Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Regelungstechnik Prof. Dr.-Ing. G. Roppenecker Prof. Dr.-Ing. Th. Moor

Methods of Supervisory Control: A Software Implementation

Als Master Thesis vorgelegt von

Bernd Opitz

Betreuer: Betreuer: Dr.-Ing. Klaus Schmidt Prof. Dr.-Ing. Th. Moor Abgabedatum: 20.12.2005

Ausgabedatum: 20.06.2005

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, den 20.12.05

(Bernd Opitz)

Contents

1	Introduction					
2	Basics of Supervisory Control of Discrete Event Systems					
	2.1	Regula	ar Languages and Finite Automata	7		
	2.2	Super	visory Control Theory	10		
3	Automaton Data Model					
	3.1	Introduction of Abstract Automata Models				
		3.1.1	Linked List Model	16		
		3.1.2	Set Based Model	17		
	3.2	Evalua	ation of Data Models	19		
		3.2.1	Parallel Composition Method	20		
		3.2.2	Language Projection Method	25		
		3.2.3	Data Model Evaluation by Subset Construction	29		
		3.2.4	Computational Complexity of Important Data Access Patterns	36		
		3.2.5	Conclusion	40		
	3.3	Basic Automaton Implementation				
		3.3.1	Automaton Model Specification	41		
		3.3.2	Abstract Data Types	48		
		3.3.3	Basic Generator Class Implementation	54		
4	Algorithms for Regular Languages and Finite Automata					
	4.1	Language Operations				
		4.1.1	Parallel Composition	62		
		4.1.2	Projection	64		

		4.1.3	Inverse Projection	66			
	4.2	Auton	nata Operations	67			
		4.2.1	Accessible	67			
		4.2.2	Coaccessible	68			
		4.2.3	Trim	70			
		4.2.4	Determine	71			
		4.2.5	State Space Minimization	75			
5	Automaton Extension and Algorithms for Supervisory Control						
	5.1	Introd	uction of Events Properties	79			
	5.2	Contro	ollable Generator Class Implementation	81			
	5.3	Nonblocking Supremal Controllable Sublanguage					
	5.4	Contro	ollability	87			
6	Algorithms for Nonblocking Hierarchical Control						
	6.1	Verific	ation of Marked String Acceptance	92			
	6.2	Verific	ation of the Locally Nonblocking Condition	94			
7	Con	onclusions and Outlook					
Bi	bliog	raphy		103			
A	Additional Methods						
	A.1	Algori	thms for Nonblocking Hierarchical Control	107			
		A.1.1	Verification of Liveness	107			
		A.1.2	Verification of Marked String Controllability	108			
		A.1.3	Verification of Mutual Controllability	110			

Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung einer Softwarebibliothek für ereignisdiskrete Systeme (DES). Ereignisdiskrete Systeme besitzen einen diskreten Zustandsraum in dem Übergänge ereignisgesteuert stattfinden. Für diese Klasse von Systemen wurde Mitte der 80er Jahre von P.J. RAMADGE und W.M. WONHAM eine Regelungstheorie entwickelt, die sog. RW Supervisory Control Theory (SCT). Mit dieser können ereignisdiskrete Systeme als endliche Automaten modelliert werden. Dabei werden interagierende Teile eines Systems als einzelne Automaten modeliert und zu einem größeren Gesamtautomaten zusammengefügt, für den mittels einer vorgegebenen Spezifikation eine Steuerung berechnet werden kann.

Bei der Modellierung großer Systeme mit mehreren Nebenläufigkeiten ergibt sich hierbei das Problem, dass die Größenordnung des Zustandsraumes nicht mehr von Rechnersystemen erfasst werden kann und damit die Berechnung einer Steuerung unmöglich wird. Zur Lösung des Problems der sogenannten Zustandsraumexplosion existieren in der Literatur verschiedene Ansätze, von denen einer von KLAUS SCHMIDT am Lehrstuhl für Regelungstechnik der Universität Erlangen-Nürnberg entwickelt wurde [Sch05b].

In dieser Arbeit wurde ein Software-Modell eines Automaten zur Modellierung und Steuerung von ereignisdiskreten Systemen erstellt. Dabei wurden zunächst zwei abstrakte Automatenmodelle auf ihre Eignung für Automatenalgorithmen untersucht. Für das universeller einsetzbare Datenmodell wurde eine Spezifikation seiner Datenstruktur durchgeführt, die als Klasse Generator mit Hilfe abstrakter Datentypen (ADT) implementiert wurde. Nach der Umsetzung von Algorithmen für Automaten und reguläre Sprachen für die Generator Klasse wurde eine für die SCT spezielle Erweiterung um steuerbare Ereignisse diskutiert und als erweiterte Klasse cGenerator implementiert. Basierend auf der cGenerator Klasse wurde der Algorithmus zur Berechnung einer Steuerung für die SCT umgesetzt. Weiterhin wurden alle erforderlichen Algorithmen zur Synthese von hierarchischen Steuerungen für dezentrale ereignisdiskrete Systeme gemäß [Sch05b] implementiert.

Der praktische Teil der Arbeit bestand dabei in einer Implementierung des Automaten Software-Modells mittels der Programmiersprache C++ und der darauf basierenden Umsetzung der Algorithmen. Ergänzend wurde eine textbasierte Applikation entwickelt, mit der die implementierten Algorithmen getestet werden können. Das Ergebnis der praktischen Arbeit, die C++ Klassenbibliothek LIBFAUDES, wird unter der GNU Lesser General Public License (LGPL) im World Wide Web zur Verfügung gestellt.

Chapter 1

Introduction

The Control theory of discrete event system is an action of research. This thesis covers the framework provided by P.J. RAMADGE and W.M. WONHAM in [RW89] with the extensions to hierarchical and decentralized control provided by KLAUS SCHMIDT in his Phd Thesis [Sch05b].

In the late 80th RAMADGE and WONHAM introduced a framework regular languages and finite automata for modelling and controling discrete event systems (DES). Besides Petrinets this is the most important approach to the supervisory control of DES. A DES is modeled as a finite automaton. a given regular language specification, a controller can be computed such that the closed-loop system fulfills the specification. This concept of monolithic supervisor computation is denoted as "RW Supervisory Control Theory" (SCT).

An ongoing research topic is the computation of supervisors for real world large-scale systems like manufacturing systems. These have many concurrent activities whose combinations all have to be modeled as single states in the RW supervisory control theory. This leads to a huge number of states, the so called "state space explosion", which cannot be handled by today's computer technology. Many concepts have been introduced for solving the state space explosion problem. The common feature of these approaches is the use of vertical or horizontal system structure in hierarchical or decentralized approaches. Using this system structure, the computation of the overall system

is avoided. [Sch05b] combines both ideas in an approach for the hierarchical control of decentralized DES. Concurrent activies in decentralized system models are abstracted to their shared behavior on a higher level. This results in a multi level control hierarchy with a single supervisor on the highest level, controlling the abstracted behavior of the overall system. This highest-level supervisor can be implemented efficiently using decentralized supervisors in the lower levels.

This thesis deals with the aspects of implementing a generally applicable software library for supervisory control of DES that can be easily extended to different approaches. The RW supervisory control theory is used as the base where other frameworks can be put on. As an extension, the library provides all algorithms required for [Sch05b]. Data models and algorithms are treated language independent for general object-orientated programming. The practical work consists of developing such a library with the object orientated programming language C++. Knowledge of the RW theory which is completely described in [Won04], is assumed. Basic data types used in the thesis are described in standard computer science literature like [AHU⁺83].

At present, there already exist some software packages for supervisory control of discrete event systems. Well known are TCT [TCT], the UMDES SOFTWARE LIBRARY [UMD] and SUPREMICA [Sup]. TCT provides a console application for the monolithic supervisor synthesis. UMDES SOFTWARE LIBRARY by the University of Michigan is comparable with the library developed as practical work in this thesis. Both libraries do not exactly cover the same theoretical frameworks but implement RW supervisory control theory as a common base.

DESUMA, a java based graphical user interface for [UMD] by the University of Michigan and Mount Allison University, and SUPREMICA by Chalmers University of Technology both provide a feature-rich graphical environment for basic supervisory control theory. There may be other less known or publicly unavailable software packages which deal with the computation of supervisors for DES. By now none of the these packages implement a theoretical framework preventing the state space explosion problem. Also there is no public available source code for any of the packages.

This work is an effort to provide an open source software library with a free license¹ for

¹The practical result of this thesis, called the faudes library is publicly available at [fau] under the

supervisory control of DES. The library has been developed with both high performance and extensibility in mind. The public release of the library sources shall encourage external researchers to use the library in their own projects or even contribute code for further development of the library. The library provides a automaton base class for automaton and language operations, an extende automaton model for RW supervisory control theory and as an extension the algorithms for [Sch05b].

The outline of this work is as follows: After a short introduction to the RW supervisory control theory in Chapter 2, a software model for finite automata is developed in Chapter 3. the automata model, basic algorithms for regular languages and finite automata are discussed in Chapter 4. Chapter 5 describes the extension of the automata model to fit the requirements of supervisory control theory, followed by the algorithm for computing supervisors. Chapter 6 deals with efficient implementations of the algorithms for the theoretical framework given in [Sch05b]. However, the development of a data structure for the hierarchical decentralized architecture is beyond the scope of this work and is covered in [Sch05a]. Finally the thesis concludes with some thoughts about further development and usage of the created software library.

LGPL [LGP] license.

Chapter 2

Basics of Supervisory Control of Discrete Event Systems

This chapter summarizes the most important results of the supervisory control theory (SCT) of discrete event systems and thus provides a basis for the algorithms implemented in the following chapters. A thorough description of the standard framework for SCT introduced by P.J. RAMADGE and W.M. WONHAM (RW) is given in [Won04]. A less formal introduction to SCT can be found in [CL99].

2.1 Regular Languages and Finite Automata

In RW supervisory control theory, the behavior of DES is modeled by finite automata and regular languages. For the further discussion some definitions are required. At first the terms alphabet, string and formal language are defined. An alphabet is a set of symbols, a string is a sequence of symbols and a language is a set of strings. Then deterministic and nondeterministic finite automata are introduced, followed by the terms generated language, marked language, blocking and regular language.

An *alphabet*, usually denoted Σ is a finite set of distinct symbols $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. A *string* is a sequence $\sigma_{i1}\sigma_{i2}\dots\sigma_{ik}, \sigma_{ij} \in \Sigma, k \in \mathbb{N}$ of symbols.

