)}. Since syntax mapping never gener-

ates precondition for any process, it is equivalent to write

Σprio ∶= {𝜎𝑣,𝑙,𝑛 | (𝑣, 𝑙) ∈ CVariables(𝑛)}. (152)

(ii) Comparing with the original construction in (84), (151) removes the

Σ∗
prio term after 𝑃𝑛. The reason for this adjustment is that action

execution is explicit in SFCs, i.e. instead of “having the access to do

so”, an SFC step “explicitly does so”. This adjustment guarantees that

141

4 Sequential function chart

the guard evaluation afterwards indeed evaluates variables after the

action sequence.

By constructing the above three types of automata as well as plant automata,

weare in theposition to review Section 2.2.3, i.e. the synchronous composition

of all constructed automata is to perform. This results in an intermediate

translation resultwith three classes of events, i.e. action events (resulting from

output/memory manipulation) ΣACT, transition events (resulting from firing

transitions) ΣTRANS and sensor events (resulting from input bit edges) ΣSEN.

Furthermore, a subtle post-processing is necessary regarding the priority of

diverging transitions (similar to branches in SBDs). Recall from Remark 4.1.2

that diverging transitions must have specified priority so that a deterministic

choice among simultaneously enabled diverging transitions can always be

taken. Since transition events are all private (as hierarchy is not considered),

this featurecanbeconveniently reflected by removing lower-priority transition

events in the composition, which is clearly legit following the intuition of

Lemma 3.2.2.

Regarding the priority assignment, we recall that upon the occurrence of some

sensor event, before a subsequent sensor event occurs, the current PLC cycle

will first execute all necessary actions and then fire all enabled transitions.

With this notion, we propose that

prio(𝜎ACT) < prio(𝜎TRANS) < prio(𝜎SEN) (153)

holds for any 𝜎ACT ∈ ΣACT, 𝜎TRANS ∈ ΣTRANS and 𝜎SEN ∈ ΣSEN, respectively.

In particular, from Remark 4.1.2, we globally let all action events to have the

same priority. In addition, we propose that all transition events have the

same priority as well. Note that transition divergence has already locally been

resolved in the previous step. Thus, the global order of firing transitions is

inessential for the system dynamics. By also letting all sensor events to have

the same priority, at the current stage, the suggested priority assignment is

well functional if atmost one transition is enabled in each PLC cycle. However,

if multiple transitions are enabled in one PLC cycle, critical errors may occur

w.r.t. the higher priority of action events over transition events. This issue is

discussed in detail in the following.

We now consider describing the global closed-loop behaviour by recalling

Section 2.2.4. As an example, we translate the two SFCs depicted in Figure 52

into𝐺1 and𝐺2 as shown in Figure 53 with the translation procedure suggested

so far. The value of the output bit motor, whose initial value is 0, is set to 1
and 0 by executing events on and off, respectively. Since none of the processes

142

4.1 Correlating SFCs with SBDs

Step1

Step2

Trans1motor = 0

S motor

Step3

Trans3motor = 0

Trans2

Figure 52: Two SFCs with simultaneously enabled transitions

Trans3

G1

I,i

II,i I,ii

Trans1

Trans3
Trans1

II,ii

on

I

II

Trans1

III

IV

on

Trans2

G2 i

ii

Trans3

III,iii

IV,iii

Trans2 on

III,vi

IV,vi

Trans2

G = G1 ‖ G2

(off disabled) on
off

iii

iv

onoff

on
off

onoff

(off disabled)

Figure 53: Intermediate translation results 𝐺1 and 𝐺2 (the transition (II, i)
Trans3
−−−→ (II, ii) will

be removed in 𝒮(𝐺1 ∥ 𝐺2))

is specified with an action block R − motor, the event off is globally disabled.
At the current stage, by letting 𝐺 = 𝐺1 ∥ 𝐺2, we may expect that the global

closed-loop behaviour complies with 𝒮(𝐺), which contradicts the definition
of PLC cycles. In the first PLC cycle, both transitions Trans1 and Trans2 are
enabled and should be fired in the current PLC cycle, while in the next PLC

cycle, on should be executed since Step2 has become active. However, if the

transition (I, i)
Trans1
−−−−→ (II, i) is executed, the subsequent transition event, i.e.

143

4 Sequential function chart

I,i

{Trans1,Trans3}

II,ii

on

III,ii

IV,ii

{Trans2}

U(G)
(off, {Trans1}, {Trans3}, {Trans1,Trans2},
{Trans2,Trans3}, {Trans1,Trans2,Trans3} disabled)

Figure 54: Unifying transition labels Trans1 and Trans3 through the unification operator 𝒰(⋅)
(unreachable states are removed)

Trans3, will be preempted by the action event on according to the priority

assignment suggested in (153). Note that by executing on, the value of motor is
set to 1 which invalidates the guard of Trans1. This issue motivates us to unify

the transition labels Trans1 and Trans3 into a single event {Trans1, Trans3},
by executing which state (II, ii) is directly reached; see Figure 54.

Technically, transition unification is achieved by applying the unification

operator 𝒰(⋅) which unifies the active transitions labelled by unifiable events.

We first consider all SFC transitions as a set of unifiable symbols 𝔘. By recalling
the notation of the event universe 𝔈, we propose that

𝔘 ∩ 𝔈 = ∅ (154)

shall hold. The set of all unifiable events Ψ ⊆ 𝔈 − Υ is obtained through

excluding the empty set from the power set of 𝔘, i.e.

Ψ = 2𝔘 − {∅}, (155)

where we additionally require a specific priority value 𝔲 ∈ ℕ so that for any

𝜎 ∈ 𝔈 − Υ,

𝜎 ∈ Ψ ⇔ prio(𝜎) = 𝔲. (156)

As for the ⇒-part of the above requirement, all unifiable events shall have the

same priority, which is reasonable since unifying any unifiable events should

result in a new event with the same priority. For the ⇐-part, no non-unifiable

event shall be at priority 𝔲, which is an acceptable restriction from (153) in the

144

4.1 Correlating SFCs with SBDs

context of SFC verification. In addition, we introduce the following notations

for brevity:

• unifiable events within some alphabet Σ
Σu ∶= Σ ∩ Ψ;

• augmentation of an alphabet Σ through event unification

aug(Σ) ∶= Σ ∪ {𝜓 ∈ Ψ | ∃Φ ⊆ Σu. 𝜓 = ∪𝜙∈Φ𝜙};

• active unifiable event set in the state 𝑥 of an automaton 𝐺
𝐺u(𝑥) ∶= 𝐺(𝑥) ∩ Ψ.

The set of unifiable symbols corresponds to the set of all SFC transitions. In

comparison, we modify the set of transition events as such that ΣTRANS ⊆ Ψ
holds, i.e. each transition event corresponds to firing a set of SFC transitions.

From this set-up, we recall the slight abuse of the unifiable symbols Trans1
and Trans2 as translation labels in Figure 53, which should have been replaced
by singletons {Trans1} and {Trans2}.

With the notion of unifiable events, we are now in the position to formally

introduce the unification operator.

Definition 4.1.1. Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ be an arbitrary automaton. The

unification operator 𝒰(⋅) is defined as such that 𝒰(𝐺) ∶= ⟨𝑄, aug(Σ), →𝒰,
𝑄∘, 𝑀𝒰⟩ where

𝑀𝒰 ∶= {Σ′ ∈ 2aug(Σ) | ∃Ω ∈ 𝑀. aug(Ω) = Σ′} (157)

and 𝑥
𝛼
−→𝒰 𝑦 if and only if either of the following statements holds:

(i) 𝛼 ∈ 𝐴 − Ψ and 𝑥
𝛼
−→ 𝑦, or

(ii) 𝐺u(𝑥) ≠ ∅, 𝛼 = ∪𝜓∈𝐺u(𝑥)𝜓, 𝐺u(𝑦) ∩ 𝐺u(𝑥) = ∅ and 𝑥
𝜓1𝜓2⋯𝜓𝑘
−−−−−−→ 𝑦 where

{𝜓1, 𝜓2, … , 𝜓𝑘} = 𝐺u(𝑥).

In the unified automaton 𝒰(𝐺), the alphabet is augmented as such that all

possible unified transition labels are considered. The marking set is extended

in thesame fashion. Thisguarantees that if any𝜓 ∈ Σu appears in someΩ ∈ 𝑀,

then executing any unifiable event containing 𝜓 is counted as executing 𝜓.
Consider the following example.

Example 4.1.1. Consider the automaton 𝐺 given in Figure 52 again. The

alphabet as well as the marking set of 𝐺 are

Σ = { on, off, {Trans1}, {Trans2}, {Trans3} } (158)

145

4 Sequential function chart

and

𝑀 = { {on, {Trans1}},
{{Trans2}} }, (159)

respectively. By applying the unification operator on 𝐺, the alphabet and the

marking set of 𝒰(𝐺) are

aug(Σ) = { on, off,
{Trans1}, {Trans2}, {Trans3},
{Trans1, Trans2}, {Trans1, Trans3}, {Trans2, Trans3},
{Trans1, Trans2, Trans3} } (160)

and

𝑀𝒰 = { {on, {Trans1}, {Trans1, Trans2}, {Trans1, Trans3},
{Trans1, Trans2, Trans3}},

{{Trans2}, {Trans1, Trans2}, {Trans2, Trans3}, {Trans1,
Trans2, Trans3}} }, (161)

respectively.

Remark 4.1.3. Although the alphabet after unification is of exponential order,

most of the unified events are unnecessary to be maintained in the alphabet

if they only contain private unifiable events (which is indeed the case of SFC

translations) and do not label any transition in the current automaton.

As for the unified transition relation −→𝒰, active unifiable events in each state

(which correspond to all enabled SFC transitions in one PLC cycle) is unified

into a single transition. Note that SFC transitions which potentially become

enabled in the subsequent PLC cycle are not unified. Consider the following

example.

Example 4.1.2. Consider the automaton 𝐺 given in Figure 55, which results

from translating both SFCs in Figure 52 while ignoring all actions and guards.

By Definition 4.1.1, we shall only unify both active unifiable events {Trans1}
and {Trans3} in state I, while {Trans2} should be excluded since Trans2 can

only be fired in the next PLC cycle. Note that there is no transition from I to

II in 𝒰(𝐺) since 𝐺u(I) ∩ 𝐺u(II) ≠ ∅. This indicates that II is unreachable in
𝒰(𝐺).

146

4.2 Compositional verification of modular SFC programmes

{Trans3}

I

II III

{Trans1}

{Trans3}
{Trans1}

IVV

{Trans2}

VI

{Trans2}

G
I

{Trans1,Trans3}

IV

VI

{Trans2}

U(G)

{Trans3}

Figure 55: Unifying active unifiable events in one state (disabled events in 𝒰(𝐺) are dropped)

With the unification operator, we are finally in the position to describe the

global closed-loop behaviour of a system controlled by a modular SFC pro-

gramme. For 𝑘 SFCswhich are correspondingly translated into𝐺1, 𝐺2, … , 𝐺𝑘,

the global closed-loop behaviour can be monolithically represented by

𝒮𝒰(𝐺1 ∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑘) (162)

where we concisely write 𝒮𝒰(𝐺) ∶= 𝒮(𝒰(𝐺)).

4.2 Compositional verification of modular SFC
programmes

With the translation procedure clarified, the non-blockingness verification

problem of modular SFC programmes is addressed in the current section by

exploiting the compositional verification approach introduced in Chapter 3.

