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Abstract
A common approach to controller synthesis for hybrid systems is to first establish a discrete-
event abstraction and then to use methods from supervisory control theory to synthesise a
controller. In this paper, we consider behavioural abstractions of hybrid systems with a pre-
scribed discrete-event input/output interface. We discuss a family of abstractions based on
so called experiments which consist of samples from the external behaviour of the hybrid
system. The special feature of our setting is that the accuracy of the abstraction can be care-
fully adapted to suit the particular control problem at hand. Technically, this is implemented
as an iteration in which we alternate trial control synthesis with abstraction refinement.
While localising refinement to where it is intuitively needed, we can still formally establish
that the overall iteration will solve the control problem, provided that an abstraction-based
solution exists at all.
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1 Introduction

The analysis and the control of hybrid systems have become an important subject in modern
control theory; see, e.g., Alur et al. (2000) and Tabuada (2009) and the references cited
therein. A common approach is to construct a finite-state abstraction of the hybrid system
under consideration and then to apply methods known from the domain of discrete-event
systems, most notably model checking, reactive synthesis, or supervisory control.

A well established framework to obtain a finite-state abstraction is to strategically con-
struct a finite partition or a finite cover on the continuous state space and to thereby define
symbolic dynamics associated with the hybrid system; see e.g. Stiver et al. (1995), Tabuada
(2009), Reissig et al. (2017), Pola and Tabuada (2009), Gol et al. (2014), Zamani et al.
(2012), and Liu and Ozay (2016). For controller synthesis, this approach is particularly
suited when the design of a discrete-event interface is considered part of the synthesis prob-
lem. In contrast, if the hybrid plant is equipped with a prescribed discrete-event interface, so
called behavioural abstractions are an adequate alternative. In this approach, one seeks to
derive a finite-state abstraction directly in terms of the external signals. This is the situation
we study in the present paper. 1

The behavioural abstractions proposed by Moor and Raisch (1999) and Moor et al.
(2002) are based on the notion of l-completeness fromWillems’ behavioural systems theory;
see, e.g., Willems (1991). By definition, a discrete-time system is l-complete if its infinite-
time behaviour can be exactly recovered from all length l samples, l ∈ N0, taken from
all infinite-length signals. For a system which does not exhibit this property, the strongest
l-complete approximation is then introduced as the tightest behavioural over-approxima-
tion that is l-complete. In the following, whenever clear from the context, we simply refer
to l-complete approximations when we mean strongest l-complete approximations. An l-
complete approximation can be obtained by exhaustively taking samples of length l from the
original behaviour and generating the abstraction by superposition of these samples. For the
control of hybrid systems with discrete-valued input- and output-signals, l-complete approx-
imations can be used to synthesise controllers that address inclusion-type specifications in
these signals. In this situation, the finite external signal range of the hybrid system leads
to a finite-state realisation of the l-complete approximation and a variant of Ramadge and
Wonham’s supervisory control theory (Ramadge and Wonham 1987, 1989) is subsequently
applied to synthesise a supervisory controller. It is shown by Moor and Raisch (1999) and
Moor et al. (2002) that if the supervisor suitably restricts the behaviour of the l-complete
approximation, it also accomplishes the control objective for the underlying hybrid system.
The applicability of this approach has been demonstrated with case studies in the area of
process engineering, including the start-up of a distillation column (Moor and Raisch 2002).
Recent methodological extensions have been reported by Schmuck and Raisch (2014), Park
and Raisch (2015), and Moor and Götz (2018) to address time-variant systems and partial
observation.

The existence of an appropriate supervisor depends on the approximation accuracy,
namely, if the abstract model is too coarse, no supervisor may exist that meets the speci-
fication. This leads to an iteration of trial synthesis and abstraction refinement, until either
a solution to the control problem is established or computational resources are exhausted.
Considering l-complete approximations, the construction of a finer abstraction effectively
amounts to incrementing the length l of samples taken from the original hybrid system.

1A technical comparison of abstractions by symbolic dynamics and behavioural abstractions is given in
Schmuck et al. (2015).
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This can be done uniformly for all samples as, e.g., proposed by Moor and Raisch (1999)
or, more efficiently, in a non-uniform way tailored for the particular control problem at
hand. For abstractions by symbolic dynamics, Clarke et al. (2003) introduce counterexam-
ple guided refinement for the verification of hybrid systems, with a further development
to address synthesis by Stursberg (2006). For behavioural abstractions, Moor et al. (2006)
introduce the notion of an experiment as a set of non-uniform length samples taken from the
original behaviour, with a subsequent discussion that leads to abstractions obtained from
experiments. Technically, the resulting abstractions are still l-complete and, hence, they can
be safely utilised in an abstraction-based design.

In the present paper, we further develop abstraction-based synthesis by experiments
on behaviours. While the study by Moor et al. (2006) is entirely set within Willems’
behavioural systems theory, we now make use of explicit state machine realisations reported
by Moor and Götz (2018). By a more detailed discussion, we gain some relevant benefits.
First, we can literally refer to supervisory control of sequential behaviours with a synthesis
algorithm given by Thistle and Wonham (1994a). As a consequence, we can address more
general liveness specifications with eventual task completion as a prototypical example.
This extends the results from Moor et al. (2006), which are restricted to l-complete safety
specifications. Second, the technically involved temporal decomposition of the control prob-
lem used by Moor et al. (2006) to guided abstraction refinement can now be replaced by
the controllability prefix introduced by Thistle and Wonham (1994b). The latter is an inter-
mediate result of the synthesis procedure and characterises winning states, from which on
the control objective can be accomplished. In the case that the synthesis procedure fails
and, thus, a refinement of the abstraction is required, intuitively, such a refinement does not
need to address any winning states. Likewise, we can identify failing states, from which on
no supervisor can possibly satisfy the specification. Again intuitively, this status is retained
under refinement and, thus, no refinement should address the behaviour after a failing state.
For the iteration of trial controller synthesis and abstraction refinement, it is therefore pro-
posed to refine the experiment only by addressing states that are neither winning nor failing.
Since this iteration intentionally generates only specific experiments, it may fail to generate
a particular experiment for which controller synthesis would succeed. Here, our main tech-
nical result, Theorem 17, guarantees that a successful experiment will be generated provided
that such a one exists.

A predecessor of this paper has been presented at the Workshop on Discrete Event Sys-
tems; see Yang et al. (2018). The present version has been extended (a) to address iterative
refinements in contrast to a single local refinement, (b) to allow for specifications with a
Büchi acceptance condition, and (c) to include a formal proof of our main technical result.
The remainder of the paper is organised as follows. After introducing elementary notation
in Section 2, we summarise the concept of experiments and the behavioural abstractions
obtained therefrom in Section 3. Realisations of the hybrid plant and its abstractions are dis-
cussed in Section 4. In Section 5 we present the control problem under consideration and
derive an abstraction-based solution procedure. Finally, we discuss the proposed abstraction
refinement scheme in Section 6. A simple example is used throughout the entire discussion,
illustrating the suggested ideas and demonstrating the applicability of the proposed strategy.

2 Notation

We denote the positive, respectively non-negative, integers by N, respectively N0. The
cardinality of a finite set A is denoted by |A| ∈ N0.
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Given a set W , referred to as a signal range, and l ∈ N, we denote by Wl :=
{〈w1, . . . , wl〉|∀k, 1 ≤ k ≤ l : wk ∈ W } the set of sequences over W of length l and we
let W+ := ∪{Wl |l ∈ N}. Introducing the empty sequence ε �∈ W , we formally define
W 0 := {ε} and write W ∗ := ∪{Wl |l ∈ N0} = {ε} ∪ W+ for the set of finite sequences over
W . For a sequence s ∈ Wl ⊆ W ∗, its length l is denoted |s|. The set of all countably infinite
sequences over W is denoted WN0 , with w ∈ WN0 commonly interpreted as a discrete time
signal w : N0 → W . Subsets S ⊆ W ∗ are referred to as ∗-languages, or languages of finite
words, in contrast to ω-languages B ⊆ WN0 , or languages of infinite words.

For two finite sequences s = 〈w1, . . . , wl〉 ∈ Wl and r = 〈u1, . . . , un〉 ∈ Wn,
the concatenation is defined by 〈s, r〉 := 〈w1, . . . , wl, u1, . . . , un〉 ∈ Wl+n. For the
empty sequence, let 〈s, ε〉 := s =: 〈ε, s〉. The concatenation of the finite sequence
s = 〈w1, . . . , wl〉 ∈ Wl with a signal w ∈ WN0 is denoted v = 〈s,w〉 ∈ WN0 , with
v(k) = wk+1 for 0 ≤ k < l and v(k) = w(k − l) for k ≥ l. Again, for the empty sequence
let 〈ε,w〉 := w. For notational convenience, we write 〈·, ·, ·〉 for 〈·, 〈·, ·〉〉.

A sequence r ∈ W ∗ is a prefix of s ∈ W ∗ if there exists t ∈ W ∗ such that 〈r, t〉 = s;
we then write r ≤ s. If, in addition, r �= s, we say that r is a strict prefix of s and write
r < s. Likewise, r ∈ W ∗ is a prefix of a signal w ∈ WN0 , if there exits v ∈ WN0 such that
〈r, v〉 = w; we then write r < w. The set of all prefixes of a given sequence s ∈ W ∗ or
a given signal w ∈ WN0 is denoted pre s ⊆ W ∗ or prew ⊆ W ∗, respectively. A sequence
t ∈ W ∗ is a suffix of s ∈ W ∗ if there exists r ∈ W ∗ such that 〈r, t〉 = s.

The left-shift operator σ l , l ∈ N0, is defined for signals w ∈ WN0 by σ lw ∈ WN0 with
(σ lw)(k) := w(k + l) for all k ∈ N0, and we let σ := σ 1. For a signal w ∈ WN0 , the
restriction to a finite integer interval D ⊆ N0 is denoted w|D with, e.g., D = [k1, k2) :=
{k ∈ N0|k1 ≤ k < k2} and left-open and/or right-closed intervals defined likewise. When
taking restrictions, we drop absolute time and reinterpret w|D as finite sequence, i.e., we
identify w|[k1,k2) with 〈w(k1), . . . ,w(k2 − 1)〉 ∈ Wk2−k1 .

