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Abstract— In this paper, a hierarchical and decentralized ap-
proach for composite discrete-event systems (DES) that have to
fulfill multiple tasks is elaborated. Colored marking generators
that can distinguish classes of tasks are used as the system
model, and a colored abstraction procedure as well as sufficient
conditions for nonblocking and hierarchically consistent control
are developed. It is shown that the computational complexity
for supervisor computation is reduced. A flexible manufacturing
system example demonstrates the efficiency of the approach.

I. INTRODUCTION

The supervisory control theory (SCT) introduced in [1]
addresses the control of discrete-event systems (DES) that are
modeled by a generator, whose marked states represent the
completion of some control objective (task). Given an admis-
sible system behavior represented by a language, a minimally
restrictive supervisor can be computed algorithmically. This
supervisor is designed to restrict the plant behavior such that
it respects the admissible language, and ensures nonblock-
ing behavior with respect to the marked states. While the
admissible language can be viewed as a safety specification
(ensuring that nothing ”bad” happens), nonblocking can be
understood as a liveness specification, which ensures that the
supervisor will not prevent the completion of a task (some-
thing good can happen). As situations where the liveness of
multiple tasks is desired are common, the SCT framework
has been extended to incorporate multiple tasks in [2].
Colored marking generators (CMGs) are introduced for the
synthesis of a minimally restrictive supervisor that respects
the admissible behavior and ensures the liveness of multiple
tasks. Modular control in this framework is addressed in [3],
where also a composition operation for CMGs is deduced
from the synchronous composition operation for generators.

Although local supervisors for modular specifications and
composite plants can be synthesized very efficiently using the
modular approach, the resulting overall system need not be
nonblocking. In the worst case, the nonblocking verification,
and the synthesis of a coordinator to resolve possible con-
flicts can still require the compositon of the overall system
model. Since this can again lead to exponential growth of
the system state space, the use of hierarchical control ideas
for multitasking DES is proposed in this paper.

Several hierarchical control approaches have been devel-
oped in recent years [4], [5], [6], [7], [8], [9], [10]. The
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approaches in [4], [5], [6], [7], [8], [9] employ the natural
projection for hierarchical abstraction, and adopt the control-
lability properties of the low-level events for the high-level
events. This allows for the application of standard supervi-
sory control algorithms also for the high-level control, while
it is possible that minimal restrictivness does not necessarily
hold because of the choice of the high-level controllability
properties.1 A more powerful high-level control structure is
introduced in [10] in order to guarantee strong hierarchical
consistency. However, standard supervisory control cannot
be applied for the high-level control, and the compositional
property of system models is no longer valid.

In this paper, systems that are composed of different
subsystems, and whose desired behavior involves multiple
system tasks are considered. In order to use the system
structure efficiently, multitasking control [2] is extended with
hierarchical control ideas [4], [7], [8], [9] that preserve the
compositional property. To this end, a multitasking version of
the natural projection is defined, and sufficient conditions for
nonblocking control are established for the resulting hierar-
chical and decentralized control architecture for multitasking
DES.

The outline of the paper is as follows. Basic definitions
are provided in Section II. Section III states the hierarchical
control architecture for multitasking control and provides
nonblocking control results. The method is illustrated by a
detailed example in Section IV, and conslusions are given in
Section V.

II. PRELIMINARIES

A. Multitasking Discrete-Event Systems

For a multitasking discrete-event system (MTDES), a
color (label) can be associated to each class of task. Let
Σ be the set of all events that can occur in the system and C
be the set of all colors. Let Σ∗ be the set of all finite strings
of elements in Σ, including the empty string ε. A language L
is a subset of Σ∗. L represents the prefix closure of L. Each
color c ∈ C is assigned to a language Lc ∈ Pwr(Σ∗) (power
set of Σ∗) that represents the set of all sequences of events
in Σ that can complete a task of the respective class. Thus,
the colored behavior of a MTDES can be modeled by the set
ΛC ∈ Pwr(Pwr(Σ∗)×C) given by ΛC := {(Lc, c)|c ∈ C}.

For a colored behavior ΛC , the language marked by c ∈ C
is defined by Lc(ΛC) := L such that (L, c) ∈ ΛC . The
language marked by B ⊆ C is defined by LB(ΛC) :=⋃

b∈B Lb(ΛC).