A major technical change comparing with Chapter 3 is that, instead of 𝒮(⋅),
the global closed-loop behaviour of a modular system is now organised by the

operator𝒮𝒰(⋅), i.e. foramodularsystemwhoseglobal behaviour is represented

by 𝒮𝒰(𝐺1 ∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑘), we are interested in properly abstracting e.g. 𝐺1
into 𝐺′

1 so that

𝒮𝒰(𝐺1 ∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑘) is non-blocking
⇔ 𝒮𝒰(𝐺′

1 ∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑘) is non-blocking.

This subtle change in the problem statement first motivates us to adjust the

definition of non-conflictingness, as given in Definition 3.1.5, into non-𝒰-

conflictingness.

147

4 Sequential function chart

Definition 4.2.1 (adjusted from Definition 3.1.5). A family (𝐺𝑖)1≤𝑖≤𝑘 of au-

tomata is non-𝒰-conflicting if and only if 𝒮𝒰(𝐺1 ∥ 𝐺2 ∥ ⋯ ∥ 𝐺𝑘) is non-
blocking.

By revisiting Section 3.1.3, we first handle transition hiding through adjusting

the definition of hidable transition, which was given in Definition 3.1.7, to

adapt the definition of 𝒰-conflictingness.

Definition 4.2.2 (adjusted from Definition 3.1.7). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ and 𝐻 = ⟨𝑄𝐻, Σ𝐻, →𝐻, 𝑄∘
𝐻, 𝑀𝐻⟩ be two automata. A transition

𝑡 ∈ →𝐺 in 𝐺 is 𝒰-hidable w.r.t. 𝐻 if and only if

𝐺 and 𝐻 are non-𝒰-conflicting ⇔ 𝐺/𝑡 and 𝐻 are non-𝒰-conflicting.

(163)

With Definition 4.2.2, we figure out the set of 𝒰-hidable transitions of a
given automaton by revisiting Proposition 3.3.1 in the following. Particularly,

we assert that transitions labelled by a unifiable event should be excluded

from transition hiding, although, in the context of SFC verification, unifiable

events must be private. The reason for this assertion is that a unifiable event

potentially causes a synchronous step in a synchronous composition after

unification, i.e. 𝒰(𝐺 ∥ 𝐻) for some automata 𝐺 and 𝐻. More precisely,

suppose no silent transitions exist in 𝐺 and 𝐻, executing a private unifiable

event in 𝐺 also potentially causes 𝐻 to change its state, while the key property

of a silent transition is that executing a silent transition will not change the

state of the rest part. Consider the situation in Figures 53 and 54 again. For the

transition I
Trans1
−−−−→ II in 𝐺1, although it is labelled by a private event Trans1

(w.r.t. 𝐺2), it still results in a synchronous transition (I, i)
{Trans1,Trans3}
−−−−−−−−−→𝒰

(II, ii) in 𝒰(𝐺1 ∥ 𝐺2) where a transition from 𝐺2 is taken synchronously.

Recall from (156) that only unifiable events are at priority 𝔲. Thus, we assume

that, in the scope of the current section, the silent event 𝜏(𝔲) should never

appear as transition label in any automaton.

Assumption 1. For any automaton 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩ in the current

section, 𝑥
𝛼
−→ 𝑦 implies 𝛼 ≠ 𝜏(𝔲).

With the assumption above, we adapt Proposition 3.3.1 as follows.

Proposition 4.2.3 (adjusted from Proposition 3.3.1). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton and 𝐻 = ⟨𝑄𝐻, Σ𝐻, →𝐻, 𝑄∘
𝐻, 𝑀𝐻⟩ be an

arbitrary automaton. Let 𝑡 = (̄𝑥𝐺, 𝜎, ̄𝑦𝐺) ∈ →𝐺 with 𝜎 ∈ Σ𝐺 − Σ𝐻 − Ψ be

148

4.2 Compositional verification of modular SFC programmes

such that for all Ω𝐺 ∈ 𝑀𝐺 so that 𝜎 ∈ Ω𝐺, there exists 𝜎′ ∈ Ω𝐺 − Σ𝐻 − Ψ so

that the following two statements hold:

(i) prio(𝜎′) ≤ prio(𝜎);

(ii) ̄𝑦𝐺
𝜖

==⇒
Δ∶𝜎

̄𝑧𝐺
𝜎′

−−−→
Δ∶𝜎′

for some ̄𝑧𝐺 ∈ 𝑄𝐺 − { ̄𝑥𝐺} and Δ = Σ(̄𝑥𝐺).

It holds that 𝑡 is 𝒰-hidable w.r.t. 𝐻.

Proof. By uniformly replacing each shaping operator 𝒮(⋅) with the shaped

unification operator 𝒮𝒰(⋅) and replacing each transition superscript (⋅)𝒮 with

(⋅)𝒮𝒰 (whichdenotes theexistenceof a transition in𝒮𝒰(𝐺) forsomeautomaton

𝐺), the proof of Proposition 3.3.1 applies to the current proposition.

Based on transition hiding, we define the 𝒰-conflict equivalence which is

modified from Definition 3.1.9.

Definition 4.2.4 (adjusted from Definition 3.1.9). Two automata 𝐺1 and 𝐺2
are 𝒰-conflict equivalent, denoted 𝐺1 ≃𝒮𝒰 𝐺2, if for any automaton 𝑇, it holds
that

𝐺1 and 𝑇 are non-𝒰-conflicting ⇔ 𝐺2 and 𝑇 are non-𝒰-conflicting.

With the notion of 𝒰-conflict equivalence, we say an abstraction of 𝐺, say

𝐺′, is a 𝒰-conflict-preserving abstraction of 𝐺 if 𝐺′ ≃𝒮𝒰 𝐺. In the following,

we explore whether the abstraction rules developed in Section 3.2 are all

𝒰-conflict preserving and revisit the compositional verification procedure

introduced in Section 3.3.

𝒰-conflict preserving abstraction rules

To review the abstraction rules introduced in Section 3.2, we first recall that

all abstraction rules require that the automaton to abstract must be pre-

processed by Υ-shaping, which itself is conflict-preserving. In order to apply

𝒰-conflict-preserving abstractions on a Υ-shaped automaton, we shall first

discuss whether Υ-shaping is 𝒰-conflict-preserving. Obviously, this is indeed

the case from Lemma 3.2.2.

Lemma 4.2.5 (adjusted from Lemma 3.2.2). For any two automata 𝐺1 and

𝐺2, it holds that

𝒮𝒰(𝐺1 ∥ 𝐺2) = 𝒮𝒰(𝒮Υ(𝐺1) ∥ 𝐺2). (164)

149

4 Sequential function chart

BasedonLemma4.2.5, weare in theposition todiscusswhether theabstraction

rules introduced in Section 3.2 are all 𝒰-conflict-preserving. Fortunately, the

result turns out to be positive and most relevant statements with their proofs

only need straightforward uniform substitutions. Thus, an explicit review of

the contents in Section 3.2 is moved to Appendix B.

Compositional verification

At the end of the current section, we briefly introduce the complete com-

positional verification procedure for modular SFC programmes by revisit-

ing Algorithm 2. Generally, since all abstraction rules introduced in Sec-

tion 3.2 are 𝒰-conflict-preserving, Algorithm 2 can directly be utilised to

check non-𝒰-conflictingness by only replacing ISNONBLOCKING(𝒮(𝐺)) with
ISNONBLOCKING(𝒮𝒰(𝐺)) in Line 19 (note that transition hiding is now per-

formed by checking Proposition 4.2.3 instead of Proposition 3.3.1). Neverthe-

less, a conceivable improvement w.r.t. the unification operator can be applied

due to the fact that for SFC translation results, unifiable events in all automata

are private. Thus, similar to the 𝒮Π(⋅)-operation in Algorithm 2, transition

unification through 𝒰(⋅) can be performed locally as well.

Lemma 4.2.6. Let 𝐺1 = ⟨𝑄1, Σ1, →1, 𝑄∘
1, 𝑀1⟩ and 𝐺2 = ⟨𝑄2, Σ2, →2, 𝑄∘

2,
𝑀2⟩ be two automata so that Σu

1 ∩ Σu
2 = ∅. It holds that

𝒮𝒰(𝐺1 ∥ 𝐺2) = 𝒮𝒰(𝒰(𝐺1) ∥ 𝐺2). (165)

From Lemma 4.2.6, we can insert 𝐺 ← 𝒰(𝐺) and 𝐻 ← 𝒰(𝐻) after Lines 5
and 12 in Algorithm 2, respectively.

4.3 Case study

In this section, we envisage a use-case similar to that in Figure 44 where 𝑘
conveyorbelts (CB) and anexit slide (XS) areconcatenated afteran stack feeder

(SF). Each CB𝑖, 1 ≤ 𝑖 ≤ 𝑘 as well as the SF (i.e. CB0) is controlled by a single

SFC; see Figure 56, whereWPS𝑖 and BM𝑖 are input/output bits corresponding
theworkpiece sensor and the belt motor of CB𝑖, respectively. XS (i.e. CB𝑘 + 1)
is not controlled by any SFC and is not equipped with a belt motor. Thus, for

the SFC controlling CB𝑘, the equality proposition BM𝑘+1 = 0 in the guard of

Trans𝑘_3 should be removed. Besides, similar to the “send event” in Figure 45,

we utilise a memory bit Send𝑖 to synchronise the workpiece delivery from CB𝑖
to CB𝑖 + 1. More precisely, CB𝑖 sets Send𝑖 (to 1) to start the delivery, while
CB𝑖+1 resets Send𝑖 (to 0) to terminate thedelivery. Wealso associate each SFC

150

4.3 Case study

Step0_1

Step0_2

Trans0_1
WPS0 = 1
WPS1 = 0
BM1 = 0

Step0_3

Step0_2

Trans0_3

Trans0_3

Trans0_2

WPS0 = 1
WPS1 = 0
BM1 = 0

WPS1 = 1

BM0S

NoInputS

Send0S

BM0R

NoInputR

Stepi_1

Stepi_2

Transi_1
WPSi-1 = 1
BMi-1 = 1
Sendi-1 = 1

Stepi_5

Stepi_2

Transi_5

Transi_5

Transi_2WPSi = 1

BMiS

BMiR

Stepi_3

Transi_3

Stepi_4

Transi_4WPSi+1 = 1

BMiS

SendiS

BMiR

Sendi-1R

WPSi+1 = 0
BMi+1 = 0

WPSi-1 = 1
BMi-1 = 1
Sendi-1 = 1

Figure 56: SFCs controlling CB0 (left) and CB𝑖 for 1 ≤ 𝑖 ≤ 𝑘 (right)

with a plant model. As for 1 ≤ 𝑖 ≤ 𝑘, the corresponding plant model for CB𝑖 is
the synchronous composition of 𝐺𝑖 and 𝐶𝑖 given in Figure 45 where the event

ar𝑖 (or lv𝑖) corresponds to a positive (or negative) edge in the input bit WPS𝑖
while the event on𝑖 (or off𝑖) sets (or resets) the output bit BM𝑖, respectively.
For CB0, we utilise an output bitNoInput to block the reception of aworkpiece
at CB0 when set to 1. This restriction is considered as a plant feature which

151

4 Sequential function chart

noin
H0

in

noinin
ar0

Figure 57: Workpiece input block when NoInput = 0

is represented by the automaton 𝐻0 in Figure 57, where events noin and in
denote the positive and negative edge of NoInput, respectively. Composing

𝐻0 in Figure 57 with 𝐺0 and 𝐶0 in Figure 45 yields the plant model for CB0.
Note that an explicit plant model for XS, i.e. CB𝑘 + 1, is unnecessary, since XS
only has a workpiece sensor whose behaviour is already included in 𝐶𝑘.