Taking point-wise images, all operators and maps in this paper are identified with their
respective extension to set-valued arguments; e.g., we write σB for the image {σw|w ∈ B}
of the ω-language B ⊆ WN0 under the operator σ with domain WN0 , and, likewise, preB
for the image {prew|w ∈ B} of B under the operator pre.

3 Behavioural abstractions

We present a general scheme of system abstraction that allows for a guided refinement,
and we do so within Willems’ behavioural systems theory. In this framework, a dynamical
system is defined as a triple � = (T , W,B), where T is the time axis, W is the external
signal range, and B ⊆ WT := {w|w : T → W } is the behaviour, i.e., the set of all
external signals that the systemmay generate. It is then proposed to discuss and to categorise
dynamical systems in terms of their behaviours. For the present paper, we focus attention on
time-invariant systems with an external discrete-event interface. Technically, we consider
the discrete time axis T = N0 and the finite external signal range W , |W | ∈ N, and we
interpret ω-languages B ⊆ WN0 as behaviours. Regarding time invariance, we refer to the
following definition from Willems (1991).

Definition 1 A behaviour B ⊆ WN0 is time invariant if σB ⊆ B. A system � =
(N0,W,B) is time invariant if its behaviour B is time invariant.
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Given a system � = (N0, W,B), a behavioural abstraction is a system �′ =
(N0,W,B′) with B ⊆ B′, i.e., provided that the original system � accounts for all possible
trajectories the actual phenomenon modelled by � can generate, then so does the abstrac-
tion �′. Behavioural abstractions are commonly used for the verification and the synthesis
of safety properties, with optional liveness properties being addressed by additional struc-
tural requirements. Considering a time invariant system, we ask for a time invariant system
abstraction. We refer to Moor et al. (2006) for the following notion of an experiment which
we will use to construct a rich family of time-invariant behavioural abstractions.

Definition 2 An experiment overW is a ∗-language S ⊆ W ∗. If there exists a uniform upper
bound on the length of all sequences in S, we say that S is of bounded length. Moreover,
S ⊆ W ∗ is an experiment on a behaviour B ⊆ WN0 if S accounts for each signal from B in
terms of a prefix, i.e., if (prew) ∩ S �= ∅ for all w ∈ B.

Given an experiment S on some behaviour B, Moor et al. (2006) discuss abstractions BS ,
B ⊆ BS , that can be obtained exclusively from S. To this end, we consider the candidate

BS := {w : N0 → W |∀k ∈ N0∃l ∈ N0 : w|[k,k+l) ∈ S}, (1)

i.e., BS consists of all those trajectories which at any instance of time continue to evolve on
some finite future sequence that matches S; see Fig. 1.

It is immediate from the construction that BS is time invariant and that S is an experiment
on BS . Moreover, for any behaviour B̃ ⊆ WN0 we have the following implication:

if B̃ is time-invariant and if S is an experiment on B̃ then B̃ ⊆ BS . (2)

It is shown in Moor et al. (2006), Proposition 7, that BS is the unique smallest behaviour for
which the above implication holds. Assuming that the original behaviour B is indeed time
invariant, BS is the smallest superset of B that can be characterised exclusively in terms of

Fig. 1 Experiment S on B with associated abstraction BS . Here, the prefixes of behaviours are interpreted
as infinite computational trees with the empty string as the root at the very left and progress of discrete time
towards the right. In the sketch, the trees are abstractly shown as cones; i.e., preB in dark yellow and preBS

in light green. The bounded-length ∗-language S is shown as a dark green stripe. In particular, the sketch
indicates that any signal from B must pass S, as required by Definition 3. Regarding the abstraction, the
signal w ∈ BS shown in the sketch at every instance of time k must have a finite-length future that matches
S; see Eq. 1. This is illustrated by the transparent grey copy of S shifted such that the root matches w(k) to
indicate that w|[k,k+l) = w|[k,k+l−1] ∈ S

537Discrete Event Dynamic Systems (2020) 30:533–560



the experiment S. Therefore the system �S = (N0,W,BS) is referred to as the behavioural
abstraction obtained from S under the assumption of time invariance, or in short as the
abstraction obtained from S.

Moor et al. (2006) and Moor and Götz (2018) provide a comprehensive discussion
regarding algebraic properties of experiments and the abstractions obtained therefrom. For
the present paper, we pragmatically refer to Eq. 1 as the defining equation and point out
some technical consequences relevant for the subsequent discussion. It is immediate from
Eq. 1 that, regarding the associated abstraction, we may without loss of generality restrict
our considerations to prefix-free experiments, i.e., to experiments that satisfy

∀s, t ∈ S : s ≤ t ⇒ s = t . (3)

A prefix-free experiment S is commonly interpreted as a tree with root ε ∈ pre S, nodes
pre S and leaves S. Likewise, it is not restrictive to assume that the experiment is trim in the
sense that every sequence s ∈ S contributes to the abstraction, i.e.,

∀s ∈ S ∃k, l ∈ N0 : s ∈ BS |[k,k+l), (4)

or, equivalently, S ⊆ preBS . Thus, whenever convenient, we may restrict our discussion to
trim and prefix-free experiments.

For the special case of the experiment S = B|[0,l] with samples with uniform
length l + 1, l ∈ N0, the abstraction BS obtained from S amounts to the strongest l-
complete approximation proposed by Moor and Raisch (1999) and Moor et al. (2002).
The approximation-refinement scheme known from l-complete approximations amounts to
incrementing the sample length. This concept of refinement generalises to experiments as
follows.

Definition 3 Given two experiments S and S′ over W , we say that S′ is a refinement of S if

(∀s ∈ S ∃s′ ∈ S′ : s ≤ s′) and (∀s′ ∈ S′ ∃s ∈ S : s ≤ s′). (5)

We then write S ≤ S′.

The first conjunct in Eq. 5 ensures that the refinement accounts for each sample s ∈ S

from the original experiment by an extended sample s′ ∈ S′, s ≤ s′, including the trivial
case of s = s′. The second conjunct ensures that no other samples are in the refinement
than those obtained by (possibly trivially) extending samples from the original experiment.
Figure 2 illustrates a prefix-free experiment S on B where the leaves s ∈ S form a “barrier”
through which each trajectory from w ∈ B must pass. In this view, a prefix-free refinement
S′ of S is obtained by pushing the “barrier” to the right. The figure also indicates that a
refinement is expected to lead to a tighter abstraction in that it more accurately encodes
which trajectories are not within B, e.g, v �∈ B is possibly in BS but cannot be in BS′ .
Technically, we obtain for two experiments S and S′ on B with S ≤ S′ that

B ⊆ BS′ ⊆ BS (6)

as an immediate consequence of Eq. 1 and the second conjunct in Eq. 5; i.e., it is guaranteed
that the abstraction does not become worse and we may optimistically expect it to become
better.

For the systematic construction of refinements, we propose to nominate a set R ⊆ S of
refinement candidates and observe that

S′ := {s ∈ S|s �∈ R} ∪ {〈s, w〉|s ∈ R,w ∈ W, 〈s, w〉 ∈ preB} (7)
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Fig. 2 Prefix-free experiment S on B with prefix-free refinement S′, S ≤ S′. As in Fig. 1, preB is interpreted
as an infinite computational tree with the empty string as the root at the very left, graphically represented
as a dark yellow cone. Both bounded length experiments S and S′ are shown as “barriers” and, as indicated
in the sketch, any signal from B must pass both S and S′. Being a prefix-free refinement, the sequences in
S′ are obtained by extending specific sequences from S, i.e., pushing the boundary to the right. Referring
exclusively to the experiment S, both signals w and v could possibly belong to some behaviour on which S

was conducted. Hence, we may expect v ∈ BS although v �∈ B. In contrast, we have v|[0,l) �∈ S′ for all l ∈ N0
and, hence, v �∈ BS′

is indeed an experiment on B with S ≤ S′. For the special case of S = B|[0,l] and R = S we
obtain S′ = B|[0,l+1], which coincides with the refinement of l-complete approximations.

4 State machine realisations

We further elaborate the proposed scheme of behavioural abstractions in the context of state
realisations. Here, we account for a class of transition systems referred to as state machines,
which we will utilise for realisations of the plant model, finite state abstractions, and the
specification in the control problem under consideration.

Definition 4 A state machine is a quadruple P = (X, W, δ, X0), where X is the state set,
W is the external signal range, δ ⊆ X × W × X is the transition relation, and X0 ⊆ X is
the set of initial states. The state machine P is called a finite state machine if |X| ∈ N.

We use the following terminology.

• Whenever convenient, we reinterpret the transition relation with a set-valued map,
recursively defined for (x, s) ∈ X × W ∗ and w ∈ W by (a) δ(x, ε) := {x} and (b)
δ(x, sw) := {x′′|∃x′ ∈ δ(x, s) : (x′, w, x′′) ∈ δ}; i.e., δ(x, s) denotes the set of states
reachable from x by taking |s| transitions with labels as specified by s.

• Referring to the set-valued map interpretation of δ, the set δ(X0,W
∗) are the reachable

states, and P is said to be reachable if δ(X0, W
∗) = X. If δ(x,W) is non-empty for

every reachable state x ∈ δ(X0,W
∗), then P is termed deadlock-free.

• The state machine P induces the full behaviour

Bfull := {(w, x)|∀k ∈ N0 : (x(k),w(k), x(k + 1)) ∈ δ and x(0) ∈ X0} (8)

and the state space system �full := (N0,W × X,Bfull).
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• The external behaviour Bex of �full is the projection of Bfull onto WN0 , i.e.,

Bex := PWBfull := {w|∃x : (w, x) ∈ Bfull}. (9)

If a state machine P ′ induces the external behaviour B′ of a system �′, P ′ is termed a
realization of �′, denoted �′ ∼= P ′.