 Σ^+ denotes the set of finite symbol sequences of the form $\sigma_{i1}\sigma_{i2}...\sigma_{ik}$ where $\sigma_{ij} \in \Sigma$ for i = 1, ..., k. The *empty string* ϵ denotes the empty sequence containing no symbols, where $\epsilon \notin \Sigma$. $\Sigma^* := \{\epsilon\} \cup \Sigma^+$ denotes the so called *Kleene-Closure* of the alphabet Σ .

The concatenation of $s \in \Sigma^*$ and $t \in \Sigma^*$ is written $st \in \Sigma^*$. The string *s* is denoted a *prefix*, *t* is denoted a *suffix* of *st*.

Definition 2.1.1 (Formal Language [HU79]). A *formal language* L over an alphabet Σ , also called *language* over Σ , is any subset $L \subseteq \Sigma^*$.

The definition includes both the *empty language* \emptyset and Σ^* itself. There is a difference between the empty language \emptyset and the string with no symbols ϵ . The *prefix-closure* $\overline{L} := \{s \in \Sigma^* \mid \exists t \in \Sigma^* \text{ s. t. } (st \in L)\}$ consists of all the prefixes of all strings in $L, L \subseteq \overline{L}$. The *active event set* after the string *s* is defined as $\Sigma(s) := \{\sigma \mid s\sigma \in L\}$.

Finite automata are introduced as a modeling framework to represent and manipulate languages. While most of the RW control theory is described in the language framework, finite automata are used to model the logical behavior of DES in practice.

Definition 2.1.2 (Automaton [HU79]). An automaton is a 5-Tuple, $G := (X, \Sigma, \delta, X_0, X_m)$ consisting of

- *X*: the set of states,
- Σ : the set of events,
- δ: the transition function is a partial function δ : X × Σ → 2^X only defined on a subset of Σ in any state x ∈ X,
- X_0 : the set of initial states $X_0 \subseteq X$,
- $X_{\rm m}$: the set of marked states $X_{\rm m} \subseteq X$.

An automaton is called *finite*, if the set of states is finite. If the set of initial states X_0 consists of a single state x_0 and the transition function is unique, $\delta : X \times \Sigma \to X$, the automaton is called *deterministic automaton*. Otherwise it is called¹ *nondeterministic automaton* and always be transformed into a deterministic

¹Note that the concept of ϵ -transitions in nondeterministic automata as found in [CL99] is not introduced here as states connected by ϵ -transitions can always be modeled as one single state.

one, if the set of states is finite. The corresponding algorithm is discussed in Chapter 4. For convenience, δ is extended to a partial function on $X \times \Sigma^*$ by the recursive definition

- $\delta(x,\epsilon) := x$
- $\delta(x, s\sigma) := \delta(\delta(x, s), \sigma)$ for $s \in \Sigma^*$ and $\sigma \in \Sigma$

The *active event set function* $\Lambda := X \to 2^{\Sigma}$ with $\Lambda(x) := \{\sigma \mid \delta(x, \sigma)!\}$ maps every state to the respective set of events executable in this state. $\Lambda(x)$ is called the *active event set* at state x where $\delta(x_0, s)!$ says that the transition is defined.

An example of a finite deterministic automaton with five states that operatates on the alphabet $\Sigma = \{a, b\}$ is shown in figure 2.1.

Figure 2.1: Example of a finite automaton

The generated language of an automaton G, L(G) contains all strings in G starting in an initial state. The marked language $L_m(G)$ contains all strings in G starting in an initial state and ending in a marked state.

Definition 2.1.3 (Generated and Marked Language [Won04]). For a given automaton $G := (X, \Sigma, \delta, X_0, X_m)$ the *generated language* is defined as $L(G) := \{s \in \Sigma^* \mid \delta(x_0, s)!\}$ and the *marked language* is defined as $L_m(G) := \{s \in \Sigma^* \mid \delta(x_0, s) \in X_m\}$.

There is no unique way to construct an automaton that marks a given language. However, an automaton that marks a language with a minimum set of states is called a *canonical recognizer* which is unique except for an isomorphism [HU79].

Definition 2.1.4 (Blocking and Nonblocking [CL99]). An automaton is called *blocking* if $\overline{L_{\mathrm{m}}(G)} \subset L(G)$ and *nonblocking* if $\overline{L_{\mathrm{m}}(G)} = L(G)$.

Blocking means there exists at least one string in the generated language of an automaton which cannot be extended to reach a marked state. In nonblocking automata from every string of the generated language there is a path to a marked state.

A state is *accessible* if it can be reached by a transition path from an initial state. In contrast, a state is *coaccessible* if there is a transition path from the state to a marked state.

Any language can be marked by a automaton, but only finite automata can be stored in the memory of a computer. As there are languages which cannot be marked by a finite automaton, e.g. $L = \{a^n b^n \mid n \ge 0\}$, the languages that can be used to represent DES are restricted to the class of *regular languages*. It should be noted that some languages that cannot be marked by finite automaton can be respresented by petri nets with a finite transition structure.

Definition 2.1.5 (Regular Language[CL99]). A formal language is denoted *regular* if it can be marked by a finite automaton. The distinct class of languages that can be marked by finite automata is called the class of *regular languages*.

This is an important result as it means the behavior of DES modeled by finite automata can always be described with regular languages.

Note that both deterministic finite automata and nondeterministic finite automata are represented by the same class of languages as a finite nondeterministic automata can always be converted into a finite deterministic automata and every deterministic automaton is also a nondeterministic automaton.

2.2 Supervisory Control Theory

The principle of supervisory control is restricting the behavior of a discrete event system to a given specification. Let $G := (X, \Sigma, \delta, X_0, X_m)$ be an automaton that models the uncontrolled behavior of a discrete event system, namely the *Plant*. Let *S* be a supervisor for *G*. *S* controls *G* in the closed feedback loop shown in figure 2.2 by disabling events in the current state of *G* which would make the controlled system violate the specification.

Figure 2.2: The supervisor *S* controls the plant *G* in a feedback loop.

As there may be events which cannot be directly influenced by a supervisor, the set of events is divided into two disjoint subsets: $\Sigma = \Sigma_c \cup \Sigma_{uc}$

 $\Sigma_{\rm c}$ contains the subset of controllable events whose execution can directly be prevented by a supervisor, while $\Sigma_{\rm uc}$ yields the subset of uncontrollable events which cannot be prevented. Reasons for modeling events as uncontrollable are process control limitations, unpredictable machine breakdowns or sensor readings which are not the direct result of a given command, just to name some examples.

Definition 2.2.1 (Supervisor [WR87]). Formally a supervisor is a function mapping the language generated by *G* to Γ

$$S: L(G) \to \Gamma$$
,

where $\Gamma = \{\gamma \in 2^{\Sigma} \mid \gamma \supseteq \Sigma_{uc}\}$. Γ is called the set of all *control patterns*. A *control pattern* represents the set of events enabled by the supervisor and then contains all uncontrol-lable events.

A supervisor follows strings $s \in L(G)$ and restricts the active event set after the string s to $S(s) \cap \Sigma(s)$ which is called the set of *enabled events*.

The closed-loop system of the plant *G* and the supervisor *S* is written S/G meaning '*G* under supervision of *S*'. S/G is a DES whose generated and marked language are defined as follows.

Definition 2.2.2 (Languages generated and marked by S/G [CL99]). The *language generated* by S/G is recursively defined by:

1.
$$\epsilon \in L(S/G)$$

2. $[(s \in L(S/G)) \text{ and } (s\sigma \in L(G)) \text{ and } (\sigma \in S(s))] \Leftrightarrow [s\sigma \in L(S/G)]$

The *language marked* by S/G is defined by

$$L_{\mathrm{m}}\left(S/G\right) := L\left(S/G\right) \cap L_{\mathrm{m}}\left(G\right).$$

This means every sequence of symbols *s* that is already executed in the closed-loop system L/G can be extended by an event σ if and only if $s\sigma \in L(G)$ and σ is contained in the control pattern at string *s*. The language marked by the closed-loop system is then defined by language intersection of the closed-loop language with the marked language of *G*.

A specification language K can be implemented by a supervisor if it is controllable w.r.t. L(G).

Definition 2.2.3 (Controllability [WR87]). A language $K \subseteq L(G)$ is *controllable* (*with respect to G*) if and only if

$$\overline{K}\Sigma_{\mathrm{uc}} \cap L\left(G\right) \subseteq \overline{K}.$$

This means, any prefix of *K* which is also in L(G) followed by an uncontrollable event must still be a prefix of *K*.

Definition 2.2.4 (Set of Controllable Sublanguages [WR87]). The set of controllable sublanguages of L(G), denoted (L(G)) is defined as

$$\mathcal{C}(L(G)) := \{ H \subseteq L(G) \mid \overline{H}\Sigma_{uc} \cap L(G) \subseteq \overline{H} \}.$$

Controllability is closed under union. As a consequence, if K_1 and K_2 are controllable, then $K_1 \cup K_2$ is controllable, too. Therefore, the union of the set of controllable sublanguages is also controllable. Then there must be a "largest" element in the set of controllable sublanguages that includes all other controllable sublanguages. This is defined as the *supremal controllable sublanguage*.

Definition 2.2.5 (Supremal Controllable Sublanguage [WR87]). Let $E \subseteq L(G)$ be a specification language. The *supremal controllable sublanguage* of *E* with respect to L(G) is

$$\kappa_{L(G)}(E) := \bigcup \left\{ K \in \mathcal{C}(L(G)) \mid K \subseteq E \right\}$$

 $\kappa_{L(G)}$ is the union of all controllable sublanguages that agree with the specification *E*. A recognizer of $\kappa_{L(G)}(E)$ is a instance of a minimally restrictive supervisor for the DES *G* with the specification *E*.

Nonblocking control requires the definition of a further property:

Definition 2.2.6 ($L_m(G)$ -Closure [CL99]). A language K is $L_m(G)$ -closed if

$$K = \overline{K} \cap L_{\mathrm{m}}(G) \,.$$

This means that every string in *K* is prefix of a string in $L_{m}(G)$.

Theorem 2.2.1 (Nonblocking Controllability Theorem [WR87]). Let $G = (X, \Sigma, \delta, x_0, X_m)$ be a DES with $\Sigma_{uc} \subseteq \Sigma$ as the set of uncontrollable events. Let $K \subseteq L_m(G)$ be a sublanguage with $K \neq \emptyset$. A *nonblocking supervisor* S for G with $L_m(S/G) = K$ and $L(S/G) = \overline{K}$ exists iff

- 1. *K* is controllable (with respect to L(G))
- 2. K is $L_{m}(G)$ -closed

This finally leads to the basic problem of supervisory control of DES [CL99].