With 𝑘 + 1 SFCs, the global closed-loop behaviour is represented by 𝑘 + 1
automata 𝐸0, 𝐸1, … , 𝐸𝑘. To apply compositional verification as suggested in

Section 4.2, we take the following conventions:

� All transition events in each 𝐸𝑖 are renamed to the same event name,

e.g. t1 for all transition events in 𝐸1. This is legit since all transition

events are private and, as will be shown below, we do not put transition

events into marking sets.

� Based on the event renaming above, the marking set of each 𝐸𝑖 is set to

𝑀𝑖 = {{t𝑖}} (166)

for all 𝑖 ∈ {0, 1, … , 𝑘}. In addition, the input order of the automata for

the verification is

𝐸0, 𝐸1, … , 𝐸𝑘. (167)

� As for the function CONFLICTPRESERVINGABSTRACTION in Algorithm 2,

we only utilise PWB as the single abstraction rule and skip all other rules.

From various tests of different rule combinations, the special structure

of SFCs leads to only minor state reduction from other abstraction rules.

In otherwords, the state reduction resulting fromabstraction rules other

than PWB does not pay off the cost of computing the abstraction.

Similar to Section 3.4.2, we apply compositional verification for closed-loop

systems with different conveyor belt counts. The state count as well as the

elapsed time for verification are listed in Table 7. It can be observed that

comparedwith themonolithic constructionof theentire system (wherewestill

iteratively shape and unify w.r.t. local events), compositional verification does

generally reduce the overall state space and the time needed for verification.

152

4.3 Case study

Table 7: State count and elapsed time (SFC verification)

𝑘 mono. state cnt. mono. time abst. state cnt. abst. time

5 4.8 × 103 9.3s 1.2 × 103 8.3s
6 1.3 × 104 29.9s 2.6 × 103 21.9s
7 3.6 × 104 92.3s 5.7 × 103 61.5s
8 9.6 × 104 309.9s 1.2 × 104 167.1s
9 2.5 × 105 857.1s 2.6 × 104 463.9s

However, drastic reduction as in Section 3.4.2 unfortunately does not apply to

the case of SFC verification. The major reason is that transitions labelled by

unifiable events, i.e. SFC transition events, are not hidable. This implicates

that the synchronous composition of reachability automata of all SFCs is

completely preserved in each iteration. Thus, the overall exponential growth

of the total state count cannot be avoided.

Concluding remarks

In the current chapter, we have exploited SBD semantics and the compos-

itional verification approach introduced in Chapters 2 and 3 to address the

non-blockingness verification problem of modular SFC programmes. The

physical-time based SFC semantics has been adapted onto thedense logic time

axis, which has enabled us to represent SFCs as finite automata. Particularly,

the semantic features carried by PLC cycles bring out the challenge that

simply restricting the global behaviour by the shaping operator does not

yield a faithful representation of the global behaviour. In this context, the

unification operator has been introduced which solves this issue by unifying

simultaneously enabled transition events into a single event. This again allows

us to apply compositional verification to modular SFC programmes. However,

comparing with former results in Section 3.4.2, the state reduction resulting

from compositional verification is relatively mild for SFC verification. This is

majorly caused by the fact that transition events are never hidable, since they

potentially synchronise transition events from other modules even when they

are private.

153

5 Conclusions and future prospects

In the current dissertation, we have formally addressed the non-blockingness

verification problem of manufacturing systems represented by finite automa-

ta. Generally, when the system behaviour is represented monolithically by a

single automaton, its non-blockingness can be checked bydirectly performing

backward reachability search. However, when the system is represented by

a family of synchronised automata, such an approach is normally infeasible

since the state space of the monolithic representation of a modular system

grows exponentially w.r.t. the count of modules. To mitigate this issue, in

the current dissertation, we exploited the approach of compositional veri-

fication for the non-blockingness verification problem. The basic idea is to

iteratively (i) perform conflict-preserving abstractions on each module and

(ii) compose strategically chosen modules to form a subsystem. The iteration

terminates when there is only one module left, which typically has fewer

states compared with the monolithic representation of the original modular

systems. In addition, since all applied abstractions are conflict-preserving,

verifying the non-blockingness of the final module is equivalent to verifying

the non-blockingness of the monolithic representation. In the current disser-

tation, we have attempted to apply the compositional verification approach

to verify large-scale systems controlled by SBDs and SFCs. However, existing

results w.r.t. compositional verification are not directly applicable, since the

global behaviour in our use-cases are additionally restricted by event priorities

and transition unifications. Thus, various modifications and extensions w.r.t.

the framework of compositional verification as well as individual abstraction

methods have been investigated and tested on different examples.

One major open research topic in the future is the automatic plant model

generation. As we envisage the scenarios where engineers directly utilise

either SBD or SFC to construct control programmes (which can be directly

translated intoautomata), plantmodels should still bepre-designed byexperts

specialised in discrete event system modelling. To further automate the

verification procedure, directly generating plant automata from some abstract

model is of great practical value. One possible way to address this problem

is to exploit the other two types of diagrams defined in IML, namely the

Functional Structure (which organises the hierarchy of system functions and

the hardware realising the functions) and the Interaction Structure (which

describes the interaction between hardware components). In this regard,

155

5 Conclusions and future prospects

we expect that IML has the potential to enable fully automated closed-loop

behaviour verification.

156

Bibliography

Aho, A., J. Hopcroft, J. Ullman (1974): The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Company.

Akers, S. (1978): Binary Decision Diagrams. In: IEEE Transactions on Com-

puters C-27.6, 509–516.

Alpern, B., F. Schneider (1985): Defining liveness. In: Information Processing

Letters 21.4, 181–185.

– (1987): Recognizing Safety and Liveness. In: Distributed Computing 2, 117–

126.

Baeten, J., J. Bergstra, J. Klop (1986): Syntax and defining equations for an

interrupt mechanism in process algebra. In: Fundamenta Informaticae 9.2,

127–168.

Bauer, N., S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Pereira Remelhe,

O. Stursberg (2004): Verification of PLC Programs Given as Sequential

Function Charts. In: Integration of Software Specification Techniques for

Applications in Engineering 3147, 517–540.

Bauer, N., R. Huuck, B. Lukoschus, S. Engell (2004): A Unifying Semantics

for Sequential Function Charts. In: Integration of Software Specification

Techniques for Applications in Engineering: Priority Program SoftSpez of

the German Research Foundation (DFG), Final Report, 400–418.

Blech, J. O., S. Ould Biha (2011):Verification of PLC Properties Based on Formal

Semantics in Coq. In: Software Engineering and Formal Methods, 58–73.

Blom, S., S. Orzan (2003): Distributed State SpaceMinimization. In: Electronic

Notes in Theoretical Computer Science 80, 109–123.

Brandin, B., W. M. Wonham (1994): Supervisory control of timed discrete-

event systems. In: IEEE Transactions on Automatic Control 39 (2), 329–

342.

Brecher, C., M. Obdenbusch, D. Özdemir, J. Flender, A. R.Weber, L. Jordan, M.

Witte (2016): Interdisciplinary Specification of Functional Structurres for

Machine Design. In: IEEE International Symposium on Systems Engineering

(ISSE).

Brinksma, H., A. Rensink, W. Vogler (1995): Fair Testing. In: CONCUR’95

Concurrency Theory, 313–327.

Buzhinsky, I., V. Vyatkin (2017): Automatic Inference of Finite-State Plant

Models From Traces and Temporal Properties. In: IEEE Transactions on

Industrial Informatics 13.4, 1521–1530.

Cassandras, C. G., S. Lafortune (2008): Introduction to Discrete Event Systems.

Second. Springer.

157

Bibliography

Clarke, E. M., O. Grumberg, D. A. Peled: (2001):Model Checking. MIT Press.

Clarke, E., D. Long, K. McMillan (1989): Compositional model checking. In:

Proceedings of the Fourth Annual Symposium on Logic in Computer Science,

353–362.

Cleaveland, R., G. Lüttgen, V. Natarajan (2007): Priority and abstraction in

process algebra. In: Information and Computation 205.9, 1426–1458.

Daniele, M., F. Giunchiglia, M. Y. Vardi (1999): Improved Automata Generation

for Linear Temporal Logic. In: Computer Aided Verification, 249–260.

Daw, Z., R. Cleaveland (2015a): An Extensible Operational Semantics for UML

Activity Diagrams. In: Software Engineering and Formal Methods, 360–368.

De Giacomo, G., M. Vardi (2013): Linear temporal logic and Linear Dynamic

Logic on finite traces. In: Proceedings of the Twenty-Third International

Joint Conference on Artificial Intelligence, 854–860.

Dijkstra, E. (1971): Hierarchical ordering of sequential processes. In: Acta

Informatica 1, 115–138.

Eker, J., J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, Y.

Xiong (2003): Taming heterogeneity - thePtolemyapproach. In: Proceedings

of the IEEE 91.1, 127–144.

Eshuis, H. (2002): Semantics and verification of UML activity diagrams for

workflow modelling. PhD thesis. University of Twente.

Eshuis, R., R. Wieringa (2003): Comparing Petri Net and Activity Diagram

Variants forWorkflowModelling – A Quest for Reactive Petri Nets. In: Petri

Net Technology for Communication-Based Systems 2472, 321–351.

Eshuis, R. (2006): Symbolic model checking of UML activity diagrams. In:

ACM Transactions on Software Engineering and Methodology (TOSEM) 15,

1–38.

Fabian, M., A. Hellgren (1998): PLC-based implementation of supervisory con-

trol for discrete event systems. In: Proceedings of the 37th IEEE Conference

on Decision and Control 3, 3305–3310.

Fanti, M. P., G. Iacobellis, G. Rotunno, W. Ukovich (2013): A simulation based

analysis of production scheduling in a steelmaking and continuous casting

plant. In: 2013 IEEE International Conference on Automation Science and

Engineering (CASE), 150–155.

Fernandez, J.-C. (1989): An implementation of an efficient algorithm for

bisimulation equivalence. In: Science of Computer Programming 13, 13–

219.

Flender, J., S. Storms, W. Herfs, M. Witte (2019): Model-based Engineering

of modern Automation Structures with the Interdisciplinary Modeling Lan-

guage (IML). In: 2019 IEEE International Systems Conference (SysCon), 1–

8.

158

Bibliography

Flordal, H., R. Malik (2006):Modular nonblocking verification using conflict

equivalence. In: 2006 8th InternationalWorkshop on Discrete Event Systems,

100–106.

– (2009): Compositional Verification in SupervisoryControl. In: SIAM Journal

on Control and Optimization 48, 1914–1938.

Gerber, C., S. Preuße, H.-M. Hanisch (2010):A complete framework for control-

ler verification in manufacturing. In: 2010 IEEE 15th Conference on Emerging

Technologies & Factory Automation (ETFA 2010), 1–9.

Harel, D., A. Naamad (1996): The STATEMATE semantics of statecharts. In:

ACM Transactions on Software Engineering and Methodology 5, 293–333.

Hart, P. E., N. J. Nilsson, B. Raphael (1968): A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. In: IEEE Transactions on Systems

Science and Cybernetics 4.2, 100–107.

Herfs, W., J. Flender, S. Storms, M. Witte (2018): Data-Consistent Toolchain

for a Requirements-Based Specification with the Interdisciplinary Modeling

Language (IML). In: 2018 IEEE 22nd International Conference on Intelligent

Engineering Systems (INES), 219–224.