• If |δ(X0, s)| ≤ 1 for every s ∈ W ∗, then P is said to be past-induced; in automata
theory, this is also referred to as deterministic. We then write δ0(s) ∈ X for s ∈ W ∗ with
|δ(X0, s)| = 1 to denote the unique state reachable from X0 via the external sequence
s.

In our subsequent discussion of controller synthesis, we assume that the plant is given
as a state machine P = (X,W, δ,X0) with unrestricted initial conditions, i.e., X0 = X,
and we note that this assumption implies time invariance for the induced full behaviour as
well as for the induced external behaviour. Moreover, we consider the product W = U × Y

as external signal space, where U and Y denote the ranges of input symbols and output
symbols, respectively, and where we assume that

∀x ∈ X, u ∈ U∃ ∈ Y, x′ ∈ X : (x, (u, y), x′) ∈ δ. (10)

State machines with this property are called I/S/- machines. For the induced external
behaviour, it can be seen that the input is free and the output does not anticipate the input,
both technical terms defined within Willems’ behavioural framework; see Proposition 24 in
Moor and Raisch (1999), which refers to Definitions VIII.1 and VIII.4 in Willems (1991).
In particular, we will consider supervisory controllers which at any instance of time disable
specific input symbols and which in turn accept any output symbol. Technically, all exter-
nal symbols are organised as pairs w = (u, y) ∈ U × Y = W , with only the U -component
considered controllable; this will be followed up in Section 5, including a formal definition
of the corresponding control patterns (26). To this end, we address two remarks on how the
requirement of a time-invariant I/S/- plant model can be relaxed by a preprocessing stage
applicable in the context of controller synthesis with upper-bound behavioural-inclusion
specifications.

Remark 5 Formally, Eq. 10 requires that every input symbol can be applied regardless of the
current state of the plant. Nevertheless, if we are provided with a state machine P = (X,U×
Y, δ, X)which fails to satisfy (10), we consider the substitute model P ′ = (X,U×Y ′, δ′, X)

with Y ′ = Y ∪̇{‡} where we define the transition relation δ′ to issue the distinguished output
symbol ‡ �∈ Y whenever an invalid input symbol was applied:

δ′ := δ ∪ {(x, (u, ‡), x)|∀x′ ∈ X, y ∈ Y : (x, (u, y), x′) �∈ δ}. (11)

Clearly, P ′ satisfies (10). The considered upper-bound behavioural-inclusion specification
can then be used to prevent the distinguished output symbol ‡ �∈ Y from occurring in the
closed-loop configuration. Now assume that a controller that has been designed for the plant
substitute P ′ such that ‡ does not indeed occur in any external closed-loop signal. Whenever
P ′ attains a state x ∈ X such that there exists a transition (x, (u, ‡), x) ∈ δ′ for some u ∈ U ,
this transition will be prevented by the controller. In our specific setting of W = U × Y ′,
the controller can only directly restrict the U -component of the external symbol. Hence, the
controller must at least effectively disable the external symbols

ρx := {(u, y) ∈ U × Y ′|u ∈ U, y ∈ Y ′ s.t. (x, (u, ‡), x) ∈ δ′} (12)
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whenever the plant attains the state x ∈ X. For the remaining transitions, however, δ′
matches the original transition relation δ; i.e.,

{(x, (u, y), x′) ∈ δ′|(u, y) �∈ ρx} = {(x, (u, y), x′) ∈ δ|(u, y) �∈ ρx}. (13)

Therefore, the supervisor designed for the substitute P ′ will implement exactly the same
closed-loop behaviour when applied to the actual plant P .

Remark 6 The situation of restricted initial states is addressed in a similar fashion. Given
P = (X,U × Y, δ, X0) with X0 � X, we consider the substitute model P ′ = (X,U ′ ×
Y ′, δ′, X), U ′ = U ∪̇{†}, Y ′ = Y ∪̇{‡}. Here, the distinguished input symbol † is introduced
to test whether the state is within the original set of initial states, and, if so, this is confirmed
by the distinguished output symbol ‡. Technically, we define the transition relation by

δ′ := δ ∪ {(x, (†, ‡), x)|x ∈ X0} ∪ {(x, (†, y), x)|x ∈ X − X0, y ∈ Y }. (14)

We then design a controller for P ′ with a specification that requires (a) that † appears exclu-
sively as the unique first input symbol and (b) that any further closed-loop requirements are
only imposed conditionally, subject to ‡ being generated as the very first output symbol.
In order to apply the resulting controller to the actual plant, we need an additional device
that generates an adequate output symbol when the distinguished input symbol † is applied,
i.e., we need to implement the additional transitions introduced by δ′. However, by clause
(a), this is only necessary for the very first transition taken and, since P has the initial state
restricted to X0, the additional device is a-priori known to generate ‡ and it does so without
affecting any state. From a practical perspective, this can be implemented by intercepting
the closed-loop interconnection to hide the very first input symbol † from the plant and by
injecting a fake response ‡ to the controller. For any subsequent transitions, the actual plant
P matches the substitute P ′ as in our previous Remark 5. Hence, the supervisor will enforce
the conditional specification (b) in the adapted closed-loop configuration with the actual
plant.

For a discrete-time model of hybrid plant dynamics with a discrete external interface, we
consider an I/S/- machine P = (X,U ×Y, δ, X) with a state set X ⊆ D×Rn, |D| ∈ N, and
with finite input- and output-ranges, i.e., |U |, |Y | ∈ N. This is a rather general setting and,
for practical applications, one needs to formally derive the transition relation δ from a more
detailed model. Since the literature provides a rich variety of models for hybrid dynamics,
we demonstrate this step by example.

Example 1 Consider a physical system with linear continuous dynamics and a finite number
of linear controllers to implement individual modes of operation. Discretising time by a
regular sampling period, we obtain the switched affine system

x(k + 1) = Ad(k)x(k) + Bd(k), (15)

where k ∈ N0 denotes the discrete time; x : N0 → Rn is the sampled continuous state
trajectory; the discrete signal d : N0 → D selects the mode of operation d(k) at time k; and
the square matrix Ad ∈ Rn×n and the column vector Bd ∈ Rn are obtained by sampling the
closed-loop configuration for mode of operation d ∈ D. We can either directly interpret d
as our input signal, or encode additional discrete dynamics by

d(k + 1) = f (d(k),u(k)), (16)
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where f : D × U → D is a complete transition function and u : N0 → U is the dis-
crete input signal. As discrete output, we propose a mode dependant finite partition of the
continuous state space, i.e.,

y(k) = g(d(k), x(k)), (17)

with g : D × Rn → Y . The transition relation δ is then formally defined by

δ := {((x, d), (u, y), (x′, d ′))|x′ = Adx + Bd, d ′ = f (d, u), y = g(d, x)}. (18)

With W := U × Y , X := D × Rn and unrestricted initial states X0 := X, the latter
completes the construction of an I/S/- machine P = (X, W, δ, X0) with time-invariant
induced external and internal behaviour, respectively.

Example 2 In a similar way to the above example, hybrid automata address the situation of
a finite number of modes of operation, each with specific continuous dynamics. However,
and in contrast to the above example, the generation of events is organised in dependency of
the evolution of the continuous state and by referring to so calledmode invariants and guard
relations. A general and formal definition of hybrid automata semantics is quite involved
and interested readers are referred to the literature; see, e.g., Henzinger (2000) or Chapter 7
in Tabuada (2009).

In the present study, we provide a simple practical example with hybrid automata seman-
tics to which we will refer later in the context of abstraction based controller design.
To this end, consider a vehicle which we shall navigate within a rectangular area A :=
[0, w] × [0, h] ⊆ R2; see Fig. 3.

The vehicle is equipped with low-level continuous controllers which implement the
modes of operation U := {u nw, u ne, u sw, u se} to drive the vehicle in the respective
direction, i.e., north-west, north-east, south-west or south-east. With each mode u ∈ U ,
we associate a differential inclusion d

dt ϕ(t) ∈ Fu, where the constant right-hand-side
Fu ⊆ R2 is set up as the sum of the respective nominal velocity (−v, v), (v, v), (−v,−v)

or (v,−v) ∈ R2 and a square with diameter d ∈ R, d > 0, as a bounded additive distur-
bance. Each mode of operation is associated with the entire rectangular area Iu := A as the
mode invariant.

Fig. 3 Vehicle navigation example with rectangular area A = [0, w] × [0, h] ⊆ R2
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An output event y ∈ Y := {y n, y s, y w, y e} will be generated while the vehicle is
inside a guard region, denoted Gy n, Gy s, Gy w, Gy e ⊆ R2, respectively. To avoid triv-
ial Zeno-behaviour, guards are enabled and disabled according to the mode of operation,
e.g., when driving north-west, only the north guard Gy n and the west guard Gy w are
enabled.

For a discrete-time model of the vehicle, we consider the overall state setX := A. On this
state set, we define the transition relation δ ⊆ X×(U ×Y )×X by (x, (u, y), x′) ∈ δ, if and
only if (a) there exists τ ≥ 0 and a continuous state trajectory ϕ : [0, τ ] → Iu, differentiable
on (0, τ ) with d

dt ϕ(t) ∈ Fu for all t ∈ (0, τ ), with the initial state ϕ(0) = x and the final
state x′ = ϕ(τ); (b) x′ is within the guard Gy ; and (c) the guard Gy is enabled by mode
u ∈ U . To practically test whether a tuple (x, (u, y), x′) satisfies the above conditions (a)–
(c), we observe that the relevant sets Iu = A, Fu and Gy are convex closed polyhedra. This
implies that the positions reachable by some qualifying continuous trajectory ϕ amount to
the convex closed polyhedron V = {x + λv|v ∈ Fu, λ ≥ 0} ∩ A; see, e.g., Halbwachs et al.
(1997). Provided that the guard Gy is enabled by mode u, we have that (x, (u, y), x′) ∈ δ if
and only if x′ ∈ V ∩Gy . In this context, the transitions in δ are also referred to as logic-time
transitions to contrast with the evolution of the continuous state with respect to physical
time.

This completes the construction of the I/S/- machine P = (X, W, δ, X0) with W :=
U × Y and X0 = X = A.