Let $G = (X, \Sigma, \delta, x_0, X_m)$ be a discrete event system with the events Σ and the uncontrollable events $\Sigma_{uc} \subseteq \Sigma$. Let $L_{am} \subseteq L_m(G)$ be the admissible marked language of G, which is assumed to be $L_m(G)$ -closed. A *nonblocking* supervisor S has to be found such that:

- 1. $L_{\rm m}(S/G) \subseteq L_{\rm am}$
- 2. $L_{\rm m} (S/G)$ is "as large as possible"

For solving this problem, it is necessary to compute a nonblocking supervisor S that is minimally restrictive. This is achieved by choosing S such that

$$L(S/G) = \overline{\kappa_{L(G)}(L_{\text{am}})}$$
 and $L_{\text{m}}(S/G) = \kappa_{L(G)}(L_{\text{am}})$

as long as $\kappa_{L(G)}(L_{am}) \neq \emptyset$ which is the basic concept of the SCT.

Chapter 3

Automaton Data Model

As described in Chapter 2, the supervisory control theory (SCT) uses finite automata to model the behavior of discrete event systems. While small didactic examples with only few states can be handled without computational support, this is not possible for most real world DES. Especially manufacturing systems with concurrent activities introduce complexity far beyond the scope of being modeled and processed by hand. Here software is required to handle the computation. This chapter deals with the development of an appropriate data model for finite automata, that fits well for the methods used in the supervisory control theory. In Section 3.1, two basic automata data models are introduced. These models are evaluated with commonly used SCT methods in Section 3.2.

3.1 Introduction of Abstract Automata Models

The effectiveness of a software algorithm heavily depends on the underlying data structure. At the same time the design of a data structure depends on the algorithms operating on it. Therefore, it is necessary to identify typical data access patterns in supervisory control theory methods, to figure out a proper data model for the finite automaton defined in Chapter 2. Here the problem arises that the "optimal" data structure can only be known after evaluating all supervisory control methods at first which is beyond the scope of this thesis. To get a good overview what kind of data model is appropriate, two different abstract automaton data models which represent the two main modeling concepts for finite automata are introduced. The corresponding data access patterns are investigated in the next section.

3.1.1 Linked List Model

At first, an approach which is derived from the directed graph representation of an automaton as e.g. shown in Figure 2.1 is analyzed. The automaton is considered as a set of states containing transitions that point to other states. The initial states and marked states are used as starting points. In addition every state has a flag determining if the state is marked. This results in the following abstract data types:

Automaton:

- Initial States: List of pointers to states
- Marked States: List of pointers to states
- Set of Events

State:

- State Identifier
- Marked State (Binary)
- Transitions: Set of transitions

Transition:

- Event
- Pointer to State

These data objects build a linked list-like model of an automaton. The automaton is accessed by its initial states or marked states which are represented by some data type that points to state objects. Every state object has an identifier representing the name or number of the state, a binary flag containing the marking status and a list of transition

objects. Every transition object has an event and a pointer to a state associated with it. In addition, the set of events is stored, as the automaton may contain events not associated with any transition. This forms a structure as shown in Figure 3.1. The automaton consists of states pointing to each other via transition objects. It is assumed that the pointers are bidirectional since some SCT methods may require traversing an automaton backwards beginning at the marked states. States between initial and marked states are only accessible by traversing the linked pointers. Therefore, random access of states is impossible. The representation is similar to a double linked list that provides direct access to both ends while random access in the middle of the list is impossible. For this reason the stated automata data model is called a *linked list automaton data model*.

Figure 3.1 shows how states are linked to each other. As can be seen, the diagram resembles the directed graph of an automaton.

3.1.2 Set Based Model

The second data model is directly deduced from the automaton given in Definition 2.1.2. The automaton is modeled as a five tuple consisting of a state set, an event set, a set of transitions, a set of initial states and a set of marked states:

Automaton:

- Set of States
- Set of Events
- Set of Transitions
- Set of Initial States
- Set of Marked States

State / Initial State / Marked State: State Identifier

Event: Event Identifier

Transition: State - Event - State

Figure 3.1: Linked states in the linked list automaton data model

In the context of the abstract set automata model the term *set* shall be specified as an amount of states, events or transitions whereas no specification is given for the sorting order. The set allows to determine if a specific state, event or transition is contained and allows retrieving all included elements in an unspecified order. Like in the algebraic set definition it may not contain duplicate elements in contrast to a so called *multiset*. Figure 3.2 shows the example automaton of Figure 2.1 in the context of a set based model.

Figure 3.2: A set based model holds the example automaton of Figure 2.1.

3.2 Evaluation of Data Models

In this section, the abstract automaton data models introduced in the previous section are evaluated with methods used in DES modeling. The following three representative methods are investigated:

Parallel Composition: The main application of parallel composition is merging interacting components of a plant. In the RW theory all parts of a DES have to be combined to one monolithic automaton by parallel composition. This may lead to the state space explosion problem stated in Chapter 1. The method is similar to computation of the supremal controllable sublanguage used for supervisor computation. Both follow the transitions of two given automata in parallel beginning at their respective initial states while the pairs of parallel states build a new automaton.

- **Language Projection:** The language projection is used in different decentralized [YL00, dQC00] and hierarchical [Sch05b, Led02, CC02] approaches.
- **Subset Construction:** Conversion of a nondeterministic to a deterministic automaton is done by subset construction. Such a conversion is often required after executing other algorithms that most likely result in a nondeterministic automaton, e.g. language projection. Subset construction, along with state space minimization, is an algorithm that builds a new automaton by constructing power sets of the existing stateset. The order of memory complexitiy in subset construction is exponential in the number of states.

For each method the definition and an abstract algorithm is stated. A summary of general data access patterns and a short discussion of possible problems with each of the two introduced data models follows.

The tests of the automaton models with these methods show their general qualification for computation in SCT. While this is the most important criterion for choosing an automaton model, the raw performance of a model is important too. Therefore a performance evaluation of the models, data access patterns that typically occur in the iteration loops of SCT algorithms is included following up the discussion of the methods.

At first the automaton models are evaluated with the three stated algorithms.

3.2.1 Parallel Composition Method

Definition 3.2.1 (Parallel Composition). The *parallel composition* of two finite automata $G_1 = (X_1, \Sigma_1, \delta_1, X_{0,1}, X_{m,1})$ and $G_2 = (X_2, \Sigma_2, \delta_2, X_{0,2}, X_{m,2})$ is defined as the following automaton:

$$G_1 \parallel G_2 := (X_{1\parallel 2}, \Sigma_1 \cup \Sigma_2, \delta_{1\parallel 2}, X_{0,1} \times X_{0,2}, X_{m,1\parallel 2})$$

where

• $X_{1\parallel 2} := \{ (x_1 \in X_1, x_2 \in X_2) \mid \exists (x_{0,1}, x_{0,2}) \in X_{0,1} \times X_{0,2}, \exists s \in (\Sigma_1 \cup \Sigma_2)^*$ such that $\delta_{1\parallel 2} ((x_{0,1}, x_{0,2}), s) = (x_1, x_2) \}$

•
$$\delta_{1\parallel 2}\left(\left(x_{0,1}, x_{0,2}\right), \sigma\right) := \begin{cases} \left(\delta_{1}\left(x_{1}, \sigma\right), \delta_{2}\left(x_{2}, \sigma\right)\right) & \text{if } \sigma \in \Lambda_{1}\left(x_{1}\right) \cap \Lambda\left(x_{2}\right) \\ \left(\delta_{1}\left(x_{1}, \sigma\right), x_{2}\right) & \text{if } \sigma \in \Lambda_{1}\left(x_{1}\right) \setminus \Sigma_{2} \\ \left(x_{1}, \delta_{2}\left(x_{2}, \sigma\right)\right) & \text{if } \sigma \in \Lambda_{2}\left(x_{2}\right) \setminus \Sigma_{1} \\ \text{undefined} & \text{otherwise} \end{cases}$$

• $X_{m,1\parallel 2} := \{(x_1, x_2) \in X_{1\parallel 2} \mid x_1 \in X_{m,1} \land x_2 \in X_{m,2}\}$

An example is shown by the parallel composition of the two automata

- $G_1 = (\{1, 2, 3\}, \{\alpha, \beta\}, \{(1, \alpha, 2), (2, \alpha, 3), (3, \beta, 1)\}, \{1\}, \{1\})$ and
- $G_2 = (\{1,2\},\{\beta,\gamma\},\{(1,\gamma,2),(2,\beta,1)\},\{1\},\{1\})$

in figure 3.3.

Figure 3.3: Parallel composition of automata G_1 and G_2

A basic algorithm that implements the parallel composition is given as follows.

Abstract Algorithm (Parallel Composition). Input: Finite automata $G_1 = (X_1, \Sigma_1, \delta_1, X_{0,1}, X_{m,1})$ and $G_2 = (X_2, \Sigma_2, \delta_2, X_{0,2}, X_{m,2})$.

/* Starting at the initial state pairs, events in the shared alphabet $\Sigma_{shared} = \Sigma_1 \cap \Sigma_2$ are executed in parallel, while all other events $\Sigma - \Sigma_{shared}$ are executed asynchronously. */ compute the set of initial states $X_{0,1} \times X_{0,2}$

/* Fill the waiting list. */

```
X_{waiting} := \{ (x_1, x_2, (x_1, x_2)) \mid (x_1, x_2) \in X_{0,1} \times X_{0,2} \}, X_{1||2} = \emptyset, X_{m,1||2} = \emptyset
/* The execution of events follows the scheme: */
while X_{waiting} \neq \emptyset do
      take a tuple (x_1, x_2, (x_1, x_2)) \in X_{waiting} and remove
      for all \sigma \in (\Lambda(x_1) \cup \Lambda(x_2)) do
            for all x_{1||2} \in \delta_{1||2}((x_1, x_2), \sigma)! do
                  if x_{1\parallel 2} \notin X_{1\parallel 2} then
                        X_{1\parallel 2} = X_{1\parallel 2} \cup \{x_{1\parallel 2}\}
                        X_{waiting} = X_{waiting} \cup \left\{ \left( \delta_1 \left( x_1, \sigma \right), \delta_2 \left( x_2, \sigma \right), x_{1 \parallel 2} \right) \right\}
                  end if
                  add transition ((x_1, x_2), \sigma, x_{1\parallel 2}) to G_{1\parallel 2}
            end for
      end for
      if x_1 \in X_{m,1} \land x_2 \in X_{m,2} then
            X_{m,1||2} = X_{m,1||2} \cup \{(x_1, x_2)\}
      end if
end while
```

At first the initial state pairs are computed and put in the waiting set along with their respective states in G_1 and G_2 . Then transitions in both automata are followed by executing shared events synchronously and unshared events asynchronously. This is carried out by retrieving a tuple of $(x_1, x_2, (x_1, x_2))$ from the set of waiting states $X_{waiting}$ and executing the transitions that link from the states in G_1 and G_2 . Each time a new state pair is created it is put on the waiting list. Each state pair (x_1, x_2) that was put from the waiting set is marked if both states are marked in G_1 and G_2 . The algorithm terminates when the waiting list is empty.