1Additional conditions to circumvent this issue are stated in [7], [8].

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

FrC04.6

1-4244-1498-9/07/$25.00 ©2007 IEEE. 5936



For MB1 ∈ Pwr(Pwr(Σ∗
1) × B1) and NB2 ∈

Pwr(Pwr(Σ∗
2) × B2), MB1 ⊆ NB2 if B1 ⊆ B2 and

∀b ∈ B1, Lb(MB1) ⊆ Lb(NB2).
The synchronous composition of MB1 and NB2 is

MB1 ||NB2 := {(Lb(MB1)||Lb(NB2), b), ∀b ∈ B1 ∩ B2}
∪ {(Lb(MB1)||LB2(NB2), b), ∀b ∈ B1 − B2}
∪ {(LB1(MB1)||Lb(NB2), b), ∀b ∈ B2 − B1}.

An MTDES can be modeled by a Moore automaton,
whose outputs, represented by subsets of colors, define the
classes of tasks that are completed after the corresponding
strings. Such a colored marking generator (CMG), is for-
mally defined by a 6-tuple G = (Q, Σ, C, δ, χ, q0), where Q
is a set of states; Σ is a set of events; C is a set of colors;
δ : Q × Σ → Q is a transition function; χ : Q → Pwr(C)
is a marking function; q0 is the initial state.

For a CMG G, the eligible event function Γ : Q →
Pwr(Σ) associates each state q ∈ Q to a subset of Σ with
all events that can occur in q. In order to extend δ to a
partial function on Q × Σ∗, recursively let δ(q, ε) = q and
δ(q, sσ) = δ(δ(q, s), σ), whenever both q′ = δ(q, s) and
δ(q′, σ) are defined. The generated language L(G) := {s ∈
Σ∗|δ(q0, s) is defined} of G, is the set of all finite event
strings that can be reached from the initial state q0.

The language marked by c ∈ C, is given by Lc(G) :=
{s ∈ L(G)|c ∈ χ(δ(q0, s))}. For the color set B, ∅ ⊂ B ⊆
C, the language marked by B is defined by LB(G) := {s ∈
L(G)|B∩χ(δ(q0, s)) 	= ∅}. The colored behavior of a CMG
G is given by ΛC(G) := {(Lc(G), c)|c ∈ C}.

A formal definition of the synchronous composition
G1||G2 of two CMGs G1 and G2 is given in [2]. Note
that L(G1||G2) = L(G1)||L(G2) and ΛC(G1||G2) =
ΛC(G1)||ΛC(G2).

Given a nonempty subset of colors B, a CMG G is
strongly nonblocking w.r.t. B, if ∀b ∈ B, L(G) = Lb(G),
that is, if any generated string can be completed (not neces-
sarily in the same way) to a task of all the classes represented
by colors of B. A colored behavior ΛC ∈ Pwr(Pwr(Σ∗)×
C) is strongly nonblocking w.r.t. B ⊆ C when ∀b ∈ B,
Lb(ΛC) = LC(ΛC). Furthermore, it is shown in [2] that the
maximal strongly nonblocking behavior SupSNB(ΛC , B)
contained in ΛC for a color set B ⊆ C exists.

B. Multitasking Supervisory Control

Let a MTDES be modeled by a colored marking generator
G = (Q, Σ, C, δ, χ, q0), with eligible event function Γ,
whose alphabet is partitioned into controllable events Σc

and uncontrollable events Σu. Let D be a set of important
tasks for which liveness (strong nonblocking) is required.
Let the specification be given by a colored behavior AD ∈
Pwr(Pwr(Σ∗)×D) such that ∀d ∈ D∩C, ∅ ⊂ Ld(AD) ⊆
Ld(G), and ∀d ∈ E := D − C, ∅ ⊂ Ld(AD) ⊆ L(G).

A coloring supervisor S : L(G) → Pwr(Σ) × Pwr(E)
is a mapping that associates to each sequence of events of
the plant a set of enabled events and a set of new colors (of
E) representing completed tasks.

For S(s) = (γ, µ), let R(S(s)) = γ and I(S(s)) = µ.
The events that can occur in S/G after the occurrence of a
string s ∈ L(G) are given by R(S(s))∩Γ(δ(q0, s)). A string
s ∈ L(S/G) is marked by a color c ∈ C if s ∈ Lc(G) or
by a color e ∈ E if e ∈ I(S(s)). A coloring supervisor S is
admissible if ∀s ∈ L(G), Σu ∩ Γ(δ(q0, s)) ⊆ R(S(s)).