Referring back to Definition 2, recall that an experiment S must account for all trajecto-
ries w ∈ B by some finite prefix s ∈ (prew) ∩ S. Hence, the construction of an experiment
practically amounts to the inspection of specific finite prefixes in preB. For example, to set
up an initial experiment by S := B|[0,l] ⊆ preB for some l ∈ N we need an implementable
test for whether or not s ∈ preB for all finite sequences s of length l + 1. Likewise, refer-
ring to Eq. 7, a refinement of an experiment S w.r.t. the candidates R ⊆ S requires us to
test whether or not 〈s, w〉 ∈ preB for all s ∈ R and w ∈ W . Given an I/S/- machine
P = (X, W, δ, X) with the external behaviour B, Moor et al. (2002) propose to base the
required test on the following recursively defined sets of compatible states:

X (ε) := X, (19)

X (〈r, (u, y)〉) := {x′|∃x ∈ X (r) : (x, (u, y), x′) ∈ δ}, (20)

where r ∈ W ∗, u ∈ U , y ∈ Y , and the right hand side of Eq. 20 is a one-step forward
reachability operator applied toX (r)with (u, y) as a constraint for the external symbols. By
construction, X (s) ⊆ X consists of all states the I/S/- machine can attain after generating
the finite sequence of external symbols s ∈ W ∗. Since I/S/- machines do not deadlock, this
implies that s ∈ preB if and only if X (s) �= ∅. Hence, for behaviours realised by I/S/-
machines, setting up and/or refining experiments effectively amounts to a finite iteration of
the one-step forward-reachability operator in Eq. 20. The latter type of reachability operator
has been intensively investigated over the past two decades and the literature provides a
variety of efficient computational methods addressing specific classes of hybrid systems;
see, e.g., Alur et al. (2000), Alur et al. (1996), and Lafferriere et al. (2000) for the exact
computation of sets of reachable states for a restricted class of continuous dynamics, or,
e.g., Althoff et al. (2010), Chutinan and Krogh (1998), Frehse (2008), Henzinger et al.
(2000), Maler and Dang (1998), Mitchell et al. (2005), and Reissig (2011) for safe over-
approximations for richer classes of continuous dynamics.
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Example 3 (cont.) For our vehicle navigation example, all relevant sets are convex closed
polyhedra and the differential inclusions have a constant polyhedral right-hand-side. Sets of
states reachable by one logic-time transition can hence be computed exactly, e.g., using the
software Parma Polyhedra Library (PPL); see Bagnara et al. (2008). We outline the overall
computational procedure that is used to construct an initial experiment and a refinement
thereof.

Consider u nw as the first input symbol being applied in the vehicle navigation exam-
ple. Then the subsequent output symbol can be either y n or y w since the initial states
are not restricted and since Gy n and Gy w are the only enabled guards. This implies
X ((u nw, y s)) = ∅ and X ((u nw, y e)) = ∅. Under the additional hypothesis that we
actually observe y w, we conclude that the attained state must be within Gy w. Hence,
we obtain X ((u nw, y w)) = Gy w as compatible states; see Fig. 4. Likewise, we obtain
X ((u nw, y n)) = Gy n. Repeating the above reasoning for all possible first input symbols,
we establish that

B|[0,0] = {(u ne, y n), (u ne, y e), (u nw, y n), (u nw, y w),

(u se, y s), (u se, y e), (u sw, y s), (u sw, y w)}, (21)

and obtain our initial experiment S := B|[0,0]. This experiment encodes the fact that for
our vehicle navigation example, only relevant guards are enabled depending on the input
symbol. This is expected to be insufficient for the design of a supervisor that solves typical
navigation tasks like, e.g., to visit a specific guard region.

For illustration purposes, we consider R := {(u nw, y w)} ⊆ S as our refinement candi-
date. SinceX ((u nw, y w)) = Gy w from the foregoing discussion, we now need to compute
X (〈(u nw, y w), (u, y)〉) for all u ∈ U and y ∈ Y by applying Eq. 20. Consider the case of
u = u ne, i.e., we apply the input symbol u ne when the vehicle position x is initially in
X ((u nw, y w)). The continuous time motion of the vehicle is then modelled by a trajectory
ϕ : [0, τ ] → Iu ne = A with ϕ(0) = x and d

dt ϕ(t) ∈ Fu ne for all t ∈ (0, τ ). Recall that
in our example, all relevant sets are convex closed polyhedra. This implies that all positions
reachable by the vehicle are given by

V := {x + λv|x ∈ X ((u nw, y w)), v ∈ Fu ne, λ ≥ 0} ∩ A; (22)

see also Fig. 4. Compatible states are then obtained by X (〈(u nw, y w), (u ne, y)〉) =
V ∩ Gy with y ∈ Y and are again convex closed polyhedra. More specifically, we have
X (〈(u nw, y w), (u ne, y n)〉) as shown in Fig. 4 and X (〈(u nw, y w), (u ne, y)〉) = ∅ for

Fig. 4 Sets of compatible states for the navigation example
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y �= y n. This procedure can be applied repeatedly for subsequent input symbols. To this
end, Fig. 4 shows the sets of compatible states for 〈(u nw, y w), (u ne, y n), (u se, y s)〉
and 〈(u nw, y w), (u ne, y n), (u se, y e)〉. Coming back to the refinement, we apply the
same analysis to X ((u nw, y w)) as above, but now for the remaining choices of the input
symbol, i.e., u = u ne, u = u sw and u = u se. As it turns out, the only extensions of
our refinement candidate (u nw, y w) by one more pair of an input symbol and an output
symbol with a non-empty set of compatible states are the following length-two sequences:

〈(u nw, y w), (u ne, y n)〉, 〈(u nw, y w), (u se, y s)〉,
〈(u nw, y w), (u nw, y n)〉, 〈(u nw, y w), (u nw, y w)〉,
〈(u nw, y w), (u sw, y s)〉, 〈(u nw, y w), (u sw, y w)〉. (23)

Referring to Eq. 7, the refined experiment S′ is obtained from S := B|[0,0], Eq. 21, by
removing the refinement candidate (u nw, y w) and by including the above six extensions;
for a tree representation of S′ see Fig. 5.

Once an experiment S on the external behaviour B of the plant P has been obtained, it
can be used to set up a finite-state realisation of the corresponding abstraction �S . Roughly
speaking, the realisation tracks the longest suffix of the signal generated so far that matches
some prefix within S.

Theorem 7 (See Moor and Götz (2018), Lemma 14) Given a prefix-free trim experiment
S ⊆ W ∗, ε �∈ S �= ∅, of bounded length, the abstraction �S = (N0,W,BS) obtained
under the assumption of time invariance (see Eq. 1) is realised by the state machine PS =
(ZS,W, δS, {ε}), where ZS := preS consists of the prefixes of S and where the transition
relation δS is defined as follows: (z, w, z′) ∈ ZS ×W ×ZS is in δS if and only if z′ = 〈z�, w〉
with z� the longest suffix of z that is in ZS but not in S; i.e., if and only if z� is the unique
longest sequence in {r ∈ W ∗|∃t ∈ W ∗ : 〈t, r〉 = z} ∩ {r ∈ ZS |r �∈ S}. Moreover, PS is
reachable, deadlock-free and past-induced. Provided that W is a finite set, PS is a finite
state machine.

Note that for the degenerated cases of ε ∈ S or S = ∅ we have BS = WN0 or BS = ∅,
respectively, with well known realisations. To provide some intuition regarding the transi-
tion relation given by the above theorem, we consider the initial state z0 := ε and a signal

Fig. 5 Refined experiment S′ on the external behaviour B for the navigation example
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w ∈ BS . In particular, there exists l ∈ N0 such that w|[0,l) ∈ S. By ε �∈ S, this implies
l ≥ 1. Moreover, since S is prefix-free, we have w|[0,k) �∈ S and w|[0,k) ∈ pre S = ZS for
all k < l. Now let zk := w|[0,k) for all k ≤ l and observe, for all k < l, that zk is its own
longest suffix z� qualifying for z� �∈ S and z� ∈ ZS , and, hence, (zk,w(k), zk+1) ∈ δS . In
other words, the state records all past external symbols until zl ∈ S. However, once in state
zl ∈ S, no additional external symbols can be recorded with the given state set unless one
first drops a sufficient amount of symbols recorded earlier. Technically, we are asking for a
suffix z� of zl such that 〈z�,w(l)〉 ∈ ZS . To see that such a suffix exists, we consider the
shortest suffix ε of zl and we refer to time invariance to obtain 〈ε,w(l)〉 = w(l) ∈ ZS . For
the transition relation proposed in the theorem, we take the longest qualifying z� to drop as
little as possible of the recorded symbols and, as a conjecture, obtain (zl,w(l), zl+1) ∈ δS

with zl+1 := 〈z�,w(l)〉. If we can continue this construction indefinitely and if the conjec-
ture holds true at each stage, we obtain a state trajectory z : N0 → ZS , z(k) := zk for all k,
such that (w, z) is in the full behaviour induced by PS . Note that it is neither obvious that
the construction actually can be continued indefinitely, nor, for the converse behavioural
inclusion, that any trajectory generated by PS is within BS . The cited reference in Theorem
7 provides technical proofs for both claims and the above theorem.

Example 4 (cont.) For the experiment S from Fig. 5, the realisation PS is obtained by the
following construction. The nodes s ∈ pre S in Fig. 5 become the states of PS and the
edges in Fig. 5 become transitions with an event label to match the most recent event of
the respective target node; see Fig. 6, transitions given in black color. Then, per leaf z ∈ S,
we: (a) drop the minimum prefix from the node label z ∈ S to obtain z� ∈ {r ∈ ZS |r �∈
S}; and (b) for all w ∈ W such that z′ := 〈z�, w〉 ∈ ZS insert a transition from z to z′
with label w. For the node z = 〈(u nw, y w), u nw, y w)〉, we have z� = 〈(u nw, y w)〉
with out-going transitions indicated in green color in Fig. 6. For all other nodes z ∈ S,
z �= 〈(u nw, y w), u nw, y w)〉, we obtain z� = ε and insert per w ∈ W the transition
(z, w,w) ∈ δS . This amounts to 12 × 8 = 96 transitions, which are omitted in Fig. 6.