The symbolic notation of the algorithm operates on the automaton in Definition 2.1.2. A software implementation introduces access patterns to the automaton data model in place of the symbolic operations. Aside from primitive operations, the following set of data access patterns has to be taken into account for the concrete implementation of an automaton data model.

Data Access Patterns

• Direct access to the initial states is required to start the algorithm.

- A set of waiting states must be maintained. It contains tuples constisting of three states (or pointers to states) x₁ ∈ G₁, x₂ ∈ G₂ and (x₁, x₂) ∈ G_{1||2}. The ordering of the set has no effect.
- Set inclusion tests for either Σ_{shared} or Σ − Σ_{shared} are required for determining if an event is shared or not.
- For the determination of (Λ (x₁) ∪ Λ (x₂)) the transitions of a given state have to be accessed. The order of the transitions is irrelevant at this point.
- Computing $\delta_{1\parallel 2}((x_1, x_2), \sigma)$ requires determining if $\sigma \in \Lambda_1(x_1) \cap \Lambda(x_2)$, $\sigma \in \Lambda_1(x_1) \setminus \Sigma_2$ or $\sigma \in \Lambda_2(x_2) \setminus \Sigma_1$. For fast set inclusion test, the transitions of a given state must be ordered by their respective events.
- New transitions ((x₁, x₂), σ, δ_{1||2} ((x₁, x₂), σ)) must be linked properly within G_{1||2}. Therefore it must be determined if the states δ_{1||2} ((x₁, x₂), σ) have already been created, which may require a search through the complete automaton G_{1||2}.
- The marked status of each new state (x₁, x₂) ∈ G_{1||2} must be checked for each pair x₁ ∈ G₁, x₂ ∈ G₂ that builds a new state in G_{1||2}.

Now the set of data access patters can be evaluated in the data models introduced in Section 3.1.

Linked List Automaton Model

At first the linked list automaton model in Section 3.1.1 is evaluated:

- The inital states are directly accessible for starting the algorithm.
- The set of waiting states X_{waiting} can be maintained efficiently by using three stacks with pointers to states. The elements on top of the respective stacks build the tuple of x₁ ∈ G₁, x₂ ∈ G₂ and (x₁, x₂) ∈ G_{1||2}.
- The set of shared / unshared events can be directly computed as every automaton provides direct access to its alphabet.

- Transitions for a given state can be directly retrieved in the respective state object. The transitions must be ordered by their events.
- When linking new transitions ((x₁, x₂), σ, δ_{1||2} ((x₁, x₂), σ)) in G_{1||2}, the pointer to the state objects for δ_{1||2} ((x₁, x₂), σ) is not known at first by nature of the linked structure. Here an additional supporting data structure that maps pairs (x₁, x₂) ∈ X_{1||2} to state pointers is required. The map must be sorted to minimize search time. Without such an additional map G_{1||2} must be searched for δ ((x₁, x₂), σ). The search may require traversing the complete automaton and should be avoided because of that.
- Checking the marking status of newly created states in G_{1||2} is fast, since the respective pair of states x₁ ∈ G₁, x₂ ∈ G₂ directly holds its marking status.

Set Based Automaton Model

The set based data model, introduced in Section 3.1.2, requires different access patterns:

- The initial states are directly accessible for starting the algorithm.
- As in the linked list model the set of waiting states $X_{waiting}$ can be maintained efficiently, e.g. by using three stacks with state identifiers. The elements on top of the stack build the tuple of $x_1 \in G_1$, $x_2 \in G_2$ and $(x_1, x_2) \in G_{1||2}$.
- Like the linked list model the set based model provides direct access to the set of events for computing Σ_{shared} or Σ – Σ_{shared}.
- For the retrieval of the transitions for a given state, the set of transitions must have an order. The order must provide fast access for finding transitions that contain a specific predecessor state. In addition, an ordering of the transitions by their respective events per state is required.
- When new transitions are created in G_{1||2}, the state identifier of the target state δ_{1||2} ((x₁, x₂), σ) may not be known at first. If a state identifier scheme is used that has no direct mapping from a pair x₁ ∈ G₁, x₂ ∈ G₂ to the corresponding state identifier of (x₁, x₂) ∈ G_{1||2}, an additional sorted data structure that provides such a map is required.

 Checking the marking status of newly created states in G_{1||2} is straight forward by querying the set of marked states in G₁ and G₂. For a fast inclusion test, the set of marked states must have an order.

Model Comparison

The parallel composition has shown that the specification of both basic models has to be extended for ordered transitions. In the linked list model transitions have to be ordered locally at each state by their events. In the set based model a global order of transitions predecessor states first and events second is required. With this extended specification, both models fulfill the requirements of the parallel composition. Both need additional data structures for building the transition relation of $G_{1||2}$. A further requirement is a sorted set of marked states for fast set inclusion tests. As conclusion, there is no preference for one of the models by the parallel composition method.

3.2.2 Language Projection Method

Definition 3.2.2 (Natural Projection [Won04]). For an alphabet $\Sigma_0 \subseteq \Sigma$ the *natural projection* $p_0 : \Sigma^* \to \Sigma_0^*$ is recursively defined as follows:

• $p_0(\epsilon) := \epsilon$

•
$$p_0(\sigma) := \begin{cases} \epsilon \text{ if } \sigma \notin \Sigma_o \\ \sigma \text{ if } \sigma \in \Sigma_0 \end{cases}$$

• $p_0(s\sigma) := p_0(s) p_0(\sigma)$ for $s \in \Sigma^*$, $\sigma \in \Sigma$

The natural projection $p_o(L)$ removes all symbols $\sigma \notin \Sigma_0$ from strings in the language L by concatenation of the remaining fragments that contain only symbols $\sigma \in \Sigma_0$. For convenience, the natural projection is simply denoted *projection*.

While the projection of a language is straightforward, projecting the generated language of an automaton by manipulation of the automaton itself is not trivial. An abstract

algorithm that hides implementation details is stated as follows¹.

Abstract Algorithm (Projection). Given a finite automaton $G = (X, \Sigma, \delta, X_0, X_m)$ and a projection alphabet $\Sigma_0 \subseteq \Sigma$.

```
/* The method is initialized by putting all initial states in the set of waiting states */
X_{waiting} = X_0
/* Starting at the initial states all reachable states are explored for transition paths with events
\sigma \in \Sigma_0 */
while X_{waiting} \neq \emptyset do
    take a state x from X_{waiting}
    put x in X_{path}
    while X_{path} \neq \emptyset do
         take a x_p from X_{path}
         for all \sigma \in \Lambda(x_p) do
              if \sigma \in \Sigma_0 then
                   \delta\left(x,\sigma\right) := \delta\left(x_p,\sigma\right)
                   put state \delta(x_p, \sigma) in X_{waiting}
              else
                   put successor state \delta(x_p, \sigma) in X_{path}
                   if \delta(x_p, \sigma) \in X_m then
                        X_{\rm m} = X_{\rm m} \cup \{x\}
                   end if
              end if
         end for
    end while
    for all \sigma \in \Lambda(x) do
         if \sigma \notin \Sigma_0 then
              remove the transition from \delta
         end if
    end for
end while
```

Initiallization is done by filling the waiting set with the set of initial states. Then, the reachable part of the automaton is explored in the following manner. After retrieving the next state from the waiting set, transition paths are executed until they end in an event contained in Σ_0 . This may also be the first event in a path. While executing a

¹Note that this algorithm creates a nondeterministic automaton. The *Deterministic* method which is required for converting a projected deterministic automaton back into a deterministic one is introduced in Section 3.2.3.

transition path, transitions with projected events that link from states in the path, are relinked at the starting state. Previously unexplored states along the path that contain transitions with projected events are added to the waiting list. If a marked state is reached by such a transition path the starting state is marked. After transition paths are explored for a state from the waiting list, all transitions that link from this state and have an event not in Σ_0 are removed from the transition relation.

Figure 3.4 shows the automaton

$$G = (\{1, 2, 3\}, \{\alpha, \beta, \gamma, \mu\}, \{(1, \alpha, 2), (2, \beta, 1), (2, \mu, 3), (3, \gamma, 1)\}, \{1\}, \{1\})$$

being projected to the alphabet $\Sigma_{proj} = \{\alpha, \beta, \mu\}$. This results in the projected automaton G_{proj} where $L_{\rm m}(G_{proj}) = p_0(L_{\rm m}(G))$ and $L(G_{proj}) = p_0(L(G))$.

Figure 3.4: Projection of an automaton G to G_{proj} over the alphabet Σ_{proj}

As in the previous section, the abstract algorithm is evaluated for data access patterns that appear in a software implementation.

Data Access Patterns

- Direct access to the set of initial states is required.
- A simple unordered set of waiting states $X_{waiting}$ and locally unprocessed states X_{path} is required. For example both sets can be maintained by a stack.
- Set inclusion tests are required to determine whether an event *σ* is contained in Σ₀ or not. Therefore Σ₀ must be sorted.
- Adding transitions by the statement $\delta(x, \sigma) := \delta(x_p, \sigma)$ is trivial. This is in contrast

to parallel composition, where adding transitions to the new automaton requires traversing the automaton if no helper data structures are used.

• When deleting transitions, it has to be ensured that all states are still accessible in the data model after the deletion.

These data access patterns are investigated in context with the linked list automaton model and the set based automaton model.

Linked List Automaton Model

- Direct access to the initial states is given.
- Both sets $X_{waiting}$ and X_{path} have to be implemented as sets that hold pointers to states. Then fast access to the next state x_p is given.
- A supporting data structure is required for storing Σ_0 as a sorted set of events.
- Adding a transition δ (x, σ) := δ (x_p, σ) simply is done by adding a new transition object at state x that points to state δ (x_p, σ) with event σ.
- Deleting transitions may have the effect that states and transitions linking from that states have no more link path to either an initial state and a marked state. These states and transitions are then lost in memory and cannot be accessed anymore. Although, this does not affect the projected language of the automaton, it can cause memory leaks in an implementation.

Set Based Automaton Model

- As in the linked list model, the initial states can be directly accessed to invoke the algorithm.
- *X_{waiting}* and *X_{path}* can be implemented by a data structure that can hold an unordered set of state identifiers.
- A supporting data structure is required for storing Σ_0 as a sorted set of events.
- Adding transitions by $\delta(x, \sigma) := \delta(x_p, \sigma)$ is straightforward.