A supervisor S is strongly nonblocking w.r.t D if ∀d ∈ D,
Ld(S/G) = L(S/G).

Theorem 1 ([2]): Necessary and sufficient conditions for
the existence of an admissible coloring supervisor S strongly
nonblocking w.r.t. D such that ΛD(S/G) = AD and
L(S/G) = LD(AD) are:

1) controllability: LD(AD)Σu ∩ L(G) ⊆ LD(AD);
2) D-closure: ∀d ∈ (D∩C), Ld(AD) = Ld(AD)∩Ld(G);
3) strong nonblocking of AD w.r.t. D.
In [2], it is also proven that the supremal controllable

and strongly nonblocking colored behavior contained in
AD, named SupCSNB(AD, G, D), can be computed with
complexity polynomial in the number of states of the model.

Remark 1: Note that the standard Ramadge/Wonham su-
pervisory control theory as introduced in [1] can be described
as a special case of the multitasking supervisory control
by allowing for CMGs G with only one color, and by
requiring an empty color set E of the supervisor S. In that
case, G is a finite automaton with the marked language
Lm(G), the supervisor is a map S : L(G) → Pwr(Σ),
and the supremal controllable and nonblocking sublanguage
SupCNB(Lm(G), K) can be computed for K ⊆ Lm(G).

C. Hierarchical and Decentralized Control

In the next section, hierarchical and decentralized mul-
titasking control is introduced. As the hierarchical con-
trol ideas are based on results formulated in the Ra-
madge/Wonham supervisory control framework, the original
hierarchical and decentralized control approach as introduced
in [4], and extended in [6], [7], [8], [9], is described first.

As a system model, composite DES represented by finite
automata Gi, i = 1, . . . , n, over the corresponding alphabets
Σi = Σi,u∪̇Σi,c are used. Here, Σi,u and Σi,c denote the
uncontrollable and the controllable events, respectively. It
is assumed that each subsystem shares the events Σi,s :=⋃n

k=1,k �=i(Σi∩Σk) with other subsystems. The global set of
shared events is thus given by Σs =

⋃n
i=1 Σi,s.

The overall system model is G := ‖n
i=1Gi over the

alphabet Σ :=
⋃n

i=1 Σi. Moreover, it is required that the
components that share an event agree on the control status
of this event, i.e. ∀i, k, i 	= k, Σi,u ∩ Σk,c = ∅. Under this
hypothesis, it holds that Σu =

⋃n
i=1 Σi,u and Σc =

⋃
i Σi,c.

The suggested hierarchical and decentralized control ap-
proach as introduced in [4], respects the composite system
structure in both the abstraction process and the low-level
supervisor implementation (see Figure 1).

For hierarchical abstraction, an alphabet Σ0 ⊆ Σ is chosen
that contains the shared events, i.e. Σs ⊆ Σ0. Using the
natural projection p0 : Σ∗ → Σ∗

0, the high-level plant
is defined as a finite automaton G0 over Σ0 such that
L(G0) = p0(L(G)) and Lm(G0) = p0(Lm(G)). The choice
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Fig. 1. Hierarchical and decentralized control architecture

of Σs ⊆ Σ0 facilitates the computation of G0. High-level
subsystems Gi,0 can be defined using the alphabets Σi,0 :=
Σi ∩ Σ0 and the natural projections pΣi→Σi,0 : Σ∗

i → Σ∗
i,0,

i = 1, . . . , n such that L(Gi,0) = pΣi→Σi,0(L(Gi)) and
Lm(Gi,0) = pΣi→Σi,0 (Lm(Gi)). Then, the high-level plant
can be computed as follows.

Lemma 1 (High Level Plant [4]): Assume the notation
from above with Σs ⊆ Σ0. Then

L(G0) = p0(||ni=1L(Gi)) = ||ni=1L(Gi,0)
Lm(G0) = p0(||ni=1Lm(Gi)) = ||ni=1Lm(Gi,0).