Hering de Queiroz, M., J. Cury, W.Wonham (2005): Multitasking Supervisory

Control of Discrete-Event Systems. In: Discrete Event Dynamic Systems 15,

375–395.

Jarraya, Y., M. Debbabi, J. Bentahar (2009): On the Meaning of SysML Activity

Diagrams. In: 2009 16th Annual IEEE International Conference andWork-

shop on the Engineering of Computer Based Systems, 95–105.

Kimura, S., E. Clarke (1990): A parallel algorithm for constructing binary

decision diagrams. In: Proceedings., 1990 IEEE International Conference on

Computer Design: VLSI in Computers and Processors, 220–223.

Köhler, H., U. Nickel, J. Niere, A. Zündorf (2000): Integrating UML diagrams

for production control systems. In: Proceedings of the 2000 International

Conference on Software Engineering. ICSE 2000 the New Millennium, 241–

251.

Leduc, R. (2002a): Hierarchical Interface-based Supervisory Control. PhD

thesis. Department of Electrical and Computer Engineering, University of

Toronto.

Lennartson, B., X. Liang, M. Noori-Hosseini (2020): Efficient Temporal Logic

Verification by Incremental Abstraction. In: 2020 IEEE 16th International

Conference on Automation Science and Engineering (CASE), 894–899.

Lima, L., A. Didier, M. Cornélio (2013): A Formal Semantics for SysML Activity

Diagrams. In: Formal Methods: Foundations and Applications, 179–194.

Liu, Y., P. Irudayaraj, F. Zhou, R. J. Jiao, J. N. Goodman (2014): SysML-based

Model Driven Discrete-Event Simulation. In: Moving Integrated Product

159

Bibliography

Development to Service Clouds in the Global Economy - Proceedings of the

21st ISPE Inc. International Conference on Concurrent Engineering. Vol. 1,

617–626.

Lüttgen, G. (1998): Pre-emptive Modeling of Concurrent and Distributed

Systems. PhD thesis. Universität Passau.

Malik, R., D. Streader, S. Reeves (2004): Fair Testing Revisited: A Process-

Algebraic Characterisation of Conflicts. In: Automated Technology for Veri-

fication and Analysis, 120–134.

Malik, R. (2015): Advanced selfloop removal in compositional nonblocking

verification of discrete event systems. In: 2015 IEEE International Conference

on Automation Science and Engineering (CASE), 819–824.

Malik, R., R. Leduc (2008):Generalised nonblocking. In: 2008 9th International

Workshop on Discrete Event Systems, 340–345.

– (2013): Compositional Nonblocking Verification Using Generalized Non-

blocking Abstractions. In: IEEE Transactions on Automatic Control 58.8,

1891–1903.

Malik, R., M. Teixeira (2016):Modular supervisor synthesis for extended finite-

state machines subject to controllability. In: 2016 13th International Work-

shop on Discrete Event Systems, 91–96.

Malik, R., S. Ware (2020): On the computation of counterexamples in com-

positional nonblocking verification. In: Discrete Event Dynamic Systems

30, 301–334.

Michon, J.-F., J.-M. Champarnaud (1998): Automata and binary decision dia-

grams. In: International Workshop on Implementing Automata. Springer,

178–182.

Milner, R. (1989): Communication and Concurrency. Prentice-Hall, Inc.

Mohajerani, S., S. Lafortune (2020): Transforming Opacity Verification to

Nonblocking Verification in Modular Systems. In: IEEE Transactions on

Automatic Control 65.4, 1739–1746.

Mohajerani, S., R. Malik, M. Fabian (2014): A Framework for Compositional

Synthesis of Modular Nonblocking Supervisors. In: IEEE Transactions on

Automatic Control 59.1, 150–162.

– (2016): A framework for compositional nonblocking verificationof extended

finite-state machines. In: Discrete Event Dynamic Systems 26, 33–84.

– (2017): Compositional synthesis of supervisors in the formof statemachines

and state maps. In: Automatica 76, 277–281.

Moor, T. (2022): CompileDES: Executable-Code Generation from Synchron-

ised libFAUDES Automata. In: https://fgdes.tf.fau.de/compiledes, Accessed:

27.06.2022.

160

Bibliography

Moor, T., K. Schmidt, S. Perk (2008): libFAUDES—An open source C++ library

for discrete event systems. In: 2008 9th International Workshop on Discrete

Event Systems, 125–130.

Natarajan, V., R. Cleaveland (1995): Divergence and fair testing. In: Proceed-

ings of the 22nd International Colloquium on Automata, Languages and

Programming, 648–659.

Object Management Group (2017a): OMG System Modeling Language. An

OMG Systems Modeling Language™ Publication.

– (2017b): OMG Unified Modeling Language. An OMG Unified Modeling

Language™ Publication.

Paige, R., R. Tarjan (1987): Three Partition Refinement Algorithms. In: SIAM

Journal on Computing 16, 973–989.

Pilbrow, C., R. Malik (2015): An algorithm for compositional nonblocking

verification using special events. In: Science of Computer Programming 113,

119–148.

Preuße, S., H.-C. Lapp, H.-M. Hanisch (2012): Closed-loop system modeling,

validation, and verification. In: Proceedings of 2012 IEEE 17th International

Conference on Emerging Technologies & Factory Automation (ETFA 2012),

1–8.

Provost, J., J.-M. Roussel, J.-M. Faure (2011): A formal semantics for Grafcet

specifications. In: 2011 IEEE International Conference onAutomation Science

and Engineering, 488–494.

Qamsane, Y., T. Abdelouahed, A. Philippot (2016): A synthesis approach to

distributed supervisory control design for manufacturing systems with

Grafcet implementation. In: International Journal of Production Research

55, 1–21.

Ramadge, P., W. Wonham (1989): The control of discrete event systems. In:

Proceedings of the IEEE 77.1, 81–98.

Ramadge, P., W. Wonham (1987): Supervisory control of a class of discrete

event systems. In: SIAM Journal on Control and Optimization 25, 206–230.

Schmidt, K., M. H. de Queiroz, J. E. R. Cury (2007): Hierarchical and decent-

ralized multitasking control of discrete event systems. In: 2007 46th IEEE

Conference on Decision and Control, 5936–5941.

Störrle, H. (2004): Semantics of Control-Flow in UML 2.0 Activities. In: 2004

IEEE Symposium on Visual Languages - Human Centric Computing, 235–

242.

Stursberg, O., S. Lohmann, S. Engell (2005): Improving Dependability of Logic

Controllers by Algorithmic Verification. In: IFAC Proceedings Volumes 38.1,

104–109.

161

Bibliography

Su, R., J. H. van Schuppen, J. E. Rooda, A. T. Hofkamp (2010): Nonconflict check

by using sequential automaton abstractions based on weak observation

equivalence. In: Automatica 46.6, 968–978.

Tabuada, P. (2009): Verification and Control of Hybrid Systems: A Symbolic

Approach. Springer US.

Tang, Y., T. Moor (2024): Compositional non-blockingness verification of

finite automata with prioritised events. In: Discrete Event Dynamic Systems

34, 1–37.

Tarjan, R. (1972a): Depth-First Search and Linear Graph Algorithms. In: SIAM

Journal on Computing 1, 146–160.

Vardi, M. Y. (1996): An automata-theoretic approach to linear temporal logic.

In: Proceedings of the VIII Banff Higher Order Workshop Conference on

Logics for Concurrency, 238–266.

Ware, S., R. Malik (2012): Conflict-preserving abstraction of discrete event

systems using annotated automata. In: Discrete Event Dynamic Systems 22,

451–477.

Ware, S., R. Malik (2013): Compositional verification of the generalized non-

blocking property using abstraction and canonical automata. In: Inter-

national Journal of Foundations of Computer Science 24, 1183–1208.

Own Publications

Tang, Y., T. Moor (2021): Compositional Verification of Finite Automata under

Event Preemption. In: 2021 60th IEEE Conference on Decision and Control

(CDC), 301–308.

– (2022): Compositional Verification of Non-Blockingness with Prioritised

Events. In: 16th IFACWorkshop on Discrete Event Systems (WODES) 55.28,

236–243.

– (2024): Compositional non-blockingness verification of finite automata

with prioritised events. In: Discrete Event Dynamic Systems 34, 1–37.

StudentWorks

Li, Z. (2019): Fallstudie zur Spezifikation einer Automatisierungseinrichtung

durch Sequential Behavior Diagrams. MA thesis. Lehrstuhl für Regelungs-

technik, FAU Erlangen-Nürnberg.

Lu, Z. (2020): Effiziente Verifikation durch Komposition und Abstraktion.

Research internship. Lehrstuhl für Regelungstechnik, FAU Erlangen-

Nürnberg.

162

Appendix

A Plant models of the production line example

In this section, plant models utilised in the SBD example in Section 2.4 are

introduced. Recall from Figure 23 that for the four modules M1 − 1, M1 − 2
M1 and M2, four automata 𝐺1−1, 𝐺1−2, 𝐺1 and 𝐺2 are respectively required

as plant models to describe the global closed-loop behaviour. We first list

all events utilised in the plant automata in Table 8, which are based on SBD

variables introduced in Section 2.4 (internal variables areconsidered irrelevant

to plant models). For each variable in Table 8, events and their corresponding

target values are arranged in the same order, e.g. for the variable CB1_BM,

cb1_off is the event which changes its value to 0.

ModuleM1-1

Theplant behaviourof thismodule is represented by the synchronous compos-

ition of the three automata in Figure 58. In particular, 𝐺1−1_1 indicates that

the positioning motor can only move between the south most and the north

most position by turning on the motor. In addition, 𝐺1−1_2 is redundant in

that a same copy will be generated while translating the corresponding SBD;

see Section 2.2.2.

ModuleM1-2

Theplant behaviourof thismodule is represented by the synchronous compos-

ition of the three automata in Figure 59, where 𝐺1−2_1 and 𝐺1−2_2 synonym-

ously describe the behaviour of each conveyor belt. Besides, 𝐺1−2_3 describes

the physical coupling between CB1 and CB2, which essentially specifies that
CB2 can get a workpiece only if CB1 has sent one to it. In addition, 𝐺1−2_3
also illustrates that sending more than one workpiece from CB1 without CB2
having received one in between is considered illegal. This is indicated by a

dedicated blocking state which can be reached by e.g. the illegal sequence

cb1_lv ⋅ cb1_lv.

ModuleM1

This is a high-level module which coordinates M1 − 1 and M1 − 2. Thus,
low-level behaviour is omitted in this module and only the button represents

the plant behaviour, as being depicted in Figure 60.