• Deleting transitions is trivial. It should be noted that "loosing" states by removing all transitions linking to them is not possible at all with this data model, because the whole transition relation is kept as single set.

The evaluations of the data models concludes in the model comparison.

Model Comparison

The projection algorithm has shown an important weakness in the linked list model. Without extensions, it cannot hold states that have no link path to either an initial state or a marked state. Although such automata are not covered by regular language theory, they may occur in the implementation of automata algorithms. In contrast, the set based model does not have this problem. It is well suited for the projection algorithm. For both models, a supporting data structure is required for doing set inclusion tests with the projection alphabet.

As a conclusion, both models can execute the algorithm, but the linked list model may lose states and transitions (that are not required to generate the projected language) in memory. It should be noted, that this is just one version of many possible language projection algorithms.

3.2.3 Data Model Evaluation by Subset Construction

The conversion of a nondeterministic finite automaton into a deterministic finite automaton is an important topic in automata theory. The method for the conversion is called *subset construction*. It is heavily used in [Sch05b] and other approaches.

Definition 3.2.3 (Subset Construction [HU79]). For a given nondeterministic finite automaton $G_{nd} = (X_{nd}, \Sigma, \delta_{nd}, X_{0,nd}, X_{m,nd})$ a deterministic finite automaton $G_d = (X_d, \Sigma, \delta_d, x_{0,d}, X_{m,d})$ can be constructed such that $L_m(G_{nd}) = L_m(G_d)$ where

• $X_d := \left\{ S \subseteq 2^{X_{nd}} \mid S = x_{0,d} \lor \exists s \in \Sigma^* \text{ such that } S = \delta_d \left(x_{0,d}, s \right) \right\}$,

- $\delta_d(S,\sigma) = \bigcup_{x_{nd} \in S} \delta_{nd}(x_{nd},\sigma)$ where $S \subseteq 2^{X_{nd}}$,
- $x_{0,d} = X_{0,nd}$,
- $X_{m,d} = \{S \in X_d \mid \exists x_{nd} \in S \text{ such that } x_{nd} \in X_{m,nd}\}.$

This definition results in the following algorithm.

Abstract Algorithm (Subset Construction). [Les95]: Given a nondeterministic finite state automaton $G_{nd} = (X_{nd}, \Sigma, \delta_{nd}, X_{0,nd}, X_{m,nd})$.

```
/* Initialization is done by defining the set of initial states of the nondeterministic automaton as the initial state of the deterministic automaton */
```

```
S_1 := X_{0,nd}, X_d := \{S_1\}, x_{0,d} := S_1
last = 1
for i = 1; i \le last; i = i + 1 do
    for all \sigma \in \Sigma do
         /* Create empty temporary set */
         S := \emptyset
         for all x \in S_i do
              S = S \cup \{\delta_{nd}(x,\sigma)\} \text{ if } \delta_{nd}(x,\sigma)!
         end for
         if S \neq \emptyset then
              if \exists S_k \in X_d, 1 \leq k \leq last such that S = S_k then
                   Create transition \delta_d(S_i, \sigma) := S_k
              else
                   last = last + 1
                   S_{last} := S, X_d = X_d \cup \{S_{last}\}
                   Create transition \delta_d(S_i, \sigma) := S_{last}
              end if
         end if
    end for
    if \exists x \in S_i \mid x \in X_{m,nd} then
         X_{m,d} = X_{m,d} + \{S_i\}
    end if
end for
```

The new deterministic automaton is built of the nondetermistic one by constructing subsets (*power sets*) of X_{nd} which are linked by transitions. Initialization is done by putting the set of initial states of the deterministic automaton into a subset. From there
on a new subset is constructed every time there is an event that causes at least one transition (with this event) from the subset which does not link back into the subset again. Then a new subset is created of the set of successor states of these transitions. This way, all transitions that link from a subset and contain the same event are mapped to a single transition in the deterministic automaton. Marking of states in the deterministic automaton is then done by marking every subset that contains at least one state which is marked in the nondeterministic automaton.

Again the significant data access patterns that occur in a software implementation are identified for both automata models introduced before.

Data access patterns

Unlike the evaluation of parallel composition and language projection, the evaluation of subset construction is based on existing work. In [Les95] efficient approaches to subset construction are developed. This includes both optimized algorithms and optimized data structures. Different algorithm implementations are suggested for different orders of the number of states (among other data model independent parameters that will not be covered here for the sake of simplicity). As large numbers of states are common in RW theory, only the relevant results for this case are presented here.

The algorithm holds two main areas in which most of the computational time is spent:

- The first is in the transition loop, where transitions containing the current event are searched at every state in the subset. This seems optimizable as most likely the transitions at a state will contain only few events compared to the overall alphabet. A multiway merge algorithm that solves this problem is available in [Les95], however, the algorithm is not covered here as its implementation is independent of a specific automaton data model.
- The second area is the test for set existence and equality in *X_d* after a new subset was created. Here additional data structures are required to build the deterministic automaton:
 - States in the resulting deterministic generator consist of power sets of the

states of the nondeterministic one $(X_d \subseteq 2^{X_{nd}})$. This requires a set data structure to hold a set of states. [Les95] suggests implementing subsets as heaps [Knu98]. A heap is an array-based implementation of a special type of binary search tree, that is complete up to the lowest level which may not be completely filled.

- According to [Les95], for every subset a set signature is computed that supports set inclusion tests in X_d. The signature for a power set may not be unique but in set comparisons it must limit the number of possible matches to few sets compared to the overall number. Finding a good algorithm for computation of a signature for a power set heavily depends on the exact data type stored in the set and is not covered at this point.
- Comparing power sets requires a hash table to look up all the sets matching a given signature. Then X_d is implemented as an array of subsets with an associated hash table for set inclusion tests. It can also be directly implemented as a hashed set. If an array is used to store the subsets the array index can be used directly to implement the Index *i* used in the abstract algorithm.

In combination with the proposed data structures, the algorithm introduces the following data access patterns:

- Initialization is done by creating a subset that contains all initial states of the nondeterministic generator. The subset is hashed by its set signature and put into *X_d*.
- For every newly constructed deterministic state an iteration over all events in Σ is required.
- For every event in the alphabet iteration at first an empty power set is created. Then all transitions that contain the current event are followed by evaluating every state in the power set for transitions with the event from that state. Pointers to the successor states are then stored in the new power set.
- If the newly created power set is still empty, processing stops at this point and continues with the next event in Σ.

- For nonempty power sets it has to be determined if it is already contained in X_d :
 - Compute the set signature for the new set.
 - Look up the matching subsets in the hash table.
 - If one of the subsets is equal to the new set use the existing one for linking the transition in the next step. In the other case add the new subset to the array of subsets, store its array index in the hash table and mark the set as waiting.
- Finally, a transition in the deterministic automaton is introduced by linking the subset of the deterministic predecessor state with the subset of the deterministic successor state via the current event in the event loop.
- A subset in X_d has to be marked if one of its nondeterministic states is marked.

There exist many ways to build the new deterministic automaton in the original data model. The most convenient idea seems to be constructing the deterministic automaton on the fly by linking each new subset in X_d with a newly created state in the deterministic automaton. Transitions and marked states are then established in the usual way while the subsets are only used for constructing new deterministic states and set inclusion tests. It should be noted, that this is only possible because states in the deterministic automaton (in the original data model) are always accessed through their corresponding subsets and never the other way. So only unidirectional links from the subsets to their associated states are required.

At next these data access patterns are evaluated with both automata models.

Linked List Automaton Model

- Starting the algorithm is straight forward by creating a power set containing pointers to the set of initial states of the nondeterministic automaton. In the new deterministic automaton a initial state is created and a link established from the power set to the state. The set is put in the waiting list.
- While in the algorithm the deterministic automaton consists of subsets, that are

linked by transitions and can be marked, the way of constructing a deterministic linked-list automaton is different. Here a new linked list automaton (with the natural state objects the model provides) is constructed on the fly.

Processing a waiting power set causes the following data access patterns:

- Iterating over the alphabet of the automaton is straightforward.
- For every event in the alphabet iteration, at first an empty power set is created. Then for each event in the alphabet iteration all states in the set are evaluated for transitions that contain the current event. Therefore a sorting of the transitions by their events is required. For each transition that matches the current event, a pointer to its target state is stored in the newly created power set. This is simply done by copying the state pointer, held by each transition.
 - If the newly created power set is still empty, processing stops at this point and continues with the next event in Σ .
 - For a nonempty power set it has to be determined if it is already contained in X_d. This is done by a set signature test. If subsets in X_d have the same signature, these subsets have to be compared against the new power set. If no matching set is found, a new state is created in the deterministic automaton and a link established between the subset and the state.
 - At last the transition has to be added in δ_d by linking the predecessor power set and the successor power set with the respective event. This is directly done by creating a transition between the corresponding state objects both subsets respectively point to.
- For each new subset in *X_d*, it has to be determined, if at least one of its nondeterministic states is marked. For this all the states where the subset entries point to have to be evaluated for their respective marking flag. If a nondeterministic state is marked, the state in the deterministic automaton is marked.

Set Based Automaton Model

Algorithm initialization is simply done by copying the set of initial states of the deterministic automaton as a new power set into X_d. A new state is added to the set of states and the set of initial states of the deterministic automaton. A link between the power set and the state identifier of the created state has to be established. The new power set is added to the waiting list. From there on the waiting list is processed subset by subset.

Processing a subset includes the following data access patterns:

- Iteration over the alphabet is directly possible.
- A new empty power set is created for the current event. Then all transitions containing that event are followed for every state in the set. This is done by an iteration over the states in the (predecessor) subset. For each state the transitions from the state with the current event have to be searched in the set of transitions. This requires the set of transitions being sorted both by state and by event. For each matching transition the successor state is put into the new power set.
- For nonempty power sets, the procedure is nearly the same as in the linked list model. It has to be determined if the new set is equal to an existing subset in X_d. If the new set is unique, it is put into X_d and a new state identifier is created in the set of states of the deterministic automaton. Then a link is established between the subset and the state identifier.
- At last the transition in the deterministic automaton is added by adding a new transition object to the set of transitions. The new transition object contains the state identifier of the predecessor state, the event and the state identifier of the successor state.
- Every subset has to be tested for marking states to determine the marked status of its corresponding deterministic state. Therefore, the set of marked states of the nondeterministic automaton must be sorted.

Model Comparison

The evaluation of both data models has shown that the algorithmic implementation is straightforward for both data models up to the set inclusion tests for X_d with newly created power sets. Aside from small implementation details, namely the storage of either pointers to states or state identifiers in subsets, data access patterns for comparing new subsets with existing ones in X_d are identical for both automaton models. Again the transitions in the linked list automaton model were required to be sorted at each state while the set based model required the set of transitions being sorted by predecessor state and event.