Adopting the controllability properties from the low level,
i.e. Σu,0 := Σu ∩ Σ0 and Σc,0 := Σc ∩ Σ0, the high-
level plant is again given as a finite automaton in the
Ramadge/Wonham framework. Supervisory control for a
specification K ⊆ Lm(G0) can be applied to determine a
nonblocking high-level supervisor S0 : L(G0) → Pwr(Σ0)
such that Lm(S0/G0) = SupCNB(Lm(G0), K).

The control action of the high-level supervisor S0 is then
implemented by the low-level supervisor S : Σ∗ → Pwr(Σ)
such that for any s ∈ L(G), S(s) = S0(p0(s)) ∪ (Σ −
Σ0). Consequently, each low-level subsystem Gi observes
the control action S(s) ∩ Σi as depicted in Figure 1.

Using this control architecture, hierarchical consistency
is already guaranteed, i.e. it holds that p0(L(S/G)) =
L(S0/G0) [4]. To ensure nonblocking control, additional
conditions are required. In this paper, the observer condition
as introduced in [11] is employed as a sufficient condition
for nonblocking control according to [7], [8], [9].

Definition 1 (Observer): Let L′ ⊆ L ⊆ Σ∗ be languages
and let p0 : Σ∗ → Σ∗

0 be the natural projection for Σ0 ⊆ Σ.
p0 is an L′-observer (w.r.t. L) iff for all s ∈ L and t ∈ Σ∗

0

p0(s)t ∈ p0(L′) ⇒ ∃u ∈ Σ∗ s.t. su ∈ L′ ∧ p0(su) = p0(s)t.
The described control architecture where pΣi→Σi,0 is an

Lm(Gi)-observer for i = 1, . . . , n is nonblocking.
Theorem 2 (Nonblocking Control): Let Gi and Gi,0, i =

1, . . . , n, and S0 and S be given as above. If pΣi→Σi,0 is an
Lm(Gi)-observer (w.r.t. L(Gi)) for i = 1, . . . , n, then
(i) p0 is an Lm(G)-observer (w.r.t. L(G)) [12],

(ii) the closed loop is nonblocking: Lm(S/G) = L(S/G).

The approach is computationally efficient as the composi-
tion of the overall low-level plant is avoided by composing
only the smaller high-level subsystems. Note that the high-
level system has indeed a smaller state space than the low-
level plant, as the observer property implies that the minimal
generator for p0(L(G)) has maximally as many states as
the minimal generator for L(G), [13]. Additionally, [14]
provides a method to determine the high-level alphabets Σi,0

such that each pΣi→Σi,0 is an Lm(Gi)-observer. Also observe
that the high-level closed-loop is again a finite automaton that
can be used as the low-level model for further hierarchical
abstraction in a multi-level hierarchy.

III. MULTITASKING HIERARCHICAL AND

DECENTRALIZED CONTROL

The computational efficiency of hierarchical and decen-
tralized control, and the ability to specify multiple control
objectives is now combined in a hierarchical and decentral-
ized control architecture for multitasking supervisory control.
Analogous to Section II-C, it is assumed that the low-level
plant is given as a set Gi, i = 1, . . . , n of colored marking
generators with the respective color set Ci, and the overall
plant is G = ||ni=1Gi with the color set C :=

⋃n
i=1 Ci.

First, the natural projection p0 is extended to colored
behaviors ΛC .

Definition 2 (Colored Natural Projection): Let ΛC ∈
Pwr(Pwr(Σ∗) × C) be a colored behavior, and assume
Σ0 ⊆ Σ with the natural projection p0 : Σ∗ → Σ∗

0. The
colored natural projection m0 : Pwr(Pwr(Σ∗) × C) →
Pwr(Pwr(Σ∗

0) × C) is defined such that

Lc(m0(ΛC)) = p0(Lc(ΛC)), for all c ∈ C.

Accordingly, the colored natural projections mΣi→Σi,0

are defined, and the high-level subsystems evaluate to Gi,0,
i = 1, . . . , n, where L(Gi,0) = pΣi→Σi,0(L(Gi)) and
ΛC(Gi,0) = mΣi→Σi,0(ΛC(Gi)).

Using the colored natural projection in Definition 2 with
Σs ⊆ Σ0, the high-level plant G0 such that L(G0) =
p0(L(G)) and ΛC(G0) = m0(ΛC(G)), can again be com-
puted by composing the high-level subsystems.