163

Appendix

Table 8: Variable list of the production line example with event names

variable description values events

CB1_BM belt motor {0, 1} {cb1_off, cb1_on}
CB1_WPS workpiece sensor {0, 1} {cb1_lv, cb1_ar}
CB2_BM belt motor {0, 1} {cb2_off, cb2_on}
CB2_WPS workpiece sensor {0, 1} {cb2_lv, cb2_ar}

PM_PM positioning motor (1 = to s.,

0 = stop, −1 = to n.)
{−1, 0, 1} {pm_p-, pm_p0,

pm_p+}

PM_PS+ south position sensor {0, 1} {pm_lv+, pm_ar+}

PM_PS- north position sensor {0, 1} {pm_lv-, pm_ar-}
PM_MOP processing machine {0, 1} {pm_stp, pm_op}

PM_MRD ready to start processing

machine
{0,1} {pm_bs, pm_rd}

OP1 operation button {0, 1} {op1_rl, op1_pr}
OP2 operation button {0, 1} {op2_rl, op2_pr}
RB_BM belt motor {0, 1} {rb_off, rb_on}
RB_WPS workpiece sensor {0, 1} {rb_lv, rb_ar}

RB_RM rotation motor

(1 = cw., 0 = stop, −1 = ccw.)
{−1, 0, 1} {rb_r-, rb_r0,

rb_r+}

RB_SCW orientation sensor,

north-south position
{0, 1} {rb_lv+, rb_ar+}

RB_SCCW orientation sensor,

west-east position
{0, 1} {rb_lv-, rb_ar-}

XS_WPS workpiece sensor {0, 1} {xs_lv, xs_ar}

ModuleM2

The plant behaviour of this module is represented by the synchronous com-

position of the six automata in Figure 61. The rotation of RB (described by

𝐺2_1) is similar to the positioning motor in Module M1 − 1, i.e. RB can only

rotate 90∘ between both orientations. As the behaviour represented by 𝐺2_2
and 𝐺2_3 is relatively clear, special care should be taken to 𝐺2_4 and 𝐺2_5,

which are intended to describe the coupling between RB and XS as well as

CB2 and RB.

Similar to 𝐺1−2_3, 𝐺2_4 specifies that XS can only receive a workpiece if RB

has sent one, while sending a workpiece from RB is disallowed if XS has not

164

A Plant models of the production line example

received the former one yet. In addition, rb_lv shall not happen as well if

RB is not in the west-east orientation; see Figure 20 in Section 2.4. To reject

such undesired behaviour, we set a dedicated blocking state which can be

reached byexecuting e.g. rb_lv−⋅rb_lv. Similarly, the sequence rb_lv⋅rb_lv− is

undesired aswell sinceRB shall not rotate if RB has sent aworkpiece butXS has

not received it yet. Besides, 𝐺2_5 is intended to specify the coupling between

CB2 and RB.1 There are two possible cases for RB to receive a workpiece, i.e.

either from CB2 or from SF2. Both cases correspond to the two orientations of
RB, respectively. Clearly, sending a workpiece from CB2 when RB is not in the

west-east orientation is illegal and thus leads to the dedicated blocking state.

1 Indeed, CB2 does not belong to module M2. Thus, as few events from CB2 as possible

should be utilised in the plant model of M2 from a design perspective.

165

Appendix

pm
_p

+

pm
_p

0

pm_p0

pm_p-
pm

_p
+

pm
_p

-

pm_p0

pm_p+

pm_p-

pm
_p

+

pm
_p

0

pm_p0

pm_p-

pm
_p

+
pm

_p
-

pm_p0

pm_p+

pm_p-

pm
_p

+

pm
_p

0

pm_p0

pm_p-

pm
_p

+
pm

_p
-

pm_p0

pm_p+

pm_p-

pm_lv-

pm_ar-

pm_ar+

pm_lv+

pm_op

pm_stp

pm_oppm_stp

pm_bs

pm_rd

G1−1_1

G1−1_2

G1−1_3

Figure 58: Automata representing the plant behaviour of M1 − 1

cb1_on

cb1_off

cb1_oncb1_off
G1−2_1

cb1_ar

cb1_lv

cb1_on

cb1_off

cb1_on

cb1_off

cb2_on

cb2_off

cb2_oncb2_off
G1−2_2

cb2_ar

cb2_lv

cb2_on

cb2_off

cb2_on

cb2_off

cb2_ar

G1−2_3 cb1_lv cb1_lv

Figure 59: Automata representing the plant behaviour of M1 − 2

op1_rl

G1 op1_pr

Figure 60: The plant behaviour of M1

166

A Plant models of the production line example

cb2_lv

rb
_r

+

rb
_r

0

rb_r0

rb_r-
rb

_r
+

rb
_r

-rb_r0

rb_r+

rb_r-

rb_lv-

rb_ar-

rb_ar+

rb_lv+

G2_1

rb
_r

+

rb
_r

0

rb_r0

rb_r-

rb
_r

+

rb
_r

-rb_r0

rb_r+

rb_r-

rb
_r

+

rb
_r

0

rb_r0

rb_r-

rb
_r

+

rb
_r

-rb_r0

rb_r+

rb_r-

rb_on

rb_off

rb_onrb_off
G2_2

rb_ar

rb_lv

rb_on

rb_off

rb_on

rb_off

xs_ar

xs_lv

G2_3

rb_lv

xs_ar

G2_4

rb
_l

v-

rb
_a

r-

rb
_l

v-

rb_lv

cb2_lv

rb_ar

G2_5

rb
_l

v-

rb
_a

r-

rb_ar
rb_ar+

rb_lv+

cb
2_

lv

rb_lv-

rb
_l

v

cb2_lv

op2_rl

G2_6 op2_pr

Figure 61: Automata representing the plant behaviour of M2

167

Appendix

B 𝒰-conflict-preserving abstraction rules

In this section, we explicitly review all abstraction rules introduced in Section

3.2 and show that, through straightforward substitutions in the correspond-

ing statements, they can all be applied as 𝒰-conflict-preserving abstraction
rules. In particular, since the proofs of the relevant statements do not require

major modifications, we avoid explicitly reformulating the proofs. Instead,

we suggest the following uniform substitutions in proofs:

� Replace each 𝒮(⋅) operator with the 𝒮𝒰(⋅) operator;

� Replace each transition superscript (⋅)𝒮 with (⋅)𝒮𝒰 , which denotes the

existence of a transition in 𝒮𝒰(𝐺);

� Replace each Σ𝑇 \𝐺 with aug(Σ𝑇 \𝐺) (since we only use the alphabet
Σ𝑇 \𝐺 when discussing synchronised behaviour);

� Replace each Σ𝐺 ∪ Σ𝑇 with aug(Σ𝐺 ∪ Σ𝑇);

� Replace each 𝑀𝐺 ∪ 𝑀𝑇 with 𝑀𝒰 ∶= {𝐸 ∈ 2aug(Σ) | ∃Ω ∈ 𝑀𝐺 ∪
𝑀𝑇. aug(Ω) = 𝐸}.

In the remainder, when utilising terms like the proof of Proposition A analo-

gously applies to proving proposition B, we refer to proving Proposition B by

performing the aforementioned five uniform substitutions to the proof of

Proposition A. Some proofs may need several additional substitutions, which

will be explicitlymentioned. It is alsoworthmentioning that e.g. for automata

𝐺 and 𝑇with individual alphabetsΣ𝐺 andΣ𝑇, we saya transition (𝑥𝐺, 𝑥𝑇)
𝛼
−→𝒰

(𝑦𝐺, 𝑦𝑇) in 𝒰(𝐺 ∥ 𝑇) is driven by 𝐺 if 𝛼 ∈ aug(Σ𝐺 ∪ Σ𝑇) − aug(Σ𝑇 \𝐺), i.e. if
any event from Σ𝐺 participates in this transition.

Prioritised weak bisimulation

We first review abstractions through constructing PW-bisimilar automata,

including quotient automaton construction w.r.t. PWB and redundant silent

loop removal. By adjusting Proposition 3.2.8 and Theorem 3.2.9, it turns out

that two PW-bisimilar automata are also𝒰-conflict equivalent. We first adjust

Proposition 3.2.8 as follows.

Proposition B.1 (adjusted from Proposition 3.2.8). Let 𝐺1 = ⟨𝑄1, Σ𝐺, →1,
𝑄∘

1, 𝑀𝐺⟩ and 𝐺2 = ⟨𝑄2, Σ𝐺, →2, 𝑄∘
2, 𝑀𝐺⟩ be two Υ-shaped automaton so

that 𝐺1 ≊ 𝐺2. For any automaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩, any transition

(𝑥1, 𝑥𝑇)
𝛼
−→𝒮𝒰 (𝑦1, 𝑦𝑇) in 𝒮𝒰(𝐺1 ∥ 𝑇) and any 𝑥2 ∈ 𝑄2 so that 𝑥1 ≊ 𝑥2, there

168

B 𝒰-conflict-preserving abstraction rules

exists some 𝑦2 ∈ 𝑄2 so that (𝑥2, 𝑥𝑇)
p(𝛼)
==⇒𝒮𝒰 (𝑦2, 𝑦𝑇) in 𝒮𝒰(𝐺2 ∥ 𝑇) and

𝑦1 ≊ 𝑦2.

Proof. The proof of Proposition 3.2.8 applies analogously to the current pro-

position. Note that for the proof in Case 2, i.e. (𝑥1, 𝑥𝑇)
𝛼
−→𝒮𝒰 (𝑦1, 𝑦𝑇) being

not driven by 𝐺1, one shall consider more carefully when 𝛼 ∈ Ψ. Note that

𝐺<𝛼
1,slnt(𝑥1) = ∅. From the definition of the unification operator, we can also

conclude that 𝐺u
1(𝑥1) = ∅. From the proof of Case 2 in Proposition 3.2.8, for

all 𝑥2 ∈ 𝑄2 so that 𝑥1 ≊ 𝑥2, there exists some 𝑦2 ∈ 𝑄2 so that 𝑥1 ≊ 𝑦2 and

(𝑥2, 𝑥𝑇)
𝜖
=⇒ (𝑦2, 𝑥𝑇)

𝛼
−→ (𝑦2, 𝑦𝑇) (168)

in𝐺2 ∥ 𝑇. Based on the proof of Case 2 in Proposition 3.2.8, it suffices to check

whether𝐺u
2(𝑦2) = ∅ holds, since if not, the transition (𝑦2, 𝑥𝑇)

𝛼
−→𝒰 (𝑦2, 𝑦𝑇) no

longer exists in 𝒰(𝐺2 ∥ 𝑇). To prove by contradiction, we suppose that there
exists some 𝜓2 ∈ 𝐺u

2(𝑦2). Since 𝑥1 ≊ 𝑦2, from (P1), either 𝜓2 ∈ 𝐺u
1(𝑥1) or

𝐺≤𝛼
1,slnt(𝑥1) ≠ ∅ holds. Note that the latter statement implies 𝐺<𝛼

1,slnt(𝑥1) ≠ ∅
from Assumption 1. However, from (𝑥1, 𝑥𝑇)

𝛼
−→𝒮𝒰 (𝑦1, 𝑦𝑇), it can be easily

implied that 𝐺u
1(𝑥1) = 𝐺<𝛼

1,slnt = ∅, which contradicts both possibilities.

With Proposition 3.2.8 adjusted as above, the applicability of PWB as a 𝒰-
conflict-preserving abstraction follows immediately.

Theorem B.2 (adjusted from Theorem 3.2.9). Let 𝐺1 = ⟨𝑄1, Σ𝐺, →1,
𝑄∘

1, 𝑀𝐺⟩ and 𝐺2 = ⟨𝑄2, Σ𝐺, →2, 𝑄∘
2, 𝑀𝐺⟩ be two Υ-shaped automata so that

𝐺1 ≊ 𝐺2. It holds that 𝐺1 ≃𝒮𝒰 𝐺2.

Proof. The proof of Theorem 3.2.9 applies analogously to the current theorem

by replacing Proposition 3.2.8 with Proposition B.1.

Redundant silent step rule

The redundant silent step rule can obviously be applied as a 𝒰-conflict-
preserving abstraction, since for a redundant silent step 𝑥

𝜏
−→ 𝑦, no regular

event is active in 𝑥 at all. This indicates that for the proof of Proposition 3.2.19,

there is no opportunity for a private transition in 𝑇 to unifywith a transition in

𝐺. With this observation, we adapt Propositions 3.2.19 and 3.2.20 as follows.