The subset construction method concludes the data model evaluation by means of algorithms. At next the computational complexity of typical operations is investigated for both models.

3.2.4 Computational Complexity of Important Data Access Patterns

In this section the computational complexity of the most important data access patterns in the above algorithms is evaluated.

It is assumed that a sorted set is implemented as a balanced binary search tree [AHU⁺83, Knu98] with elements additionally being linked in order. In such a search tree finding an element never takes more than $O(\log n)$ steps, where n is the number of entries in the set. There may be other implementations for sorted sets that have a better average search complexity, but as most standard libraries of modern programming languages provide at least one implementation of a balanced binary search tree, this sorted set stype is used for evaluation.

The previously analyzed algorithms have shown that the transitions have to be sorted. For the linked list model it is assumed, that transitions at each state are sorted in the order of their events first and successor states next. For the set based model an ordering by predecessor states, events and successor states of the set of transitions is assumed. In addition an ordering of the set of marked states is assumed for the set based model. For a given automaton $G = (X, \Sigma, \delta, X_0, X_m)$ the number of states is denoted x, the number of transitions t and the number of (local) transitions that link from a given state t_l .

As the evaluation of the three methods above has shown, the most important access patterns deal with accessing the transition relation of an automaton. Therefore the typical transition access operations are evaluated. In addition the test for the marking status of a state is investigated.

Find all transitions that link from a given state

- Linked List Model
 - For a given state the transitions that link from this state can be directly accessed. Therefore the complexity for finding the first transition is O(1). Accessing the next transition at the state requires one step. So accessing all transitions linking from a state has the complexity $O(t_L)$.
- Set Based Model
 - Searching for the first transition that matches a given state causes a maximum of $\log t$ steps. Therefore the complexity is $\mathcal{O}(\log t)$ for finding the first element. If more than one transition links from the state accessing the next transition causes one step. So accessing all transitions linking from the state is of complexity $\mathcal{O}(\log t + t_l)$ where $\log t + t_l < t$.

Find all transitions that link from a given state and contain a specific event

- Linked List Model
 - For a given state, the transitions linking from that state can be directly accessed. So a search of order O (log t_l) is required. If the state holds more than one transition with the event, accessing the next transition requires one step. Let *e* be the number of transitions containing the event. Then the complexity of accessing all matching transitions is O (log t_l + e) where log t_l + e < t_l.

- Set Based Model
 - The search for the first element that matches the predecessor state and the event requires a maximum of log *t*. All further transitions that hold the state and the event are incrementally accessible with one step each. Let *e* be the number of transitions containing the event. So the overall complexity is O (log *t* + *e*) where log *t* + *e* < *t*.

Find all transitions that link to a given state

Let t_r be the number of transitions that link to a given state.

- Linked List Model
 - According to the model definition, pointers to states are implemented bidirectional. Thus, the first transition linking to a state is directly accessible with $\mathcal{O}(1)$. Accessing the next transition linking to the state requires one step. This results in the overall complexity $\mathcal{O}(t_r)$.
- Set Based Model
 - The transition relation is sorted in the order predecessor state event successor state. From this it follows that finding all transitions linking to a state always requires *t* steps. The complexity then is O(t). This suggests a reordering of the transition relation by successor state, event and predecessor state if this access pattern required several times in an algorithm. Then the complexity for finding all matching transitions is $O(\log t + e)$ as stated before.

Find all transitions that link to a given state and contain a specific event

Let t_r be the number of transitions that link to a given state.

- Linked List Model
 - Because of the bidirectional implementation of the state pointers in transitions, direct access to the transitions is possible. Then finding all transitions

that contain the event requires $\log t_r$ steps. Therefore the order of complexity is $\mathcal{O}(\log t_r)$ for finding all matching transitions.

- Set Based Model
 - The complexity is exactly the same as in the case of finding all transitions that link to a given state. Again a complete search through the transition relation with complexity O(t) is required here.

Marking Status Test

Testing the marking status of a given state is an important operation required in nearly all SCT algorithms.

- Linked List Model
 - Testing the marked status of a given state simply requires evaluating the marking flag at the state object and therefore is of order O(1).
- Set Based Model
 - To test a given state for its marking status a search in the sorted set of marked states is required. Let x_m be the number of marked states in the automaton. Then the complexity for determining the marked status is O (log x_m).

Model Comparison

The evaluation has shown, that the linked list model takes big advantage of its transitions being directly accessible at each state. Therefore algorithms that traverse the linked transition structure of an automaton will be faster with a linked list automaton model than with a set based model. The marking status test for a state has also shown the linked list model requires less computational steps here.

However, it is important to note, that SCT algorithms often strongly depend on the efficiency of supporting data structures. For this reason the complexity evaluation of the access patterns can only be seen as a synthetical benchmark for the raw performance

of the models. Therefore the results of the performance evaluation may only be used as an additional criterion in relation to the evaluation by algorithms.

3.2.5 Conclusion

Two basic automata data models have been evaluated with three methods commonly used in supervisory control theory. The evaluation started with the parallel composition method followed by the language projection method and ended with the subset construction. For every method an abstract algorithm was presented. Then the algorithm was used to explore the data access patterns that occur in a software implementation of the algorithm. These data access patterns were finally evaluated for both data models, followed by a short conclusion for each method. In addition important data access patterns were analyzed for their computational complexity with both models.

While the overall evaluation by SCT methods has shown that all three algorithms can be implemented with both data models, the evaluation of the projection method revealed an important weakness of the linked list model. The linked list model is unable to handle a fragmented transition relation or states that have no transition link to either the initial states or the marked states. Such an automaton cannot be generated by marking a given language, but may emerge in automata algorithms. Therefore the evaluation by algorithms has given a preference for the less restrictive set based automaton data model. In contrast, the complexity evaluation of data access patters has shown, that the linked list model requires less computational steps in important access patterns that can be often found in loops of SCT algorithms.

The evaluation has further shown that a more detailed specification is required for both automata models to fulfill the requirements of computation in SCT. For the linked list model, a sorting of the transitions by their respective events is required. This holds as well for the set based model, where the set of transitions must be sorted by predecessor state, events and maybe by successor state.

As a conclusion the linked list model provides faster computational performance but is restricted to a linked state structure while the set based model has no restrictions at all but provides less computational performance.

A different approach for the modelling of finite automata in software is using binary decision diagrams (BDDs). This is presented in [ZW01]. Binary decision diagrams enable a memory saving representation of finite automata. However, this is still an action of research, since only few supervisory control methods are known to be implemented by using BDDs. Therefore the implementation of algorithms for SCT using BDDs is not covered in this thesis.

3.3 **Basic Automaton Implementation**

The evaluation of the linked list automaton model and the set based automaton model has shown a preference for the set based model in terms of flexibility. As the main goal of this thesis is to provide a software library for RW control theory, that can be easily extended to other theoretical approaches, the abstract set based model is used as the basis for specifying the real implementation of an automaton.

At first the specification of the set based automaton model is developed in Section 3.3.1 by discussing important aspects regarding the implementation of event identifiers and state identifiers. To keep the implementation of the automaton class and the algorithms that operate on this class independent of the details of a specific programming language, abstract data types (ADT) are introduced in Section 3.3.2. These abstract data types are used in subsequent chapters when specifying the algorithms for all methods covered in the thesis. Section 3.3.3 then finally introduces the implementation of the object orientated automaton class along with its basic functions.

3.3.1 Automaton Model Specification

Several important aspects of implementing an automaton software model that is both well suited for computation and user friendly are discussed. In this section, the results the specification of the data model is given.

Event Identifiers and State Identifiers

At first the definition of the event identifiers and the state identifier data types, used in the abstract model is required for the real implementation. Both event identifiers and state identifier data types must be able to hold different entries in the order of millions. For fast set inclusion tests, comparing two identifiers should be an operation that requires as less computational steps as possible. Both requirements are very well fulfilled by using the natural integer data type of the used computer architecture for the representation of state and event identifiers. The natural integer data type of a computer architecture is usually specified by the data type int.

As DES usually are modelled by more than one automaton, for events the assigned numbers must be consistent in all automata, that share the events. This requires that a modelled event must be uniquely numbered within all automata sharing the event. In contrast state numbers have no relation between different automata, as the generated language of automata is independent of any state identifiers. So integer state numbers must only be unique within an automaton.

Such a representation of states and events by integer numbers is not very user friendly. Especially when modelling real world DES it is required to know, which real world events correspond to an event number in the model and what is the meaning of a state number in the real world system. Therefore, a mapping between symbolic names and integer numbers is required for both events and states. This is discussed at next.

Symbolic Event Names

If several automata operate on shared events, the set of shared events will be called an *event domain*. If an event is added to the alphabet of an automaton and the event is already known in the domain, the matching event number must be added to the alphabet of the automaton. From the user input, an event most likely will be added by a symbolic name, that corresponds to a specific integer number. Then the number of the event is not known at first because the automaton does not have any information about mappings between symbolic event names and event numbers. This problem is solved by an entity outside the automata that assigns integer numbers to symbolic names and looks up the numerical index of a symbolic event name for all automata. The properties of such an entity are stated as follows:

- Each time a new event is added to any automaton alphabet in the same event domain, a new unique integer index is assigned to the event. This can be implemented by a counter initialized with 0 that is incremented each time a event is added where the incremented value is assigned as the integer number of the event.
- The entity holds a mapping of event numbers to the symbolic names of the events. For convenience a mapping of symbolic event names to the respective integer numbers can be provided to accelerate the number lookup for a given event symbol. Providing such a reverse mapping is uncritical for memory usage, as the number of events is usually small compared to the number of states or transitions in an automaton.
- Symbolic event names have to be unique.
- When an event is deleted from the alphabet of an automaton, it is not removed from the entity.

Such an entity that provides unique event indices with maps for looking up event numbers by symbolic event names as well as looking up symbolic event names by event numbers is denoted an *eventsymboltable*.

Symbolic State Names

Analogous to event numbers, states may also be assigned symbolic names. By nature of the state identifiers, symbolic state names must only be unique within an automaton, while several automata may contain states with different state numbers but sharing the same symbolic name.

Here, a possible performance problem emerges from the execution of algorithms that construct a new automaton input from existing automata. As an example, the parallel composition method builds a new automaton, where each state in the resulting automaton represents a state in each of the two input automata. If the symbolic state names in the resulting automaton should represent the symbolic state names in the input automata, then for each state in the new automaton a string operation is required that constructs a symbolic state name the corresponding two state names in the input automata. This slows down the computation process and increases memory usage. Another example for the problem is subset construction, where states in the deterministic automaton consist of subsets of states of the nondeterministic automaton. So symbolic state names in the deterministic automaton must contain the names of all the states in their corresponding subset of nondeterministic states.