We observe for the vehicle navigation example that not only the actual plant P but also
the realisation PS of the abstraction is an I/S/- machine. This can always be achieved by suit-
able trimming, and we can without loss of generality restrict the discussion to experiments
such that PS is an I/S/- machine.

Fig. 6 Fragment of the realisation PS of the experiment S from Fig. 5
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Proposition 8 Consider an experiment S ⊆ W ∗, W = U × Y , on an external behaviour
B ⊆ WN0 realised by an I/S/- machine P with input range U and output range Y . With
PS = (ZS, W, δS, {ε}) from Theorem 7, let

Zio := {z ∈ ZS |∀u ∈ U ∃y ∈ Y, z′ ∈ ZS : (z, (u, y), z′) ∈ δS} (24)

and trim S by
S′ := {s ∈ S| pre s ⊆ Zio}. (25)

Then S′ ⊆ S is an experiment on B.

Proof To show that S′ is an experiment on B, we pick an arbitrary w ∈ B. Since S is
an experiment on B, there exists s ∈ S with s < w. To show that s ∈ S′, we pick an
arbitrary prefix z ≤ s and an arbitrary u ∈ U and establish the existence of y ∈ Y and
z′ ∈ ZS such that (z, (u, y), z′) ∈ δS . For our choice, we refer to any state trajectory x
such that (w, x) is in the full behaviour induced by P . Since P is an I/S/- machine, there
exists another trajectory (w′, x′) from the full behaviour such that (w′, x′)|[0,l) = (w, x)|[0,l),
w′(l) = (u, y) and x′(l) = x(l) for l = |z| and some y ∈ Y . By B ⊆ BS we obtain the
unique state trajectory z′ such that (w′, z′) is in the full behaviour induced by PS . By the
definition of δS we have z′(k) = w′|[0,k) for all k ≤ l. In particular, we have z′(l) = z and,
hence, (z, (u, y), z′(l + 1)) ∈ δS .

Applying the above trimming procedure repeatedly, it generates a monotonously decreas-
ing sequence S ⊇ S′ ⊇ S′′ ⊇ · · · of experiments. For our situation of a finite external
signal range and experiments of bounded length, S is a finite set. Hence, a fixpoint S∗ is
attained after finitely many stages of trimming. Then, the definition of Zio implies that the
S∗ is indeed realised by an I/S/- machine. Moreover, the realisation by an I/S/- machine is
retained under refinement by Eq. 7.

5 Supervisory Control

Given a plant model with discrete-event interface, we seek to design a controller that
restricts the behaviour to satisfy a prescribed upper bound specification. This type of con-
trol problem is addressed by supervisory control theory, as introduced by Ramadge and
Wonham (1987, 1989), however, using regular ∗-languages and finite automata realisations
as base models. For the present paper, we refer to an adaption of supervisory control to ω-
languages to address infinite-length signals as discussed by (Thistle and Wonham 1994a;
1994b), and we propose to substitute the actual plant by a finite state abstraction obtained
from an experiment.

Formally, a supervisor is defined as a causal feedback map f with domain W ∗ that, at
any instance of time k ∈ N0, maps the present prefix s = w|[0,k) generated by the plant to
a control pattern γ = f (s) ⊆ W , with the effect that the subsequently generated symbol
must satisfy w(k) ∈ γ , i.e., the plant is restricted to only generate symbols that match the
respective control pattern. Most commonly the range Γ of all admissible control patterns
is derived from partitioning W into controllable and uncontrollable events. However, to
address I/S/- machines as plants, we refer to the product W = U × Y and define

Γ := {γ ⊆ U × Y |∅ �= γ and ∀(u, y) ∈ γ, y′ ∈ Y : (u, y′) ∈ γ } (26)

as the range of the supervisor, i.e., f : W ∗ → Γ . By this choice, the supervisor imposes its
restriction on the input symbol only and accepts any output symbol generated by the plant.
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Note also that, by construction, Γ is closed under unions of control patterns and, thus, our
setting here is formally covered by the relevant references (Thistle and Wonham 1994a, b).

In the more common setting with a partition into controllable and uncontrollable events,
a supervisor could apply a control pattern such that the plant in its current state cannot
generate any of the enabled symbols. This form of temporal blocking is undesired and,
in general, needs to be addressed by the synthesis procedure. However, for the specific
situation of I/S/- machines and our tailored choice of Γ in Eq. 26, temporal blocking is not
an issue.

Definition 9 Given a deadlock-free state machine P = (X,W, δ,X0), a supervisor
f : W ∗ → Γ preserves liveness in closed-loop configuration with P if for all signals
(w, x) ∈ Bfull from the induced full behaviour that comply with f up to some time k ∈ N0,
i.e., w(κ) ∈ f (w|[0,κ)) for all κ < k, there exist w ∈ f (w[0,k)) and (w′, x′) ∈ Bfull such
that x′|[0,k] = x|[0,k], w′|[0,k) = w|[0,k) and w′(k) = w.

Proposition 10 Given an I/S/- machine P = (X, W, δ, X0) where W = U × Y with input
range U and output range Y , any supervisor f : W ∗ → Γ preserves liveness in closed-loop
configuration with P .

Proof Consider any (w, x) ∈ Bfull compliant with f up to time k ∈ N0. Then at time
k ∈ N0 the supervisor applies the control pattern γ := f (w[0,k)) and P is in state x = x(k).
By Eq. 26, γ �= ∅ and we can pick a symbol w := (u, y) ∈ γ . Since P is an I/S/- machine,
there exist y′ ∈ Y and x′ ∈ X such that (x, (u, y′), x′) ∈ δ. Referring again to Eq. 26,
we obtain w′ := (u, y′) ∈ γ . To construct the signals x′ and w′, let x′(κ) := x(κ) for
0 ≤ κ ≤ k, x′(k + 1) = x′, w′(κ) := w(κ) for 0 ≤ κ < k and w′(k) = w′. Observe that
(x′(κ),w′(κ), x′(κ + 1)) ∈ δ for 0 ≤ κ ≤ k. Since P itself is deadlock-free, the signals can
be extended to the entire time axis by taking arbitrary transitions from δ. We then obtain
(w′, x′) ∈ Bfull as required.

Restricting consideration to I/S/- machines and the corresponding choice of Γ , Eq. 26,
the problem of supervisory control is stated as follows.

Definition 11 Consider a plant � = (N0,W,B) realised by an I/S/- machine P =
(X, W, δ, X0) with input range U and output range Y , and a specification �spec =
(N0,W,Bspec). For a supervisor f : W ∗ → Γ with Γ from Eq. 26, the closed-loop
behaviour is defined by

Bf := {w ∈ B|∀k ∈ N0 : w(k) ∈ f (w|[0,k))}. (27)

A supervisor f : W ∗ → Γ solves the control problem if it enforces the specification, i.e., if
Bf ⊆ Bspec.

The provided references (Thistle and Wonham 1994a, b) present an algorithmic solution
to the above problem for the case that the relevant behaviours are ω-regular and realised by
past-induced finite state machines, extended by an acceptance condition. In the context of
the present paper, we will substitute the actual plant by the abstraction �S obtained from
some experiment S with past-induced finite state realisation PS = (ZS,W, δS, {ε}). Regard-
ing the specification, we account for past-induced finite realisations with Büchi acceptance
condition, i.e., we consider a state machine Pspec = (Xspec, W, δspec, {xspec0}) with a set of
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accepting states XspecM ⊆ Xspec and require that signals in the full behaviour visit accepting
states infinitely often. The specification �spec = (N0, W,Bspec) is then formally defined by

Bspec := {w : N0 → W |∃x : N0 → Xspec :
(w, x) is in the full behaviour of Pspec,

and x(k) ∈ XspecM for infinitely many k ∈ N0}. (28)

As a technical consequence of introducing an acceptance condition, it is not restrictive to
assume that the transition relation δspec is full, i.e., for all χ ∈ Xspec and all w ∈ W there
exists χ ′ ∈ Xspec such that (χ,w, χ ′) ∈ δspec. For example, assume that we wish to exclude
all closed loop trajectories that exhibit a certain string of symbols from W . We can encode
this in a specification state machine with full transition relation where the occurrence of
such a string leads into a “dump state”, from where no other state can be reached. The
assumption of a full transition relation is common in automata theory and it simplifies the
subsequent discussion.

Supervisory controller synthesis is conducted in the following two steps. First, we extend
the abstraction state set to also encode the specification state by the product composition
P× := PS × Pspec := (Q,W, λ, {q0}), where Q = ZS × Xspec, q0 = (ε, xspec0), and where
λ ⊆ Q × W × Q is defined by ((z, χ),w, (z′, χ ′)) ∈ λ if and only if (z, w, z′) ∈ δS and
(χ,w, χ ′) ∈ δspec. Since δspec is full, the induced behaviours of P× equal the respective
behaviours induced by PS . Moreover, past-inducedness of both components PS and Pspec
implies past-inducedness of the product P×. With QM := ZS × XspecM ⊆ Q we lift the
acceptance condition of the specification accordingly. Note also that, since δspec is full and
since we assume PS to be an I/S/- machine, P× is also an I/S/- machine and, hence, is
deadlock-free. Regarding the acceptance condition, however, there can be live-locks; i.e.,
reachable states with no execution path to attain a state in QM thereafter. This is addressed
by the second step of the synthesis approach, where we refer to the iteration proposed by
Thistle and Wonham (1994a, b) in order to identify states in P× which can be controlled to
eventually visit some accepting states ofQM and to do so infinitely often. The resulting state
set Qwin is referred to as the set of winning states — once the closed-loop has generated
a prefix that corresponds to a winning state q ∈ Qwin, a supervisor can be employed to
enforce the specification from then on. In particular, the supervisory control problem has
a solution if and only if the initial state of P× is a winning state. Addressing more general
acceptance conditions for both the plant and the specification, Thistle and Wonham (1994a,
b) obtain the set of winning states by a five-nested fixpoint iteration, which for the specific
situation in the present paper collapses to the following simplified algorithm.