Lemma 2: Assume the notation from above with Σs ⊆
Σ0. Then

L(G0) = p0(||ni=1L(Gi)) = ||ni=1L(Gi,0)
ΛC(G0) = m0(||ni=1ΛC(Gi)) = ||ni=1ΛC(Gi,0)

According to Lemma 2, the high-level colored marking
generator G0 can be computed as shown in Figure 1. Given
a coloring behavior AD ∈ Pwr(Pwr(Σ∗

0) × D) as a high-
level specification, a coloring supervisor S0 : L(G0) →
Pwr(Σ0)×Pwr(E) with E = D−C can be computed such
that S0 realizes SupCSNB(AD, G0, D). Different from the
low-level implementation in Section II-C, the set of new
colors E introduced by S0 has to be considered. The control
action of the low-level supervisor S : L(G) → Pwr(Σ) ×
Pwr(E) is thus defined for each s ∈ L(G) as

S(s) :=
(
S0(p0(s)) ∪ (Σ − Σ0), I(S0(p0(s)))

)
. (1)
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The control action after a string s ∈ L(G) observed by
each subsystem is then

(R(S(s)) ∩ Σi, I(S(s)) ∩ (Ci ∪ E)
)
.

As hierarchical consistency does not depend on coloring,
and the supervisor implementation without coloring R(S) is
equivalent to the standard implementation in Section II-C,
hierarchical consistency also follows for the supervisors S
and S0 in this section, i.e. p0(L(S/G)) = L(S0/G0).

To address strongly nonblocking control for the proposed
control architecture, an analogous condition to the observer
condition is required. The extension of the Lm(G)-observer
to the colored case replaces the marked language Lm(G)
with the colored behavior ΛC(G), and the natural projection
p0 by the colored natural projection m0.

Definition 3 (Colored Observer): Let L ⊆ Σ∗ be a lan-
guage and let ΛC ∈ Pwr(Pwr(Σ∗) × C) be a coloring
behavior with LC(ΛC) ⊆ L. Also let p0 : Σ∗ → Σ∗

0 be
the natural projection, and m0 : Pwr(Pwr(Σ∗) × C) →
Pwr(Pwr(Σ∗

0) × C) be the colored natural projection for
Σ0 ⊆ Σ. m0 is a ΛC -observer (w.r.t. L) iff for each c ∈ C,
p0 is an Lc(ΛC)-observer (w.r.t. L).

Requiring that mΣi→Σi,0 is a ΛC(Gi)-observer for i =
1, . . . , n is sufficient for strongly nonblocking control.2

Theorem 3: Assume that Gi, Gi,0, and mΣi→Σi,0 , i =
1, . . . , n are defined as above. Also let S0 be a strongly
nonblocking coloring high-level supervisor with a low-level
supervisor S as in Equation (1). If mΣi→Σi,0 is a ΛC(Gi)-
observer (w.r.t. L(Gi)) for all i = 1, . . . , n, then the overall
closed loop is strongly nonblocking, i.e., for all c ∈ C

Lc(S/G) = L(S/G).
Note that the polynomial time algorithm to determine

the alphabets for the hierarchical abstraction in [14] can be
extended to the case with colored marking. This also implies
that again, the high-level CMG G0 never has a larger state
space than the low-level CMG G.

IV. FLEXIBLE MANUFACTURING SYSTEM EXAMPLE

The hypothetical Flexible Manufacturing System (FMS)
in Figure 2 as introduced in [2] is studied. It generates two
types of products from raw blocks and raw pegs: a block
with a conical pin (Product A) and a block with a cylindrical
painted pin (Product B). The FMS consists of eight devices:
three conveyors C1, C2 and C3, a Mill (M), a Lathe (L),
a Robot (R), a Painting Device (PD), and an Assembly
Machine (AM). The devices are connected through buffers
Bi, i = 1, . . . , 8, with capacity for one part. The arrows in
Figure 2 indicate the flow of unfinished parts through the
FMS. Raw blocks enter C1 and reach B1. Raw pegs enter
C2 and arrive in B2. The Robot picks a raw block from B1
and places it into B3 or moves raw pegs from B2 to B4.
The Mill starts processing a block from B3 and returns a
geometrically shaped part with a hole on top. The Lathe can
make two types of pins with the peg from B4: a conical
pin or a cylindrical pin. Then the Robot moves a finished

2A proof of this theorem is provided in [15].

block from B3 to B5, moves a conical pin from B4 to B6
or moves a cylindrical pin from B4 to B7. C3 transports
the pin from B7 to B8, where it is painted, and takes it
back to B7. Finally, the AM creates a Product A (Product
B) by assembling a block from B5 and a conical pin from
B6 (cylindrical pin from B7).