Proposition B.3 (adjusted from Proposition 3.2.19). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton and the equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 is

169

Appendix

induced by the redundant silent step ̄𝑥𝐺
𝜏
−→ ̄𝑥′

𝐺. Let𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩

be any automaton. For all ̄𝑥𝑇 ∈ 𝑄𝑇 so that 𝑇 ≤𝜏
prvt(̄𝑥𝑇) ≠ ∅, (̄𝑥𝐺, ̄𝑥𝑇) is not

reachable in 𝒮𝒰(𝐺 ∥ 𝑇).

Proof. The proof of Proposition 3.2.19 applies analogously to the current

proposition.

Proposition B.4 (adjusted from Proposition 3.2.20). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton and the equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 is

induced by the redundant silent step ̄𝑥𝐺
𝜏
−→ ̄𝑥′

𝐺. Let𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩

be any automaton.

(i) For any transition ([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮𝒰 ([𝑦𝐺], 𝑦𝑇) in 𝒮𝒰(𝐺/∼ ∥ 𝑇), at least

one of the following two statements is true for any 𝑥′
𝐺 ∈ [𝑥𝐺]:

a) There exists some 𝑦′
𝐺 ∈ [𝑦𝐺] so that (𝑥′

𝐺, 𝑥𝑇)
p(𝛼)
==⇒𝒮𝒰 (𝑦′

𝐺, 𝑦𝑇) in
𝒮𝒰(𝐺 ∥ 𝑇), or

b) (𝑥′
𝐺, 𝑥𝑇) is not reachable in 𝒮𝒰(𝐺 ∥ 𝑇).

(ii) For any transition (𝑥𝐺, 𝑥𝑇)
𝛼
−→𝒮𝒰 (𝑦𝐺, 𝑦𝑇) in 𝒮𝒰(𝐺 ∥ 𝑇), at least one of

the following two statements is true:

a) ([𝑥𝐺], 𝑥𝑇)
p(𝛼)
−−→𝒮𝒰 ([𝑦𝐺], 𝑦𝑇) in 𝒮𝒰(𝐺/∼ ∥ 𝑇), or

b) (𝑥𝐺, 𝑥𝑇) is not reachable in 𝒮𝒰(𝐺 ∥ 𝑇).

Proof. The proof of Proposition 3.2.20 applies analogously to the current

proposition by replacing Proposition 3.2.19 with Proposition B.3.

With Propositions B.3 and B.4, adjusting Theorem 3.2.21 turns out to be

straightforward as follows.

Theorem B.5 (adjusted from Theorem 3.2.21). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton and the equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 is

induced by the redundant silent step ̄𝑥𝐺
𝜏
−→ ̄𝑥′

𝐺. It holds that 𝐺 ≃𝒮𝒰 (𝐺/∼).

Proof. Theproof of Theorem 3.2.21 applies analogously to the current theorem

by replacing Proposition 3.2.20 with Proposition B.4.

170

B 𝒰-conflict-preserving abstraction rules

Abstraction rules based on incoming equivalence

Both the active events rule and the silent continuation rule are based on the

incoming equivalence, whose key property is the redirectability. Since redir-

ectability is defined over the shaped synchronous composition, an adjustment

to embed unification operator is necessary in the current context. This results

in the following definition of 𝒰-redirectability.

Definition B.6 (adjusted from Definition 3.2.22). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton. An equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 is 𝒰-
redirectable if and only if for any automaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘

𝑇, 𝑀𝑇⟩,
𝑦𝐺 ∈ 𝑄𝐺, 𝑦𝑇 ∈ 𝑄𝑇 and 𝑠𝑇 ∈ (aug(Σ𝑇 \𝐺))∗, the following two statements hold:

(R1’) (𝑥𝐺, 𝑥𝑇)
𝜎
−→𝒮

𝑠𝑇
=⇒𝒮𝒰 (𝑦𝐺, 𝑦𝑇) in 𝒮𝒰(𝐺 ∥ 𝑇) for any 𝑥𝐺 ∈ 𝑄𝐺, 𝑥𝑇 ∈

𝑄𝑇 and 𝜎 ∈ aug(Σ𝐺 ∪ Σ𝑇) − aug(Σ𝑇 \𝐺) implies that for all 𝑦′
𝐺 ∈ [𝑦𝐺],

(𝑥𝐺, 𝑥𝑇)
𝜎𝑠𝑇
==⇒𝒮𝒰 (𝑦′

𝐺, 𝑦𝑇) holds.

(R2’) 𝒮𝒰(𝐺 ∥ 𝑇)
𝑠𝑇
=⇒𝒮𝒰 (𝑦𝐺, 𝑦𝑇) implies that for all 𝑦′

𝐺 ∈ 𝑦𝐺, 𝒮(𝐺 ∥

𝑇)
𝑠𝑇
=⇒𝒮𝒰 (𝑦′

𝐺, 𝑦𝑇).

The key property of redirectability which was stated in Proposition 3.2.23 can

be adapted in a straightforward manner. Nevertheless, a minor supplement

w.r.t. Lemma 3.2.5 is essential for proving the following proposition. In the

proof of Proposition 3.2.23, the implication if ([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮 ([𝑦𝐺], 𝑦𝑇) in

𝒮(𝐺/∼ ∥ 𝑇), then there exists 𝑥′
𝐺 ∈ [𝑥𝐺] and 𝑦′

𝐺 ∈ [𝑦𝐺] so that (𝑥′
𝐺, 𝑥𝑇)

𝛼
−→𝒮

(𝑦′
𝐺, 𝑦𝑇) in 𝒮(𝐺 ∥ 𝑇) is clearly true from Lemma 3.2.5. However, in the

current context where we intend to replace 𝒮(⋅) with 𝒮𝒰(⋅), the implication is

invalidated if two equivalent states have different non-empty sets of active

unifiable events. This issue can be solved by additionally requiring ∼ae or ∼sc

on the equivalence.

Lemma B.7. Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton

with an equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 on 𝐺 so that either ∼ ⊆ ∼ae or ∼ ⊆ ∼sc.

For any arbitrary automaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ and any transition

([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮𝒰 ([𝑦𝐺], 𝑦𝑇) in 𝒮𝒰(𝐺/∼ ∥ 𝑇), there exists 𝑥′

𝐺 ∈ [𝑥𝐺] and 𝑦′
𝐺 ∈

[𝑦𝐺] so that (𝑥′
𝐺, 𝑥𝑇)

𝛼
−→𝒮𝒰 (𝑦′

𝐺, 𝑦𝑇) in 𝒮𝒰(𝐺 ∥ 𝑇)

Proof. If ([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮𝒰 ([𝑦𝐺], 𝑦𝑇) is not driven by 𝐺, then the statement

is obviously true due to Lemma 3.2.5.(ii). In particular, if 𝛼 ∈ aug(Σu
𝑇 \𝐺),

then for all 𝑥′
𝐺 ∈ [𝑥𝐺], we have 𝐺u(𝑥′

𝐺) = ∅. Thus, we consider the case in
171

Appendix

which ([𝑥𝐺], 𝑥𝑇)
𝛼
−→𝒮𝒰 ([𝑦𝐺], 𝑦𝑇) is driven by 𝐺. Clearly, from Lemma 3.2.5, it

suffices to consider the case in which 𝛼 ∈ Ψ. We prove by contradiction in the

following: if the statement does not hold, then there must exist two distinct

states 𝑥′
𝐺, 𝑥″

𝐺 ∈ [𝑥𝐺] so that𝐺u(𝑥′
𝐺) ≠ ∅, 𝐺u(𝑥″

𝐺) ≠ ∅ and 𝐺u(𝑥′
𝐺) ≠ 𝐺u(𝑥″

𝐺).
This contradicts the definitions of both ∼ae and ∼sc. In particular, if ∼ ⊆ ∼sc,

then 𝐺u(𝑥𝐺) ≠ ∅ implies that [𝑥𝐺] is a singleton for any 𝑥𝐺 ∈ 𝑄𝐺 due to

Assumption 1.

With Lemma B.7, we are in the position to adjust Proposition 3.2.23 as follows.

Proposition B.8 (adjusted from Proposition 3.2.23). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton with a 𝒰-redirectable equivalence ∼ ⊆
𝑄 × 𝑄 on 𝐺 so that either ∼ ⊆ ∼ae or ∼ ⊆ ∼sc. For any automaton 𝑇 =
⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘

𝑇, 𝑀𝑇⟩, the following two statements hold:

(i) For any trace

([𝑥𝐺0], 𝑥𝑇 0)
𝛼1
−→𝒮𝒰 ([𝑥𝐺1], 𝑥𝑇 1)

𝛼2
−→𝒮 ⋯

𝛼𝑘
−→𝒮 ([𝑥𝐺𝑘], 𝑥𝑇 𝑘) (169)

in 𝒮𝒰(𝐺/∼ ∥ 𝑇) where 𝑘 ≥ 1, 𝛼1 ∈ aug(Σ𝐺 ∪ Σ𝑇) − aug(Σ𝑇 \𝐺) and
𝛼𝑖 ∈ aug(Σ𝐺 ∪ Σ𝑇) ∪ Υ for all 𝑖 ∈ {2, ⋯ , 𝑘}, there exist 𝑥′

𝐺0 ∈ [𝑥𝐺0] and

𝑥′
𝐺𝑘 ∈ [𝑥𝐺𝑘] so that (𝑥′

𝐺0, 𝑥𝑇 0)
p(𝛼1⋯𝛼𝑘)
======⇒𝒮𝒰 (𝑥′

𝐺𝑘, 𝑥𝑇 𝑘) in 𝒮𝒰(𝐺 ∥ 𝑇);

(ii) If 𝒮𝒰(𝐺/∼ ∥ 𝑇)
𝑠
=⇒𝒮𝒰 ([𝑥𝐺], 𝑥𝑇) for some 𝑠 ∈ (aug(Σ𝐺 ∪ Σ𝑇))∗, then

there exists 𝑥′
𝐺 ∈ [𝑥𝐺] so that 𝒮𝒰(𝐺 ∥ 𝑇)

𝑠
=⇒𝒮𝒰 (𝑥′

𝐺, 𝑥𝑇).

Proof. The proof of Proposition 3.2.23 applies analogously to the current

proposition through replacing Lemma 3.2.5 with Lemma B.7.

Following Section 3.2.2, weare now in theposition to state that theconjunction

of an incoming equivalence with either an active-event equivalence or an

silent-continuation equivalence is 𝒰-redirectable. This conceivably requires
adjustments in Lemmata 3.2.29 and 3.2.30 as well as Propositions 3.2.31 and

3.2.32. We first consider adjusting Lemma 3.2.29.

Lemma B.9 (adjusted from Lemma 3.2.29). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩

be aΥ-shaped automaton. Let∼ ⊆ 𝑄×𝑄 be an equivalence on𝐺 so that either

∼ ⊆ ∼ae or ∼ ⊆ ∼sc. For any automaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ and any

trace

(𝑥𝐺, 𝑥𝑇 0)
𝜏1
−→𝒮𝒰 (𝑥𝐺, 𝑥𝑇 1)

𝜏2
−→𝒮𝒰 ⋯

𝜏𝑘
−→𝒮𝒰 (𝑥𝐺, 𝑥𝑇 𝑘) (170)

172

B 𝒰-conflict-preserving abstraction rules

in 𝒮𝒰(𝐺 ∥ 𝑇) where 𝑘 ≥ 0 and 𝜏𝑖 ∈ aug(Σ𝑇 \𝐺) for all 𝑖 ∈ {1, … , 𝑘}, it holds
that for any 𝑥′

𝐺 ∈ [𝑥𝐺], a trace

(𝑥′
𝐺, 𝑥𝑇 0)

𝜏1
−→𝒮𝒰 (𝑥′

𝐺, 𝑥𝑇 1)
𝜏2
−→𝒮𝒰 ⋯

𝜏𝑘
−→𝒮𝒰 (𝑥′

𝐺, 𝑥𝑇 𝑘) (171)

must exist in 𝒮𝒰(𝐺 ∥ 𝑇) as well.