A solution for this problem, that addresses the decrease of computational performance as well as the increasing memory usage is difficult to find, as there is no direct mapping of a integer state number in the output automaton to the integer state numbers in the input automata. However, several approaches are possible to solve the problem partially:

- Symbolic state names for the resulting automaton are computed depending on the size of the input automata. The size can be specified e.g. by the number of states or transitions.
- Each implementation of an algorithm that constructs a new automaton has a binary parameter that turns on the computation of state names in the resulting automaton. This leaves the decision of computing symbolic state names to the user. Also the automaton model may have such a binary flag. Then, if one of the input automata of an algorithm has the flag set to not compute state names, this holds for the constructed automaton, too.
- Some algorithms allow computing symbolic names at the end of the algorithm without any performance tradeoffs. This is possible for every algorithm that requires holding a data structure, that maps states in the new automaton to states in the input automata until the algorithm finishes. Then at least the computational performance of the algorithm is not decreased if state name computation is not requested.
- Additional data structures can be used to store mappings of state numbers in new

automata to state numbers in input automata. Then the symbolic state name of an automaton can be computed on demand. This also has the advantage, that the formatting of the symbolic state name string can be adjusted on request, which may be an interesting feature in a graphical user interface. Also this enables to rename states in the new automata that are constructed by an algorithm, while still being able to resolve the corresponding states in the input automata of the algorithm. The problem here consists in developing a data structure that can hold state mappings for different algorithms.

All approaches have in common that they do not really solve the problem. As a conclusion the best solution seems to be a combination of the last three approaches by providing additional data structures to store state mappings for the most important algorithms (that create new automata) and additionally allow the direct computation of symbolic state names in each algorithm on user demand.

Storage of Symbolic State Names

It was already shown that events require an entity outside any automaton model to manage the relation between symbolic event names and event numbers. For states such an extern entity is not directly required, as state numbers in different automata have no relation to each other. To develop an appropriate specification for the storage of symbolic state names, the advantages and disadvantages of storing symbolic state names locally in each automaton are investigated.

Local storage of symbolic state names within an automaton is easy to implement. This just requires each entry of the ordered set of states to have an additional link pointing to a string object, that contains the symbolic name of the state. The string is empty, if a state has no symbolic object associated. Another implementation could be to have an additional map object in the automaton that maps state indices to symbolic names. A map from symbolic names to state numbers should only be created when reading a file, as a complete search through all symbolic names for finding its index is fast enough for user interactions and holding.

Therefore, storing symbolic state names locally in an automaton is a good solution for

directly computing state names in algorithms. This approach requires an automaton to have an integer state index counter for assigning a unique state number when creating a new state in the automaton.

Mapping state numbers in constructed automata to their corresponding state numbers in the original automata then additionally requires storing a pointer to the automaton with each with a state number, which increases memory usage. Therefore a solution that doesn't require accessing an automaton for looking up the symbolic name of a state is better suited at this point.

Using additional data structures for mapping states in resulting automata to states in input automata of an algorithm is appropriate for a software library, that is developed for general use in different supplementary software projects. For being able to implement such additional data structures, a different approach is required for the storage of symbolic state names. Here the mapping of state numbers to symbolic names must be implemented outside the automaton, similar to the handling of symbolic names for event numbers.

Therefore, a solution to handle symbolic state names by an entity located outside of automata objects is specified as follows:

- State numbers have to be globally unique. To enforce this restriction, an integer type counter can be used to always assign the next larger integer value to a new-ly created state in an automaton in the event domain. The counter is initialized with 0 and incremented any time a new state number is assigned. Each time a new state is added to an automaton, the next available state number is requested from the entity and associated with the state. As the highest possible value of an unsigned integer on a 32bit computer architecture is 4294967296, there are enough free indices to assign¹.
- For storing symbolic state names, a mapping of integer numbers to symbolic state names is required. The same name may be associated with different state numbers, as long as the numbers correspond to states in different automata. A search for the number of a symbolic name is done by a complete search through the map

¹For very special applications, the integer range may not be large enough. Then there is always the option to choose a integer type of double int length.

with restricting the result to state numbers in the respective automaton. This is fast enough for user interactions in any case. An additional mapping of symbolic names to numbers is only required for reading large automata from the filesystem, as resolving each symbolic state name in the file by a search through the complete map may require too much computation.

- If a state in an automaton is deleted, the state must be removed from the map. If a whole automaton is deleted then all state numbers in the automaton must be deleted in the map.
- As some algorithms may require operations on duplicates of an automaton or on a duplicated part of the automaton, it must be possible to create temporary copies of an automaton that contain the same state numbers. The deletion of the automaton copy may involve automatic state name deletion. Therefore a copy counter is required for each automaton so only when the last instance of an automaton is deleted, symbolic state names are removed from the map.

An entity that provides globally unique state numbers and a mapping of state numbers to symbolic names is denoted a *statesymboltable*.

With the results of this section the data structure of the automaton model can be specified.

Specification of the Automaton Data Structure

The data structure of the 5-tuple automaton $G := (X, \Sigma, \delta, X_0, X_m)$ is specified as follows:

- The set of states *X* is implemented as a sorted set of integer indices that are unique within an event domain.
- The alphabet Σ is implemented as a sorted set of integer indices that are unique within an event domain.
- The transition relation δ consists of a sorted set of unique transition objects. Each transition object holds the integer index of a predecessor state, the integer index of

an event and the integer index of a successor state. The set is sorted by predecessor state first, event next and last by successor state. The transition objects may only contain state indices of X and event indices of Σ .

- The set of initial states *X*⁰ is implemented as a sorted set of integer indices that must be contained in *X*.
- The set of marked states *X*_m is implemented as a sorted set of integer indices that must be contained in *X*.

In addition, the automaton data structure contains the following objects:

- A pointer (or reference) to an *event symbol table* object as specified before.
- A pointer (or reference) to a *state symbol table* object as specified before.
- A integer type counter for copys of the automaton object. The counter is initialized with 0 and incremented or decremented each time a unique copy of the automaton object is created or deleted. If an automaton object is deleted and its copy counter is 0, then the state symbol table is cleared from state indices contained in *X*. The copy counter has to be shared by all copies of an automaton object.

Every time an event is added to Σ by its symbolic name the event symbol table is used to look up its integer index that will be stored. If the symbolic event name is unknown in the event symbol table a new integer index is created and stored in the symbol table. When a new state is added to X, a new unique index is requested from the state symbol table that is then stored in X. New states can be optionally added by specifying a symbolic state name. Then a new unique index is created for the name and stored in X.

At next abstract data types are used to describe the implementation of the automaton class.

3.3.2 Abstract Data Types

According to the results of Section 3.2, the set of transitions and the set of marked states must be sorted. This requires the specification of an abstract data type (ADT) for a sorted

set. In addition the ADTs map, vector and stack are introduced for the specification of the automaton model in the next section and the notation of algorithms in subsequent chapters. For all ADTs an implementation can be found in nearly all standard libraries of modern object orientated programming languages¹. If a programming language does not provide ADTs, abstract implementations of the most important ADTs can be found in [AHU⁺83, Knu98]. An ADT that is used to store an amount of data is also often called a *container*.

In the algorithm implementations the methods of an ADT will be denoted by the ADT object as the first variable.

Before specifying the container ADTs, the Iterator ADT is introduced. An iterator is an abstract object that holds a position in a container ADT by hiding implementation details of the container. Most containers have methods that return iterators to access the data at a position. Iterators can also be incremented to access the next position. The (virtual) next position after the last element is specified by the End method, if defined for the container.

Pair

The Pair ADT specifies a pair of two values. A pair by a Pair<TypeFirst, TypeSecond> statement, where TypeFirst specifies the type of the first value, while TypeSecond specifies the type of the second value. The values stored in a Pair are directly accessed by specifying the Pair object in conjunction with first or second separated by a dot.

Set

The ADT Set specifies an ordered set of values. A set is created by a Set<Type> statement, where Type specifies the data type stored in the set. The data type must

¹However only implementations that store values in their natural data type should be used. If an implementation of an ADT stores values encapsulated in abstract objects this requires a cast of the object into the real type at each access, which may slow down computation speed enormously.

have a defined order. A set may not have any duplicates. Incrementing a set iterator causes the iterator to move to the next element in the sorted range.

Usually a set is implemented as a balanced binary search tree. Then accessing an element requires a maximum of $\log n$ steps, where n is the number of elements in the set.

The primary methods of a set are:

- Insert(element) Inserts an element.
- Erase(element) Erases an element.
- Begin Returns an iterator to the first element or to the end of the set if the set is empty.
- End

Returns an iterator to the end of the set.

• Find(element)

Searches for an element and returns its position in the set by an iterator.

- Exists(element) Searches for an element and returns True or False.
- Size

Returns the number of elements in the set.

• Empty

Returns True or False if the set is empty or not.

• Clear

Clears all set entries.

Map

The ADT Map specifies an ordered set of keys where each key has an associated value. A map is created by a Map<KeyType, ValueType> statement, where KeyType specifies the data type of the search keys and ValueType specifies the data type of the associated values. The search key data type must have a defined order and there may be no duplicate keys. The set only allows direct search for keys, not for values. Incrementing a map iterator causes the iterator to move to the next element in the sorted range.

Analogous to the Set ADT, a Map usually is usually implemented as balanced binary search tree with the computational complexity $O(\log n)$ for accessing a set with cardinality n.

The primary methods of a map are:

• Insert(key,value)

Inserts a key with an associated value.

- Erase(key) Erases a key with its associated value.
- Begin

Returns an iterator to the first element or to the end of the map if the map is empty.

• End

Returns an iterator to the end of the map.

• Find(key)

Searches for a key and returns its position in the map by an iterator.

• Exists(key)

Searches for a key and returns True or False.

• Size

Returns the number of elements in the map.

• Empty

Returns true or false if the map is empty or not.

- Clear Clears all set entries.
- Lookup(key)

Returns the value of the key at a specific position.

In addition, value pairs in a Map object can be set and retrieved by the [] operator and be used like the Pair ADT introduced before. For the symbolic notation of algorithms the set of keys in a map will be denoted by the statement Keys().

Vector

The ADT Vector specifies a resizeable, unsorted array, in which elements are accessible by their positional index. A vector is created by a Vector<Type> statement, where Type specifies the data type that is stored in the vector. To access the data at an index the name of the vector variable is specified with the positional index attached within the [] operator by *object* [*index*]. The Vector type provides fast random access, but inserting new elements in the middle of the vector requires all following elements being copied to higher positions. Incrementing or decrementing a vector iterator causes the iterator to move to the next or previous positional index.