Algorithm 12 Winning states Qwin of P× = (Q,W, λ, {q0}) w.r.t. the acceptance condition
QM ⊆ Q and control patterns Γ .

1) Initialise the target restriction with D := Q.

2) Initialise the winning states with Qwin := ∅.
3) Perform the following one-step controlled backward-reachability analysis:

B = {q ∈ Q|∃γ ∈ Γ : ∅ �= λ(q, γ ) ⊆ (QM ∩ D) ∪ Qwin}.
4) If B � Qwin, then update the winning states by Qwin := Qwin ∪ B and proceed with

Step 3. Else, proceed with Step 5.

5) If QM ∩ D � Qwin, then update the restriction by D := D ∩ Qwin and proceed with
Step 2. Else, terminate and report Qwin as the result.
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We provide some intuition on the above algorithm; see also Fig. 7. The inner loop over
Steps 2–4 begins with Qwin = ∅ to accumulate in Qwin states that can be controlled to
reach QM ∩ D within a finite number of steps. Since during the inner loop Qwin grows
monotonously and the reachability analysis in Step 3 is monotone in the iterate Qwin, finite-
ness of the state set Q implies that the termination condition B ⊆ Qwin is satisfied after
finitely many iterations. When proceeding with Step 5 for the first time, Qwin holds the
states that can be controlled to reachQM at least once and, until then, to remain withinQwin.
This is illustrated in Fig. 7 on the left, where the growth of Qwin occurs counter-clock-wise.
In the figure it is assumed that the top-most transition which does not go to the target QM
can be disabled by a suitable control pattern. As indicated in the figure, we cannot expect
QM ⊆ Qwin, i.e., so far there may be states Qwin that can indeed only be controlled to reach
QM once. Therefore, Step 5 restricts the effective target by letting D = Qwin. Repeating
the inner loop again results in a set of winning states, but now they can all be controlled to
reach QM at least twice. This is illustrated in Fig. 7 on the right, where the target has been
restricted accordingly. Repeating the outer loop by monotonicity leads to a strictly decreas-
ing restriction D and, by finiteness of Q, the termination condition must be satisfied after a
finite number of iterations. At termination in Step 5, any state q ∈ Qwin can be controlled
to reach QM ∩ D, and, by QM ∩ D ⊆ Qwin, can be controlled to do so infinitely often.

A supervisor can be obtained from the above algorithm by recording for all q ∈ Qwin an
arbitrary successful control pattern from Step 3 of the last run of the inner loop. Technically,
this defines a map g : Qwin → Γ . By past-inducedness of P×, each prefix s ∈ preBS

corresponds to exactly one state in P× which we denote λ0(s) ∈ Q. The supervisor f is
then defined for s ∈ W ∗ by f (s) = g(λ0(s)) if λ0(s) ∈ Qwin and, else, f (s) = γdummy ∈ Γ

with γdummy := ∪{γ ∈ Γ }. By construction, this supervisor preserves liveness in closed-
loop configuration with the abstraction PS (even if it was not an I/S/- machine) it was
designed for, and it conditionally enforces the specification once a prefix s ∈ preBS with
λ0(s) ∈ Qwin has been generated; i.e., we have

BS,f ⊆ {w ∈ WN0 |(∃s ∈ prew : λ0(s) ∈ Qwin) ⇒ w ∈ Bspec} (29)

for the closed-loop behaviour BS,f ; see Definition 11. Since the empty string ε ∈ prew
corresponds to the initial state q0 = λ0(ε), the right-hand-side of the above inclusion
collapses to Bspec if we have q0 ∈ Qwin. In this case, we indeed obtain a solution of
the control problem for the abstraction. This immediately carries over to the actual plant
P ∼= � = (N, W,B): the supervisor f preserves liveness in closed-loop configuration with
P by Proposition 10 and we obtain Bf ⊆ BS,f ⊆ Bspec as an immediate consequence of

Fig. 7 Synthesis algorithm: first iteration of inner loop (left) and fixpoint of outer loop (right)
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B ⊆ BS and Definition 11. If, on the other hand, q0 �∈ Qwin, it follows from the detailed
study by Thistle and Wonham (1994a, b) that the control problem has no solution for the
abstraction PS at hand. In this case, we interpret Qwin as an intermediate result which in an
overall synthesis approach can be used to guide a local refinement of the abstraction.

Example 5 (cont.) For the vehicle navigation example from the previous section, we con-
sider the specification to navigate the vehicle eventually to the north guard Gy n. This can
be expressed by a state machine Pspec with two states, where one is an accepting state and
indicates that y n has occurred at least once. For controller synthesis, we use the abstraction
PS obtained from the experiment S shown in Fig. 5. All states (z, χ) ∈ Q, for which z ∈
ZS = pre S includes a y n symbol, are immediately identified as winning states. Also, states
(z, χ) with z = 〈(u nw, y w)〉 turn out to be winning states, because one can apply the con-
trol pattern {(u ne, y)|y ∈ Y } to enforce that the winning state 〈(u nw, y w), (u ne, y n)〉 is
attained by the next transition. Likewise, the initial state is a winning state: by applying the
control pattern {(u nw, y)|y ∈ Y }we either have 〈(u nw, y n)〉 or 〈(u nw, y w)〉, both known
to be winning states by our previous observations. Thus, the supervisory control problem
can be solved based on the abstraction. In contrast, if the control objective was to eventu-
ally visit the west guard Gy w, the provided abstraction is too coarse for a positive result —
although intuition suggests that the actual plant can be very well controlled accordingly.

6 Guided refinements of experiments

We now consider the situation where abstraction-based synthesis of a supervisor as dis-
cussed in the previous section has failed, i.e., we are given a plant � = (N0,W,B) realised
by a I/S- machine P and an abstraction �S = (N0,W,BS) obtained from an experiment S
on B, but applying Algorithm 12 shows that q0 �∈ Qwin for the winning states Qwin ⊆ Q of
the composed state machine P× = (Q,W, λ, {q0}). Provided that we are optimistic about
the control problem with the actual plant to exhibit a solution, it is proposed to refine the
abstraction and to repeat the synthesis procedure. Referring to Moor and Raisch (1999)
and Moor et al. (2002), where the abstraction used is an l-complete approximation, i.e.,
S = B|[0,l] for some l ∈ N0, a refinement can be obtained by substituting l with l + 1.
Effectively, this uniformly extends the sampled sequences in length by one more symbol.
However, such an extension amounts to testing whether or not the extended sequence is in
preB, and this test is implemented as a one-step reachability analysis conducted on the orig-
inal system. Since this is considered computationally expensive, we seek to identify specific
sequences R ⊆ S that are worth the effort and use Eq. 7 to obtain a refinement of S tai-
lored for the synthesis task at hand. The overall abstraction-based approach then becomes
an iteration in which we alternate trial synthesis and abstraction refinement.

Algorithm 13 Iterative procedure to synthesise a supervisor for an I/S/− machine P =
(X, W, δ, X0), W = U × Y , X = X0, and a past-induced specification Pspec =
(Xspec, W, δspec, {xspec0}) with accepting states XspecM ⊆ Xspec.

1) Initialise the experiment S ⊆ W ∗ by S := B|[0,0], where B denotes the external
behaviour induced by P .

2) Referring to Theorem 7, set up PS to realise the abstraction obtained from S.

3) Run Algorithm 12 on the product P× = PS × Pspec to obtain the winning states Qwin.
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4) If the initial state q0 of P× is within Qwin, report the corresponding supervisor and
terminate the iteration.

5) Choose refinement candidates R ⊆ S to obtain a refinement by Eq. 7 to substitute S,
and proceed with Step 2.

In the case that the procedure terminates at Step 4, we refer to the discussion of the pre-
vious section and recall that the supervisor not only solves the synthesis problem for the
abstraction PS but also for the actual plant P . Otherwise, the experiment is refined in Step 5
for the subsequent trial synthesis. The proposed iteration may fail to terminate regardless
of the choice for the refinement in Step 5. This is to be expected: since the verification of
language inclusion is known to be only semi-decidable even for restricted classes of hybrid
systems, the synthesis problem cannot be decidable either. However, we will propose a
refinement scheme for Step 5 that ensures termination under the hypothesis of the exis-
tence of some experiment for which synthesis succeeds. We are now left to set up sensible
refinement candidates R to implement Step 5.

For our analysis, we inspect the composed system P× = (Q,W, λ, {q0}) := PS × Pspec,
with lifted marked states QM ⊆ Q for the specification acceptance condition and winning
states Qwin ⊆ Q obtained by the synthesis algorithm. A refinement obtained by extending
specific samples s ∈ S then corresponds to extending the transition relation λ at states
q = (z, χ) ∈ ZS × Xspec = Q with z = s. Hence, our inspection of P× focuses attention
on states in

Qleaf := {(z, χ) ∈ Q|z ∈ S}, (30)

and we will identify two classes of states that in turn characterise sequences s ∈ S that are
not worth a refinement. For our formal argument, we consider two more experiments S′ and
S′′ on B such that S ≤ S′ ≤ S′′. Here, we assume that S′′ is a successful refinement of S

in the sense that there exists a supervisor f ′′ such that the closed-loop BS′′,f ′′ satisfies the
specification. We then construct S′ to refine S in the same way as S′′ except for avoiding
refinement at a specific sequence s ∈ S, see Fig. 8. Technically, we let

S′ := {s} ∪ {r ∈ S′′|s ∩ (pre r) = ∅} (31)

Fig. 8 Intermediate experiment S′ with S ≤ S′ ≤ S′′ by not refining at s ∈ S. Both experiments S and S′′ are
shown as “barriers” (dark green) in the computational tree preB (light green). The intermediate experiment
S′ lies between S and S′′ and consists of (a) the sequence s and (b) all sequences r ∈ S′′ except for extensions
of s
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to observe that S′ is indeed an experiment on B and that S ≤ S′′ implies S ≤ S′ ≤ S′′. We
then show that S′ is also a successful refinement of S and thereby establish that the synthesis
problem can be solved without refinements at the previously identified sequence s ∈ S.