,
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Fig. 2. Flexible Manufacturing System (FMS)

The open-loop behavior of the FMS is modeled by the
set of eight asynchronous CMGs in Figure 3, where the
controllable events are marked with ticks. The manufacture
of one Product A and of one Product B is respectively
indicated by the tasks a and b in the model for the AM.

GC1

GC2

GC3
GL
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GPD

GAM
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b3m

mb3
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b7am

pa

pb

b7c3

c3b7

c3b8

b8c3

b8pd

pdb8

a

b

Fig. 3. Flexible Manufacturing System (FMS)

Each restriction can be modularly expressed by a generic
specification, which is a colored behavior defined on a
particular subset of events from the global alphabet of
the composite plant. The generic specifications MBi, i =
1, . . . , 8 for avoiding overflow and underflow in the buffers
Bi, i = 1, . . . , 8, respectively, are generated by the CMGs in
Figure 4. The tasks e1 and e2 in MB1 and MB2 specify that
the buffers B1 and B2 always have to be able to reach the
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empty state. MB3 and MB4 state that simultaneous operation
of the Lathe and the Mill is always possible (states with color
o), and both buffers can always become empty (colors e3 and
e4). Finally, the task e indicates that the buffers B7 and B8
can reach their empty state simultaneously, while no pin is
either in PD or in C3. The synchronous composition M :=
||8i=1MBi of all generic specifications has the color set E =
{e1, e2, e3, e4, o, e}. The global specification is then obtained
from AD = ΛC(M)||ΛC(G). Therefore, in order to respect
all the specifications defined in Section II, the controlled
system must respect AD, and be strongly nonblocking with
respect to the color set D = {a, b, e1, e2, e3, e4, o, e}.

MB1

MB2

MB3

MB4

MB5 MB6MB7

MB8

c1b1
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b2r

b3m mb3

b3r

rb3
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b8c3

b8pd pdb8
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e3

e4

o
o

o

o

o

e
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Fig. 4. Buffer specifications for the FMS

The synchronous composition of the eight CMG leads to
a CMG G = (Q, Σ, C, δ, χ, q0) with 3456 states and color
set C = {a, b}, and it has been shown in [2] that the optimal
colored behavior SupCSNB(AD, G, D) can be guaranteed
by a monolithic supervisor with 45504 states.

In order to reduce the computational effort as well as the
size of the supervisor, the hierarchical and decentralized
approach in Section III is applied. First, the part of the
plant that corresponds to the buffer specifications MBi,
i = 5, . . . , 8 is considered. Local supervisors are computed
using monolithic multitasking supervisory control: for
example, G5 represents the resulting closed-loop behavior
from SupCSNB(ΛC(GAM||GR||MB5), GAM||GR, {})
for the subsystem GAM||GR and the specification
ΛC(GAM||GR||MB5). The remaining subsystems with
their respective specifications are summarized in Table I.

TABLE I

SUBSYSTEMS Gi , i = 5, . . . , 8 OF THE FMS

closed loop subsystem specification
G5 GAM||GR ΛC(GAM||GR||MB5)
G6 GAM||GR ΛC(GAM||GR||MB6)
G7 GC3||GAM||GR ΛC(GC3||GAM||GR||MB7)
G8 GC3||GPD ΛC(GC3||GPD||MB8)

The subsystems Gi, i = 5, . . . , 8 fulfill the respective
local buffer specifications (the automata representations of
the corresponding reduced supervisors Ri, i = 5, . . . , 8 are

shown in Figure 7). However, it is not guaranteed that the
joint behavior of these subsystems is strongly nonblocking.
The possibly blocking behavior is now resolved using the
hierarchical approach in Section III, where the closed-loop
subsystems Gi, i = 5, . . . , 8 serve as the low-level models.
The computation of the high-level plant G0 involves the
high-level alphabet Σ0 = ΣR ∪ ΣC3 ∪ ΣAM and the color
set C0 = {e, a, b}. Note that Σ0 contains the shared events
between the different subsystems according to Lemma 2, and
that it can be verified that the colored natural projection on
Σ0 fulfills the colored observer property in Definition 3.