Proof. The proof of Lemma 3.2.29 applies analogously to the current lemma.

In the following, Lemma 3.2.30 as well as Propositions 3.2.31 and 3.2.32 are to

adjust. These statements show properties of asynchronous traces, which are

defined as such that all events appearing on such traces are private. In Chapter

3, asynchronous and private are synonymous concepts. This is clearly not the

case when the unification operator is taken into consideration, since unifying

private unifiable transitions results in a synchronous transition. Hence, we

slightly strengthen the definition of an asynchronous trace in 𝒮𝒰(𝐺 ∥ 𝑇) as
such that all events on the trace is in either aug(Σ𝑇 \𝐺) or Υ. This extension

enables the adjustments in the sequel.

Lemma B.10 (adjusted from Lemma 3.2.30). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ and 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ be two arbitrary automata and

(𝑥𝐺, 𝑥𝑇 0)
𝜏1
−→𝒮𝒰 (𝑥𝐺, 𝑥𝑇 1)

𝜏2
−→𝒮𝒰 ⋯

𝜏𝑘
−→𝒮𝒰 (𝑥𝐺, 𝑥𝑇 𝑘)

𝜏𝑘+1
−−→𝒮𝒰 (𝑦𝐺, 𝑥𝑇 𝑘) (172)

be an asynchronous trace in 𝒮𝒰(𝐺 ∥ 𝑇) so that 𝑘 ≥ 0 and for all 𝑖 ∈ {1, ⋯ , 𝑘},
(𝑥𝐺, 𝑥𝑇 𝑖−1)

𝜏𝑗
−→𝒮𝒰 (𝑥𝐺, 𝑥𝑇 𝑗) is driven by 𝑇 and (𝑥𝐺, 𝑥𝑇 𝑘)

𝜏𝑘+1
−−→𝒮𝒰 (𝑦𝐺, 𝑥𝑇 𝑘) is

driven by 𝐺. It holds that prio(𝜏𝑘+1) ≥ lo({𝜏1, ⋯ , 𝜏𝑘}).

Proof. The proof of Lemma 3.2.30 applies analogously to the current lemma.

Proposition B.11 (adjusted from Proposition 3.2.31). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ and 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩ be two arbitrary automata and

(𝑥𝐺0, 𝑥𝑇 0)
𝜏1
−→𝒮𝒰 (𝑥𝐺1, 𝑥𝑇 1)

𝜏2
−→𝒮𝒰 ⋯

𝜏𝑘
−→𝒮𝒰 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) (173)

be an asynchronous trace in 𝒮𝒰(𝐺 ∥ 𝑇) so that 𝑘 ≥ 1 and the last transition
(𝑥𝐺𝑘−1, 𝑥𝑇 𝑘−1)

𝜏𝑘
−→𝒮𝒰 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) is driven by 𝐺.

(i) Let 𝑛 = lo({𝜏1, ⋯ , 𝜏𝑘}). It holds that 𝑇 <𝑛
prvt(𝑥𝑇 𝑘) = ∅.

173

Appendix

(ii) Let 𝑛𝐺 = lo({𝜏𝑖 | (𝑥𝐺𝑖−1, 𝑥𝑇 𝑖−1)
𝜏𝑖
−→𝒮 (𝑥𝐺𝑖, 𝑥𝑇 𝑖) is driven by 𝐺}) and

𝑛𝑇 = lo({𝜏𝑖 | (𝑥𝐺𝑖−1, 𝑥𝑇 𝑖−1)
𝜏𝑖
−→𝒮𝒰 (𝑥𝐺𝑖, 𝑥𝑇 𝑖) is driven by 𝑇 }). It holds that 𝑛𝐺 ≥ 𝑛𝑇.

Proof. The proof of Proposition 3.2.31 applies analogously to the current pro-

position by replacing Lemma 3.2.30 with Lemma B.10.

Proposition B.12 (adjusted from Proposition 3.2.32). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton and

(𝑥𝐺0, 𝑥𝑇 0)
𝜏1
−→𝒮𝒰 (𝑥𝐺1, 𝑥𝑇 1)

𝜏2
−→𝒮𝒰 ⋯

𝜏𝑘
−→𝒮𝒰 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) (174)

be an asynchronous trace in 𝒮(𝐺 ∥ 𝑇) where 𝑘 ≥ 0 and let 𝑛 =
lo({𝜏𝑖 | (𝑥𝐺𝑖−1, 𝑥𝑇 𝑖−1)

𝜏𝑖
−→ (𝑥𝐺𝑖, 𝑥𝑇 𝑖) is driven by 𝐺}). Let

𝑥′
𝐺0

𝜏′
1

−→ 𝑥′
𝐺1

𝜏′
2

−→ ⋯
𝜏′

𝑘′

−−→ 𝑥′
𝐺𝑘′ (175)

with 𝑘′≥ 0 be a trace in 𝐺 so that all events on this trace are silent,

lo({𝜏 ′
1, ⋯ , 𝜏 ′

𝑘′}) = 𝑛 and for all 𝑖′ ∈ {1, ⋯ , 𝑘′ − 1}, 𝐺<𝜏′
𝑖

rglr (𝑥′
𝐺𝑖′) = ∅. The

following two statements hold:

(i) For the trace given in (126), if 𝑘 ≥ 1 and the last tran-

sition (𝑥𝐺𝑘−1, 𝑥𝑇 𝑘−1)
𝜏𝑘
−→𝒮𝒰 (𝑥𝐺𝑘, 𝑥𝑇 𝑘) is driven by 𝐺, then

(𝑥′
𝐺0, 𝑥𝑇 0)

p(𝜏1⋯𝜏𝑘)
=====⇒𝒮𝒰 (𝑥′

𝐺𝑘′ , 𝑥𝑇 𝑘) in 𝒮(𝐺 ∥ 𝑇) where the last transition
is driven by 𝐺.

(ii) Let ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 be an equivalence on 𝐺 so that either ∼ ⊆ ∼ae or ∼ ⊆

∼sc. If 𝑥𝐺𝑘 ∼ 𝑥′
𝐺𝑘′ , then (𝑥′

𝐺0, 𝑥𝑇 0)
p(𝜏1⋯𝜏𝑘)
=====⇒𝒮𝒰 (𝑥′

𝐺𝑘′ , 𝑥𝑇 𝑘) in 𝒮(𝐺 ∥ 𝑇).

Proof. The proof of Proposition 3.2.32 applies analogously to the current

proposition by replacing Lemma 3.2.29 and Proposition 3.2.31 with Lemma

B.9 and Proposition B.11, respectively. Note that for proving statement (i),

when constructing an asynchronous trace, transition unification can never

happen due to Assumption 1. More precisely, for the silent trace given in (175),

it is implicitly guaranteed that for all 𝑖′ ∈ {1, ⋯ , 𝑘′ − 1}, 𝐺u(𝑥′
𝐺𝑖′) = ∅.

With Proposition B.12, we are prepared to declare that the conjunction of ∼inc

with either ∼ae or ∼sc is indeed 𝒰-redirectable.

174

B 𝒰-conflict-preserving abstraction rules

Proposition B.13 (adjusted from Proposition 3.2.28). Let 𝐺 = ⟨𝑄, Σ, →,
𝑄∘, 𝑀⟩ be aΥ-shaped automaton with an equivalence∼ ⊆ 𝑄×𝑄 on𝐺 be such

that either ∼ ⊆ ∼inc ∩∼ae or ∼ ⊆ ∼inc ∩∼sc. It holds that ∼ is redirectable.

Proof. The proof of Proposition 3.2.28 applies analogously to the current

proposition by replacing Lemma 3.2.29 and Proposition 3.2.32 with Lemma

B.9 and Proposition B.12, respectively.

Weare nowfinally at the stage to prove that the active events rule and the silent

continuation rule are both 𝒰-conflict-preserving. This requires adjustments

of Proposition 3.2.33, Lemma 3.2.34 as well as both Theorems 3.2.35 and 3.2.36.

Proposition B.14 (adjusted from Proposition 3.2.33). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton with an equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 on

𝐺 so that either ∼ ⊆ ∼ae or ∼ ⊆ ∼sc holds. For any arbitrary automaton 𝑇 =
⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘

𝑇, 𝑀𝑇⟩ and any transition (𝑥𝐺, 𝑥𝑇)
𝛼
−→𝒮𝒰 (𝑦𝐺, 𝑦𝑇) in 𝒮𝒰(𝐺 ∥

𝑇), it holds that ([𝑥𝐺], 𝑥𝑇)
p(𝛼)
−−→𝒮𝒰 ([𝑦𝐺], 𝑦𝑇) in 𝒮𝒰(𝐺/∼ ∥ 𝑇).

Proof. The proof of Proposition 3.2.33 applies analogously to the current

proposition.

LemmaB.15 (adjusted fromLemma3.2.34). Let𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺, 𝑄∘
𝐺, 𝑀𝐺⟩

be a Υ-shaped automaton with an equivalence ∼ ⊆ ∼ae. Then for any arbitrary

automaton 𝑇 = ⟨𝑄𝑇, Σ𝑇, →𝑇, 𝑄∘
𝑇, 𝑀𝑇⟩, if ([𝑥𝐺], 𝑥𝑇)

𝑠𝑇p(𝛼)
====⇒𝒮𝒰 in 𝒮𝒰(𝐺/∼ ∥

𝑇) for some 𝑥𝐺 ∈ 𝑄𝐺, 𝑥𝑇 ∈ 𝑄𝑇, 𝑠𝑇 ∈ (aug(Σ𝑇 \𝐺))∗ and 𝛼 ∈ (aug(Σ𝐺 ∪Σ𝑇)−

aug(Σ𝑇 \𝐺)) ∪ Υ, then for all 𝑥′
𝐺 ∈ [𝑥𝐺], (𝑥′

𝐺, 𝑥𝑇)
𝑠𝑇p(𝛼)
====⇒𝒮𝒰 in 𝒮𝒰(𝐺 ∥ 𝑇).

Proof. The proof of Lemma 3.2.34 applies analogously to the current lemma

by replacing Lemma 3.2.29 with Lemma B.9.

Theorem B.16 (adjusted from Theorem 3.2.35). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺,
𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton with an equivalence ∼ ⊆ ∼ae ∩ ∼inc on 𝐺.

It holds 𝐺 ≃𝒮𝒰 (𝐺/∼).

Proof. Theproof of Theorem 3.2.35 applies analogously to thecurrent theorem

through the following uniform substitutions:

� Replace Lemma3.2.34, Propositions 3.2.33, 3.2.23 and 3.2.28with Lemma

B.15, Propositions B.14, B.8 and B.13, respectively;

175

Appendix

� Replace redirectable with 𝒰-redirectable;

� Replace𝜎 ∈ Σ𝐺 −Ω and 𝜎′ ∈ Σ𝐺 with 𝜎 ∈ aug(Σ𝐺 ∪Σ𝑇)−aug(Σ𝑇 \𝐺)−
Ω and 𝜎′ ∈ aug(Σ𝐺 ∪ Σ𝑇) − aug(Σ𝑇 \𝐺) in Case 2.