For the remainder of this section, we refer to the synthesis problems based on the exper-
iments S′ and S′′ by the same notational conventions as introduced for S, i.e., we denote
the associated abstractions �S′ = (N0, W,BS′) and �S′′ = (N0,W,BS′′), the realisa-
tions thereof PS′ = (ZS′ ,W, δS′ , {ε}) and PS′′ = (ZS′′ ,W, δS′′ , {ε}), the composed state
machines P ′× = (Q′,W, λ′, {q0}) and P ′′× = (Q′′, W, λ′′, {q0}), the lifted marked statesQ′

M
and Q′′

M, and the winning states Q′
win and Q′′

win as obtained by Algorithm 12, respectively.

6.1 Winning states

Once the abstraction �S has generated a finite sequence s that drives the composed state
machine P× to a winning state, there exists a supervisor that enforces the specification from
then on. Intuitively, for such states, no refinement is necessary.

For a formal argument, fix any z = s ∈ S ⊆ ZS such that

{(z, χ)|χ ∈ Xspec,s} ⊆ Qwin, (32)

where

Xspec,s := {χ ∈ Xspec|∃u ∈ W ∗ : 〈u, s〉 ∈ preBS, χ ∈ δspec(X0, 〈u, s〉)}. (33)

Recall that we have synthesised a supervisor f that enforces the conditional specifica-
tion (29) with BS as the plant. Moreover, by hypothesis, there exists a supervisor f ′′ for the
refined abstraction BS′′ such that the closed loop satisfies BS′′,f ′′ ⊆ Bspec. In order to estab-
lish the existence of a supervisor that enforces the specification for BS′ with the relaxed
refinement S′ in Eq. 31, we use the candidate f ′ : W ∗ → Γ defined by

f ′(r) :=
⎧⎨
⎩

f ′′(r) if r �= 〈u, s, t〉 for all u, t ∈ W ∗, or,
f (〈s, t〉) if r = 〈u, s, t〉 for some u, t ∈ W ∗

and u chosen to be of minimum length,
(34)

i.e., f ′ applies the same control patterns as f ′′ until the sequence s has been observed and,
from then on, behaves as f in ignorance of any symbols generated before s. The intuition
here is that if the closed loop formed by BS′ and f ′ happens to not generate s, then it evolves
within BS′′ and, hence, f ′′ enforces the specification. If, on the other hand, s is generated,
this corresponds to a winning state of P× and, hence, f enforces the specification. We
obtain the following lemma.

Lemma 14 Consider three experiments S ≤ S′ ≤ S′′ over the finite signal range W =
U × Y with the respective associated abstractions �S = (N0,W,BS), �S′ = (N0,W,BS′)
and �S′′ = (N0, W,BS′′), and with respective past-induced realisations PS , PS′ and PS′′
given by Theorem 7. Assume that S′ relates to S and S′′ as in Eq. 31 for some s ∈ W ∗ that
complies with Eq. 32. If there exists a supervisor f ′′ such that BS′′,f ′′ ⊆ Bspec, then there
also exists a supervisor f ′ such that BS′,f ′ ⊆ Bspec.

Proof We prove the existence by the candidate supervisor f ′ given in Eq. 34. To show
BS′,f ′ ⊆ Bspec, pick any w ∈ BS′,f ′ . We distinguish two cases.

First, assume that 〈u, s〉 �∈ prew for all u ∈ W ∗. We then have f (r) = f ′′(r) for all
r ∈ prew. Now pick arbitrary k ∈ N0 and refer tow ∈ BS′ for the choice of l ∈ N0 such that
(σ kw)|[0,l) ∈ S′. Here, the case hypothesis implies (σ kw)|[0,l) �= s and, hence (σ kw)|[0,l) ∈
S′′. Since k ∈ N0 was arbitrary, we obtain w ∈ BS′′ to conclude with w ∈ BS′′,f ′′ ⊆ Bspec.
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For the second case we pick the shortest sequence u ∈ W ∗ such that 〈u, s〉 ∈ prew. We
then have (σ |u|w)(k) = w(|u| + k) ∈ f ′(w|[0,|u|+k)) = f ((σ |u|w)|[0,k)) for all k ≥ |s|. By
w ∈ BS′,f ′ ⊆ BS there uniquely exist state trajectories z : N0 → ZS and x : N0 → Xspec
such that (w, (z, x)) is in the full behaviour induced by P×. In particular, we have that
x(|u| + |s|) ∈ Xspec,s . By time invariance, we obtain w′ := σkw ∈ σkBS ⊆ BS and denote
z′ : N0 → ZS the unique state trajectory such that (w′, z′) is in the full behaviour induced
by PS . Here, we observe that z′(|s|) = z = s. With x′ := σ |u|x, we obtain a state trajectory
(z′, x′) with ((z′(k), x′(k)),w′(k), (z′(k + 1), x′(k + 1)) ∈ λ for all k ∈ N0. By the choice
of s in Eq. 32, we observe (z′(|s|), x′(|s|)) ∈ Qwin and, referring to the case hypothesis,
we also have w′(k) ∈ f (w′|[0,k)) for all k > |s|. Therefore, there exist infinitely many
k > |s| such that (z′(k), x′(k)) ∈ QM and, hence, x(|u|+k) = x′(k) ∈ XspecM. This implies
w ∈ Bspec and concludes the proof of BS′,f ′ ⊆ Bspec.

6.2 Failing States

Denote Qfail ⊆ Qleaf the set of failing states, i.e., states from which the accepting states
QM are not reachable:

Qfail := {q ∈ Qleaf|λ(q,W+) ∩ QM = ∅}. (35)

Obviously, a state q ∈ Qfail cannot be a winning state and, intuitively, it cannot become a
winning state in any refinement. Therefore, a refinement at a failing state is not expected to
be relevant for any solution of the control problem.

For our formal argument, fix any z = s ∈ S ⊆ ZS with

{(z, χ)|χ ∈ Xspec,s} ⊆ Qfail (36)

where Xspec,s is defined in Eq. 33. By the following proposition, we associate with s a set
of failing states in the composed state machine P ′′× based on the refinement S′′.

Proposition 15 Consider two experiments S ≤ S′′ over W = U × Y with the respective
associated abstractions �S and �S′′ , and with the respective past-induced realisations PS

and PS′′ given by Theorem 7. Referring to the composed state machine P ′′× = PS′′ × Pspec,
let

Q′′
fail,s := {ξ ∈ Q′′|∃t ∈ W ∗, χ ∈ Xspec : ξ = (〈s, t〉, χ)} ⊆ ZS′′ × Xspec (37)

for some s ∈ W ∗ that complies with Eqs. 35 and 36. Then any trajectory (w′′, x′′) of the full
behaviour induced by P ′′× that passes Q′′

fail,s does not satisfy the specification, i.e., if there
exists k ∈ N0 with x(k) ∈ Q′′

fail,s then w �∈ Bspec.

Proof Consider a state ξ ∈ Q′′
fail,s , i.e., we have ξ = (〈s, t〉, χ) for some t ∈ W ∗ and some

χ ∈ Xspec. For a contradiction, assume that there exists a trajectory (w′′, x′′) from the full
behaviour induced by P ′′× that first passes ξ and thereafter passes Q′′

M. We can then find u,
v ∈ W ∗, v �= ε, such that 〈u, s, t, v〉 ∈ prew′′, λ′′

0(〈u, s, t〉) = ξ , and λ′′
0(〈u, s, t, v〉) ∈ Q′′

M.
We denote the respective specification components of the state χu = δspec,0(u), χus =
δspec,0(〈u, s〉), χust = δspec,0(〈u, s, t〉) = χ and χustv = δspec,0(〈u, s, t, v〉) ∈ XspecM. By
w′′ ∈ BS′′ ⊆ BS , we observe χus ∈ Xspec,s . By σkBS′′ ⊆ BS′′ ⊆ BS , for any k ∈ N0, we
conclude that w :=σ |u|w′′ ∈ BS . Hence, we can choose z : N0 → ZS such that (w, z) is
in the full behaviour induced by PS . Since the transition relation δspec is full, we can use w
to generate a state trajectory for any initial state. In particular, there exists x : N0 → Xspec
such that x(0) = χu, x(|s|) = χus , x(|s| + |t |) = χust , x(|s| + |t | + |v|) = χustv and
(x(k),w(k), x(k+1)) ∈ δspec for all k ∈ N0. Therefore, (z(|s|+|t |+|v|), x(|s|+|t |+|v|)) is
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reachable from (z(|s|), x(|s|)) by transitions from λ. We observe z(|s|) = s = z, and, hence
(z(|s|), x(|s|)) = (z, χus) ∈ Qfail. This constitutes a contradiction with x(|s| + |t | + |v|) =
χustv ∈ XspecM. Therefore, no trajectory (w′′, x′′) from the full behaviour induced by P ′′×
that passes ξ can pass Q′′

M thereafter.

Recall that, by hypothesis, there exists a supervisor f ′′ that when applied to �S′′ enforces
the specification, i.e., BS′′,f ′′ ⊆ Bspec. Now consider for some w′′ ∈ BS′′,f ′′ the unique state
trajectory x′′ such that (w′′, x′′) is in the full behaviour induced by P ′′×. We then conclude
by the above proposition that x′′ does not pass Q′′

fail,s . Inspecting the definition of Q′′
fail,s

and the relaxed refinement S′ in Eq. 31, this implies that f ′′ controls P ′′× such that the set of
reachable states is within ZS′ × Xspec ⊂ ZS′′ × Xspec This suggests that we may apply f ′′
to BS′ in order to obtain BS′,f ′′ = BS′′,f ′′ ⊆ Bspec. We provide a proof for this conjecture
and obtain the following lemma.

Lemma 16 Consider three experiments S ≤ S′ ≤ S′′ over the finite signal range W =
U × Y with the respective associated abstractions �S = (N0,W,BS), �S′ = (N0,W,BS′)
and �S′′ = (N0, W,BS′′), and with respective past-induced realisations PS , PS′ and PS′′
given by Theorem 7. Assume that S′ relates to S and S′′ as in Eq. 31 for some s ∈ W ∗ that
complies with Eqs. 35 and 36. Then BS′′,f ′′ ⊆ Bspec for a supervisor f ′′ implies BS′,f ′′ =
BS′′,f ′′ .