In the next step, a strongly nonblocking supervisor S0

is synthesized for SupSNB(ΛC(G0), C0). The automata
representation R0 of the corresponding reduced supervisor
is shown in Figure 7. With the result in Theorem 3, the low-
level implementation of S0 guarantees strongly nonblock-
ing system behavior. The hierarchical control architecture
including the intermediate subsystem abstractions Gi,0, i =
5, . . . , 8 is depicted in Figure 5, where each CMG is shown
with its respective state count. Note that the supervisor S0

just acts on the subsystems Gi, i = 5, . . . , 8.
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128
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44 44 128 4
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Fig. 5. Hierarchical Structure for the subsystems Gi, i = 5, . . . , 8

The resulting closed-loop CMG S0/G0 can now be used
for further controller synthesis to address possible conflict of
this subsystem with the part of the FMS that has not been
considered so far. To this end, G9 := S0/G0 is defined, and
the subsystems Gi, i = 1, . . . , 4 are computed as closed-
loop CMGs for the respective buffer specifications MBi,
i = 1, . . . , 4 as shown in Table II. Thus, the low-level model
consists of Gi, i = 1, . . . , 4, 9 (see Figure 6). Hierarchical
abstraction is performed with the alphabet Σ̂0 = ΣR∪ {c1b1,

c2b2, b3m, b4lcy, b4lco, b5am, b6am, a, b, c3b7} which is
chosen such that the shared events of the subsystems (events
of the robot ΣR) are contained in Σ̂0, and such that the
colored natural projection mΣi→Σi,0 is a ΛC(Gi)-observer
for i = 1, . . . , 4, 9. It could be verified that the high-level
model Ĝ0 in Figure 6 is already strongly nonblocking, which
implies that the overall closed-loop flexible manufacturing
system is strongly nonblocking according to Theorem 3
without introducing an additional supervisor for Ĝ0.
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TABLE II

SUBSYSTEMS Gi , i = 1, . . . , 4 OF THE FMS

closed loop subsystem specification
G1 GC1||GR ΛC(GC1||GR||MB1)
G2 GC2||GR ΛC(GC2||GR||MB2)
G3 GM||GR ΛC(GM||GR||MB3)
G4 GL||GR ΛC(GL||GR||MB4)

G1 G2 G3 G4

G1,0 G2,0 G3,0 G4,0

||

Ĝ0

G9

G9,0

18 18 18 21

12 12 13 15

3996

400

185

Fig. 6. Hierarchical Structure for the subsystems Gi, i = 1, . . . , 4, 9

Together, 9 supervisors with a maximal state count of 5
were computed. The CMG models involved in the computa-
tion are not larger than 3996 states (see Figure 6) compared
to 45504 states and 70272 states in [2], [3]. Note that it can
be verified that the supervisors in this paper are equivalent to
the supervisors in the previous work, and that the supervisor
S0 that had to be deduced from the problem formulation in
[3] could be computed systematically in this paper. It is also
interesting to note that the high-level model in Figure 6 can
be further abstracted on the alphabet Σ′

0 = {b4lcy, b4lco,

b4rco, b4rcy, rb4, b3r, c1b1, c2b2, b1r, b2r, rb3, b7am, b6am,

a, b, c3b7} to a CMG G′
0 with 2352 states. This CMG could

serve as a model of the FMS that is surrounded by other
components in a larger manufacturing system.
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Fig. 7. Reduced Supervisors for the FMS

V. CONCLUSIONS

In this paper, a hierarchical control approach for DES
has been combined with multitasking supervisory control in
order to reduce the computational complexity of supervisor
synthesis. A multitasking version of the natural projection as
well as the observer property are employed in the abstraction
process such that the resulting hierarchical control architec-
ture is hierarchically consistent and strongly nonblocking.
The result of the supervisor computation is a set of decen-
tralized supervisors that reside on a small state space, and
the efficiency of the approach was illustrated by a flexible
manufacturing example. Note that although the supervisor for
the example system is equivalent to a monolithic supervisor,
maximal permissiveness is not guaranteed by our approach.
This issue will be addressed in future work. Furthermore,
the use of more general hierarchical models in terms of the
control structure and the actions of the low-level supervisor
will be considered, and the application of different methods,
e.g. local modular control, for the high-level supervisor
synthesis will be investigated.
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