Theorem B.17 (adjusted from Theorem 3.2.36). Let 𝐺 = ⟨𝑄𝐺, Σ𝐺, →𝐺
, 𝑄∘

𝐺, 𝑀𝐺⟩ be a Υ-shaped automaton with an equivalence ∼ ⊆ 𝑄𝐺 × 𝑄𝐺 on 𝐺
so that ∼ ⊆ ∼inc ∩ ∼sc. It holds 𝐺 ≃𝒮𝒰 (𝐺/∼).

Proof. Theproof of Theorem3.2.36 applies analogously to thecurrent theorem

through the following uniform substitutions:

� Replace Propositions 3.2.33, 3.2.23 and 3.2.28 with Propositions B.14, B.8

and B.13, respectively;

� Replace redirectable with 𝒰-redirectable;

� Replace 𝜎 ∈ Σ𝐺 with 𝜎 ∈ aug(Σ𝐺 ∪ Σ𝑇) − aug(Σ𝑇 \𝐺) in Case 1;

� Replace 𝛼 ∉ Σ𝐺 with 𝛼 ∉ aug(Σ𝐺 ∪ Σ𝑇) − aug(Σ𝑇 \𝐺) in Case 3.

Further abstraction rules

We have also introduced three abstraction rules in Section 3.2.3, i.e. the only

silent incoming rule, the only silent outgoing rule and the certain conflicts

rule. Recall that the first two rules originate from combining PWB and silent

continuation rule, while the latter rule is simply inspired by the fact that

blocking behaviour of an automaton can be merged without caring about its

explicit structure. All these rules are obviously 𝒰-conflict-preserving. For
consistency, we subtly adjust Theorems 3.2.37, 3.2.38 and 3.2.39 as follows,

where we only uniformly substitute each ≃𝒮 relation with ≃𝒮𝒰 .

Theorem B.18 (adjusted from Theorem 3.2.37). Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩
be a Υ-shaped automaton and let ̄𝑥 ∈ 𝑄 be such that ̄𝑥 is not in any live-

lock, 𝜏(1) ∈ 𝐺(̄𝑥) and 𝑦
𝛼
−→ ̄𝑥 implies 𝛼 = 𝜏(1). Then for the automaton

𝐺′ = ⟨𝑄, Σ, →′, 𝑄∘, 𝑀⟩ with

→′= {(𝑥, 𝛼, 𝑦) | 𝑥
𝛼
−→ 𝑦 and 𝑦 ≠ ̄𝑥} ∪ {(𝑥, 𝛼, 𝑦) | 𝑥

𝜏
−→ ̄𝑥

𝛼
−→ 𝑦}, (176)

it holds that 𝐺 ≃𝒮𝒰 𝐺′.

Theorem B.19 (adjusted from Theorem 3.2.38). Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩
be a Υ-shaped automaton and let ̄𝑥 ∈ 𝑄 be such that ̄𝑥 is not in any live-lock

176

B 𝒰-conflict-preserving abstraction rules

and 𝐺(̄𝑥) = {𝜏(1)}. Let 𝑄̄ ∶= {𝑦 ∈ 𝑄 | ̄𝑥
𝜏(1)
−−→ 𝑦}, then for the automaton

𝐺′ = ⟨𝑄 − { ̄𝑥}, Σ, →′, 𝑄∘′⟩ with

𝑄∘′ = {𝑄∘ if ̄𝑥 ∉ 𝑄∘

(𝑄∘ − { ̄𝑥}) ∪ 𝑄̄ if ̄𝑥 ∈ 𝑄∘ ; (177)

→′ = {(𝑥, 𝛼, 𝑦) | 𝑥
𝛼
−→ 𝑦 and ̄𝑥 ∉ {𝑥, 𝑦}} ∪ {(𝑥, 𝛼, 𝑦) | 𝑥

𝛼
−→ ̄𝑥 and 𝑦 ∈ 𝑄̄},

(178)

it holds that 𝐺 ≃𝒮𝒰 𝐺′.

Theorem B.20 (adjusted from Theorem 3.2.39). Let 𝐺 = ⟨𝑄, Σ, →, 𝑄∘, 𝑀⟩
be a Υ-shaped automaton. Let 𝑄c ⊆ 𝑄 be the set of co-reachable states in

𝐺 and 𝑄uc ∶= 𝑄 − 𝑄c the set of non-co-reachable states in 𝐺. Define two

transition sets as

→1∶= {𝑥
𝛼
−→ 𝑦 | 𝑥 ∈ 𝑄c, 𝛼 ∈ 𝐴, 𝑦 ∈ 𝑄 and

∃𝑦′ ∈ 𝑄uc, 𝜏 ∈ Υ. 𝐺<𝜏
rglr(𝑥) = ∅ ∧ 𝑥

𝜏
−→ 𝑦′ }; (179)

→2∶= {𝑥
𝜎
−→ 𝑦 | 𝑥 ∈ 𝑄c, 𝜎 ∈ Σ, 𝑦 ∈ 𝑄c, 𝐺<𝜎

rglr(𝑥) = ∅ and ∃𝑦′ ∈ 𝑄uc. 𝑥
𝜎
−→ 𝑦′ }

(180)

and let 𝐺′ = ⟨𝑄, Σ, → − (→1 ∪ →2), 𝑄∘, 𝑀⟩. It holds that 𝐺 ≃𝒮𝒰 𝐺′.

177

Appendix

C Tables of symbols

Important symbols utilised in the current dissertation are listed in the follow-

ing tables. Note that in different chapters, we sometimes use a same symbol

to refer to as elements in different sets. For instance, 𝑛 is referred to as a node

in Chapter 2 while a priority value in Chapters 3 and 4.

General symbols

symbol description page

𝑖, 𝑗, 𝑘 ∈ ℕ0 indices 15

Σ non-silent event set 37, 70

𝜎 ∈ Σ non-silent event 37, 70

Symbols in Chapter 2

symbol description page

𝑆, 𝑇 ∈ SBDP SBDs 15

𝑛, 𝑚 ∈ Nodes nodes in SBDs 15

𝜄 ∈ ℕ0 logic time instance 21

ℎ ∈ HEs hyper-edge 21

𝑣 ∈ Variables variable 31

𝑙 ∈ range(𝑣) value of the variable 𝑣 39

Symbols in Chapter 3

symbol description page

𝔈 universe of events 69

Υ silent event set 69

178

C Tables of symbols

𝑛, 𝑚 ∈ ℕ priority value 69

𝐴 ⊆ 𝔈 event set 69, 70

𝐴<𝑛, 𝐴≤𝑛 events with priority higher

than (or not lower than) 𝑛 in 𝐴
69

𝛼 ∈ 𝔈 event 69

𝑥, 𝑦, 𝑧 ∈ 𝑄 state 70

𝜏 ∈ Υ silent event 69

Σ𝑇 \𝐺 ⊆ 𝔈 − Υ regular private event set in

the test automaton 𝑇
81

𝜏 ∈ Σ𝑇 \𝐺
regular private event in the

test automaton 𝑇
81

prio priority assignment function 69

lo lowest priority of a given set of events 69

hide hiding map 70

p natural projection 70

𝐺(𝑥) active events in the state 𝑥 71

𝐺/𝑡 hiding transition 𝑡 in 𝐺 75

𝒮 shaping operator 73

𝒮Υ Υ-shaping operator 76

→ transition relation 70

⇒ abstract transition relation 71

−−→
Δ∶𝑛

, ==⇒
Δ∶𝑛

, −→
𝑛

extended transition relations 81

⇛ extended transition relation

(for defining APWB only)
87

−→
!
, ↪−→

𝑛
extended transition relations

(for defining incoming equivalence only)
96

≃𝒮 conflict equivalence 76

≊ PWB (over two automata) 82

≈ PWB (over one automaton) 84

≈∗ APWB 87

∼inc incoming equivalence 97

∼ae active-event equivalence 97

∼sc silent-continuation equivalence 98

179

Appendix

Symbols in Chapter 4

symbol description page

𝔘 universe of unifiable symbols 144

Ψ unifiable event set 144

𝜓 ∈ Ψ unifiable event 145

aug event set augmentation (w.r.t. unifiable events) 145

𝒰 unification operator 145

𝒮𝒰 shaped unification 147

≃𝒮𝒰 𝒰-conflict equivalence 149

180

FA
U

 U
N

IV
E

R
S

IT
Y

 P
R

E
S

S
 2

01
2

Y
ih

en
g

 T
an

g
 		

Fo

rm
al

 V
er

ifi
ca

tio
n

in
 A

ut
om

at
ed

 M
an

uf
ac

tu
rin

g
Fo

rm
al

 V
er

ifi
ca

tio
n

in
 A

ut
om

at
ed

 M
an

uf
ac

tu
rin

g

FA
U

 U
N

IV
E

R
S

IT
Y

 P
R

E
S

S
 2

02
4

Yiheng Tang

Formal Verification in
Automated Manufacturing

In recent decades, discrete-event modelling has been widely utilised to address control
engineering problems. Comparing with conventional dynamic system modelling where
physical behaviour is explicitly to describe, discrete-event modelling focuses on a more
abstract level where logical behaviour is of interest. In this dissertation, we focus on the
formal verification of the logical closedloop behaviour of control systems. To satisfy safety
and/or liveness requirements according to given technical specifications, we exploit the
formal semantics of control programmes to represent the entire closed-loop behaviour
in a discrete-event model, from which the properties of interest can be formally verified
through an efficient method.

FAU Studien aus der Elektrotechnik 25

 ISBN 978-3-96147-743-2

	Cover
	Title
	Acknowledgement
	Abstract
	Kurzzusammenfassung
	Contents
	 1 Introduction
	2 Sequential behaviour diagram
	2.1 Syntax and semantics
	2.1.1 Syntax and informal semantics
	2.1.2 Formal semantics
	2.1.2.1 Single SBD
	2.1.2.2 Nested SBDs

	2.1.3 Conditions and variables
	2.1.4 Operation of the drill station example

	2.2 Translating SBDs into automata
	2.2.1 Reachability automaton
	2.2.2 Constraint automata
	2.2.2.1 Condition automata
	2.2.2.2 Process state automata

	2.2.3 Result automaton and high-priority events
	2.2.4 Representing the global behaviour

	2.3 Extended semantics
	2.3.1 Termination condition
	2.3.2 Writable and controlled variables
	2.3.3 Immediate instructions

	2.4 A practical example
	Concluding remarks

	3 Compositional verification with prioritised events
	3.1 Preliminaries
	3.1.1 Prioritised events
	3.1.2 Finite automata
	3.1.3 Synchronous composition and non-conflictingness

	3.2 Conflict-preserving abstraction rules
	3.2.1 Prioritised weak bisimulation
	3.2.2 Abstraction rules based on incoming equivalence
	3.2.3 Further abstraction rules

	3.3 Compositional verification
	3.4 Case studies
	3.4.1 Synchronised SBDs
	3.4.2 Priority in control hardware

	Concluding remarks

	4 Sequential function chart
	4.1 Correlating SFCs with SBDs
	4.1.1 Syntax mapping from SFCs to SBDs
	4.1.2 Dense-time SFC semantics
	4.1.3 Translating SFCs into automata

	4.2 Compositional verification of modular SFC programmes
	4.3 Case study
	Concluding remarks

	5 Conclusions and future prospects
	Bibliography
	Own Publications
	Student Works

	Appendix
	A Plant models of the production line example
	B U-conflict-preserving abstraction rules
	C Tables of symbols