Proof For a preliminary observation, denote Ls := {r ∈ W ∗|s �∈ pre r} the set of all
sequences that do not pass s. We then have Q′ ⊂ Q′′ ⊂ Q′′

fail,s∪̇(Ls × Xspec). By Eq. 31,
we further obtain S′ ∩ Ls = S′′ ∩ Ls , and, referring to the realisations by Theorem 7,
δS′ ∩ (Ls × W × Ls) = δS′′ ∩ (Ls × W × Ls), and, hence, λ′ ∩ ((Ls × Xspec) × W × (Ls ×
Xspec)) = λ′′ ∩ ((Ls ×Xspec)×W × (Ls ×Xspec)). In other words, the realisations P ′× and
P ′′× coincide when restricting the respective state set to Ls × Xspec.

We always haveBS′′,f ′′ ⊆ BS′,f ′′ directly from Definition 11. For the converse inclusion,
pick any closed-loop trajectoryw′ ∈ BS′,f ′′ , and let x′ denote the unique corresponding state
trajectory such that (w′, x′) is in the full behaviour of P ′×. For a contradiction, assume that
there exists k ∈ N0 such that x′(k) �∈ Ls × Xspec and we pick the smallest such k. In partic-
ular, we have x′(k) ∈ Q′′

fail,s . Referring to the input-output structure and the corresponding
choice of control patterns, we can then construct a trajectory (w′′, x′′) in the full behaviour
of P ′′× such that x′′|[0,k] = x′|[0,k] and w′′ ∈ BS′′,f ′′ . However, by Proposition 15, we have
that x′′(k) ∈ Q′′

fail,s implies w′′ �∈ Bspec to constitute a contradiction to BS′′,f ′′ ⊆ Bspec.
Therefore, we have that x′(k) ∈ Ls × Xspec for all k ∈ N0. Then, (w′, x′) must be in the full
behaviour of P ′′× and, hence, w′ ∈ BS′′ . Together with w′ ∈ BS′,f ′′ this implies w′ ∈ BS′′,f ′′ .
By the arbitrary choice of w′ ∈ BS′,f ′′ , we conclude BS′,f ′′ ⊆ BS′′,f ′′ .

6.3 Main result

Considering the two classes of states identified above, we propose the refinement candidates

R = {s ∈ S|∃χ ∈ Xspec,s : (s, χ) �∈ Qfail ∩ Qwin} (38)

for Step 5 of Algorithm 13 and state our main result.

Theorem 17 Given a time invariant plant � = (N0,W,B), W = U × Y , realised by
an I/S/- machine P = (X,W, δ,X) with finite input range U and finite output range
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Y , consider the supervisory controller synthesis problem for a specification �spec =
(N0,W,Bspec) realised by a past-induced finite state machine Pspec = (Xspec,W, δ, Xspec0)

with Büchi acceptance condition XspecM ⊆ Xspec; see Eq. 28. Assume that there exists an
experiment S∗ ⊆ W ∗ on B with associated abstraction �S∗ = (N0,W, BS∗) and a super-
visor f∗ : W ∗ → Γ such that the closed-loop behaviour BS∗,f∗ obtained from BS∗ under
supervision f∗ satisfies the specification; i.e., BS∗,f∗ ⊆ Bspec. Then Algorithm 13 with
refinement candidates in Eq. 38 terminates with success after finitely many iterations.

Proof For a proof by contradiction, assume the algorithm does not terminate. Denote Sj ⊆
W ∗ the experiment in the j -th iteration with refinement candidates Rj ⊆ Sj identified by
Eq. 38. We then have that Sj ≤ Sj+1 and Sj �= Sj+1 for all j ∈ N0. This implies pre Sj �
pre Sj+1 for all j ∈ N0. Since the signal range is finite, we can choose a sufficiently large
j ∈ N0 such that (pre S∗) ∩ (pre Sj ) = (pre S∗) ∩ (pre Sj+1). This implies (pre S∗) ∩
Sj = (pre S∗) ∩ Sj+1. Referring to the general scheme of refinement Eq. 7, we obtain that
(pre S∗) ∩ Rj = ∅. We now construct one more experiment on B:

S′′ := {s ∈ S∗|(pre s) ∩ Sj �= ∅} ∪ {s ∈ Sj |(pre s) ∩ S∗ �= ∅}, (39)

such that S∗ ≤ S′′, Sj ≤ S′′ and Rj ⊆ S′′; see Fig. 9.
We denote the associated behaviour BS′′ , where S∗ ≤ S′′ implies BS′′ ⊆ BS∗ . Thus, we

can formally interpret BS∗ as a behavioural abstraction of BS′′ . In particular, the existence
of a solution to the control problem for �S∗ implies the existence of a solution for �S′′ =
(N0,W,BS′′). We now turn to the ordering Sj ≤ S′′. Since we have identified S′′ as a
successful experiment, Lemmata 14 and 16 grant the existence of a third experiment S′ such
that (a) Sj ≤ S′ ≤ S′′, (b) Sj − S′ ⊆ Rj and (c) the control problem exhibits a solution for
the abstraction �S′ = (N0,W,BS′) obtained from S′. By clause (b) and the construction of
S′′ we conclude Sj = S′. Hence, Sj itself must be a successful experiment. This constitutes
a contradiction and concludes the proof.

Note that the above theorem refers to the existence of a successful experiment S∗. How-
ever, S∗ does not need to be known explicitly in order to run Algorithm 13. In other words,

Fig. 9 Experiment S′′ with S∗ ≤ S′′ and Rj ⊆ S′′. All three experiments are again shown as “barriers” in
the computational tree preB. By construction, S′′ consists of (a) sequences from S∗ and (b) extensions of
sequences from S∗ within Sj . In particular, S′′ is a refinement of S∗. By our choice of a sufficiently large
j ∈ N0, all refinement candidates Rj ⊆ Sj must be on the right from S∗ and therefore, by construction,
within S′′
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we still have the expected situation of semi-decidability, but we also have the guarantee that
the algorithm terminates with success as long as a successful experiment exists.

Example 6 (cont.) Recall that for the vehicle navigation example the abstraction obtained
from S in Fig. 5 is too coarse for controller synthesis when the objective is to eventually visit
the west guard Gy w. The worst case for this control objective is an initial state at the very
east of the area A which requires a number of successive u nw and u sw control symbols,
where the exact number depends on the with-to-height ratio of the rectangular area. Using
a width of w = 30 units versus a height of h = 10 units, a thickness of o = 1 unit for the
guards, a nominal velocity of v = 10 and a disturbance of diameter d = 2, a numerical
simulation suggests that it can take up to 6 control inputs to reach the guard Gy w. Thus,
for a successful experiment we expect the longest sequences to be of length 6. On the other
hand, any sequence that contains a y w symbol corresponds to a set of winning states in P×
and, thus, needs no more refinement.

Running Algorithm 13 with refinement candidates (38) yields a successful experiment S
with 33262 sequences of length ranging from 1 to 6. We can also use the a-priori knowledge
that it makes no sense to apply the same input symbol twice in row and encode this in the
specification automation Pspec. Algorithm 13 then also encounters non-trivial sets of failing
states and constructs a successful experiment S with only 9020 sequences. Since a winning
state must be a predecessor of a winning state, we can prioritise our refinement candidates
(38) accordingly, i.e., we prefer to refine sequences in the experiment that correspond to a
state q = (z, χ) ∈ Q with a successor state in Qwin. This again reduces the number of
sequences constructed by Algorithm 13 to 164. All three figures compare favorable to the
strongest 5-complete approximation, which is constructed from the 59304 sequences found
in B|[0,5].

7 Conclusion

We have addressed a question arising in abstraction-based control of hybrid systems. More
specifically, the l-complete approximation scheme (Moor and Raisch 1999; Moor et al.
2002) provides a sequence of finite state abstractions Pl , l = 1, 2, . . . , for a (possibly infi-
nite state) system with discrete-valued external signals. Here, the parameter l corresponds
to the uniform length of finite sequences S ⊆ Wl+1 sampled from the external behaviour
of the hybrid plant when constructing the finite state abstraction. In this scheme, a refine-
ment amounts to incrementing the parameter l. Although the required number of samples
|S| in most applications is by orders of magnitude less than the worst case |W |l+1, it is still
exponential in l. In this paper, we have further developed the approach proposed by Moor
et al. (2006) in that we drop the requirement of a uniform length and consider so called
experiments S ⊆ W ∗, from which we construct the abstraction finite state machine PS . In
particular, this approach allows us to increase the length of the samples locally as required
for the specific synthesis task at hand. In order to identify the sequences that are worth the
effort of a refinement, we first apply the synthesis procedure provided by Thistle and Won-
ham (1994a, b) on the product P× := PS × Pspec, where Pspec realises the specification
which the supervisor is meant to enforce. If the procedure succeeds and returns a supervi-
sor to control PS , this supervisor is known to also enforce the specification when applied
to the hybrid plant. If, on the other hand, the control problem cannot be completely solved
for the abstraction PS , the procedure still establishes a conditional solution, i.e., a supervi-
sor that enforces the specification provided that the state trajectory passes through the set of
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so called winning states Qwin. Intuitively, sequences in S that correspond to winning states
do not need to be increased in length. In contrast to the winning states, we also identify a
set of failing states Qfail, i.e., states such that any trajectory that passes through is known
to violate the specification under any supervisor. Again, sequences in S that correspond to
failing states do not need to be increased in length. To this end, we refine the abstraction S

by increasing the sample length only for sequences that correspond neither to winning states
nor to failing states to obtain the locally refined experiment S′ with associated abstraction
PS′ . Iterating abstraction refinement and trial synthesis, we obtain a sequence of experi-
ments Sj , j = 1, 2, . . .. By our main technical result, this iteration will not miss out on
solutions to the control problem: if there exists an experiment such that the control prob-
lem can be solved based on the associated abstraction, then the iteration will also produce a
successful experiment Sj for some j ∈ N.
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