Aside from accessing elements by the [] operator, the primary methods of a vector are:

• Begin

Returns an iterator to the first index position. If the vector is empty the end of the vector is returned.

• End

Returns an iterator to the end of the vector.

• Push_Back(element)

Inserts a new value at the end of the vector.

• LastIndex

Returns the position index of the last stored element (the size of the vector may be bigger).

• Size

Returns the current size of the vector.

• Empty

Returns True or False if the vector is empty or not.

• Resize

Resizes the vector to a given number of element positions. This may delete existing elements if the vector is downsized.

• Clear

Removes all elements in the vector and sets its size to zero.

Stack

The Stack ADT specifies a stack of elements where only the the top element is accessible. A stack is created by a Stack<Type> statement, where Type specifies the data type that is hold in the stack. The stack does not provide iterators.

The primary methods of a stack are:

• Push

Puts an element on top of the stack.

• Pop

Retrieves the topmost element and deletes it from the stack.

• Get

Retrieves the data value of the topmost element.

• Empty

Returns True or False if the list is empty or not.

• Clear

Removes all elements from the stack.

Using the ADTs defined above, the automaton data model implementation is introduced.

3.3.3 Basic Generator Class Implementation

In this section the implementation of the specified automaton data model as an object orientated class is presented. The class is called *Generator* as also other types of automata are known that do not generate and mark a regular language.

At first further ADTs are introduced. The EventSet ADT holds an ordered set of event indices of the type integer and implements the alphabet object of an automaton as specified in Section 3.3.1. In contrast the StateSet ADT holds an ordered set of different state indices of the type integer. For a more general representation the type integer is defined as Idx, as every event and every state is specified to have an unique index within an event domain. Then an EventSet holds events of type Idx and a StateSet holds states of type Idx. To support symbolic event names and state names the ADT classes EventSymbolTable and StateSymbolTable will be used. Transitions are represented by objects of the class Transition, which is stored in the ADT TransSet. This holds a sorted set of Transition objects. A sorting order for the transitions can be specified on creation of a TransSet object. The Generator finally consists of a composition of objects of these classes.

EventSet

The EventSet ADT consists of a Set<Idx> and contains an additional pointer to an EventSymbolTable object that ensures that event indices and symbolic event names are handled consistently in a domain. In algorithms it will be denoted by the alphabet symbol Σ . Its basic methods are:

• InsEvent(event)

Puts an event in the set. The event can be specified by either Idx or symbolic name.

• DelEvent(event)

Removes an event from the set. The event can be specified by either Idx or symbolic name.

• ExistsEvent(event)

Tests if a event is included in the set. The event can be specified by either Idx or symbolic name.

In algorithms the methods on EventSet objects will be stated in set notation by \cup , \setminus and \in .

StateSet

The StateSet ADT consists of a Set<Idx> and contains an additional pointer to a StateSymbolTable object which provides unique state indices and symbolic state names for an event domain. In algorithms the StateSet will be denoted by the symbol *X*. Its basic methods are:

• InsState(), InsState(name)

Gets the next larger state index from the StateSymbolTable object and puts it in the set. The name parameter is optional and can associate a symbolic name with the new state index.

• DelState(state)

Deletes an index from the set. If the index had a symbolic name associated its entry is removed from the StateSymbolTable object. The state parameter may by specified by either Idx or symbolic name. In the latter case a name lookup of all indices in the set may be required to find the corresponding state index.

• ExistsState(state)

Tests if a state is included in the set. The state parameter may by specified by either Idx or symbolic name. In the latter case a name lookup of all indices in the set may be required to find the corresponding state index.

Analogous to the EventSet, in algorithms operations on StateSet objects will be stated in set notation by \cup , \setminus and \in .

To support subset construction another method is required:

• Signature()

This method computes a set signature to accelerate algorithms that compare sets of states. In [Les95] a proposal is given for computing such a set signature. In the practical implementation of the library the simple SIGNATURE function stated in Figure 3.5 is used.

```
function SIGNATURE(X)

Idx sig := 0

int i := 1

for all x \in X do

sig := sig + x * i

i := i + 1

end for

return sig

end function
```

Figure 3.5: Simple set signature

Transition

Transitions are stored in objects of the ADT Transition. A Transition object contains three members of type Idx. The predecessor state is stated by x1, the event by evand the successor state by x2, which also corresponds to the algorithmic notation. Access to the members will be denoted by transition object name and member, separated by a dot.

TransSet

The TransSet ADT consists of a Set<Transition>. The set order can be specified by an optional parameter TransSet<SortType> at the creation of a TransSet, where SortType is self explanatory. The sort types of SortXlevX2, SortXlx2ev, SortevX1x2, SortevX2x1, SortX2x1ev or SortX2evX1 are used. When no order is specified, the default order SortXlevX2 is used. In algorithms a TransSet is specified by the transition relation symbol δ . Its primary methods are:

- SetTransition(x1, ev, x2), SetTransition(t)
 Adds a new Transition object to the set, either be specifying the indices of the states and the event or by specifying an existing Transition object t.
- DelTransition(x1, ev, x2), DelTransition(t) Removes a transition from the set.
- Transitions(x1)

Returns an iterator to access all transitions with predecessor state x1 in order. The method may only be called if Sortx1evx2 or Sortx1x2ev was specified as set order.

• Transitions(x1,ev)

Returns an iterator to access all transitions with predecessor state x1 and event ev in order. The method may only be called for a Sortxlevx2 set ordering.

```
• TransitionsByx2(x2)
```

Returns an iterator to access all transitions with successor state x2 in order. The method is only valid for a Sortx2evx1 and Sortx2x1ev set ordering.

• TransitionsByx2ev(x2,ev)

Return an iterator to access all transitions with successor state x2 and event ev in order. The method is only valid for a Sortx2evx1 set ordering.

In terms of TransitionsByx2 and TransitionsByx2ev for every sorting order access methods are defined to retrieve iterators for parts of a respectively sorted set of transitions.

In algorithms the methods are stated by providing the respective TransSet object as a parameter in front of the method parameters, e.g.

```
t \in \text{Transitions}(\delta, \text{x1})
```

denotes an iteration over all transitions of δ that have a predecessor state x1.

EventSymbolTable

The EventSymbolTable ADT is not directly used in algorithms, but required by EventSet objects for the management of symbolic event names. The associations between indices and symbolic names is hold by two maps. A Map<Idx, string>¹ object holds associations from indices to names and a Map<string, Idx> object the associations from names to indices. The type string represents the symbolic name type of a programming language. A Idx type counter is used to provide the next unused unique event index. It has the following main methods:

• InsEvent(name)

This returns a new unique event index and stores the association in its internal maps. Events have always to be added by providing a symbolic name.

• Name(index)

Returns the symbolic name for an existing index.

• Index(name)

Returns the event index for a symbolic name.

Once created indices stay as long as the EventSymbolTable object exists. The methods of an EventSymbolTable object usually will be called indirectly by an EventSet, when calling an EventSet method.

StateSymbolTable

The StateSymbolTable ADT is the counterpart to the EventSymbolTable and provides similar services for states. In difference it only holds a Map<Idx, string> to store mappings from state indices to symbolic names while providing no reverse

¹For optimized performance also a Vector<string> can be used if Idx is compatible with the Vector index type. However the more general Map solution is used here.

lookup. It also contains an Idx type counter to provide unique state indices. Its main methods are:

• InsState(), InsState(name)

This returns a new unique state index and optionally stores an associated symbolic name in the internal map.

• DelState(index)

This searches for the index in the map and deletes its entry. If the index has no name associated nothing happens.

• Name(index)

Returns the symbolic name for a state index.

The methods of the statesymboltable usually will be only called by StateSet objects that request a new state index or look up the symbolic name of a state index.

Generator Class

With the stated ADTs the Generator class that implements a software model of the 5-tuple automaton $G := (X, \Sigma, \delta, X_0, X_m)$ defined in Definition 2.1.2 is developed as shown in Figure 3.6. Note that the * at the EventSymbolTable and StateSymbolTable, which denotes a pointer to an object outside of the Generator. Within an event domain all Generator objects point to the same EventSymbolTable and StateSymbolTable object.

While in algorithms, all operations are stated by directly using the objects contained in a Generator, a programming language implementation of the Generator class usually encapsulates all inner objects. The practical part of this thesis follows these programming guidelines.

Generator
StateSet X
EventSet Σ
TransSet δ
StateSet X_0
StateSet X_{M}
EventSymbolTable* e
${\tt StateSymbolTable*}\ s$

Figure 3.6: Generator class

Chapter 4

Algorithms for Regular Languages and Finite Automata

In this chapter, algorithms for regular languages and finite automata are implemented with the Generator class and the abstract data types introduced above.

The notation of algorithms is as follows:

- Function parameters are denoted G^{index} instead of G_{index} while both means the same.
- Every function parameter called by reference¹, is denoted by a & after the parameter name.
- The methods of ADTs are stated in Typewriter font. The first parameter of each method is always the object itself.
- Multiple statements within one line are separated by a semicolon.
- The subscript of a generator variable corresponds to the subscript of its members.
 E.g. X_{sub}, Σ_{sub}, δ_{sub}, X_{0,sub} and X_{m,sub} correspond to the generator G_{sub}.

¹This means that the function operates on the object itself and not on a copy of the object.

4.1 Language Operations

4.1.1 Parallel Composition

The parallel composition is a language operation as well as an automaton method. It was already defined in Definition 3.2.1. The algorithm implemented for the Generator class is stated as follows.

Algorithm 4.1 (Parallel Composition). The parallel composition of two given automaton $G_1 = (X_1, \Sigma_1, \delta_1, X_{0,1}, X_{m,1})$ and $G_2 = (X_2, \Sigma_2, \delta_2, X_{0,2}, X_{m,2})$ constructs the automaton $G_{1||2} := (X_{1||2}, \Sigma_1 \cup \Sigma_2, \delta_{1||2}, X_{0,1} \times X_{0,2}, X_{m,1||2})$ such that $L(G_{1||2}) = L(G_1) \parallel L(G_2)$ and $L_m(G_{1||2}) = L_m(G_1) \parallel L_m(G_2)$. The synchronous product of two languages is defined in [Won04, CL99].

The following algorithm is a proposal by T. .

1: function PARALLEL(Generator $G_{\&}^1$, Generator $G_{\&}^2$, Generator $G_{\&}^{1\parallel 2}$, map<pair <Idx, Idx>, Idx> $RCMap_{\&}$)

```
2: /* Local variables */
```

- 3: Stack<Pair<Idx, Idx>> X_{waiting} /* Stack of state index pairs */
- 4: Pair<Idx, Idx> $p_{current}$, p_{new} /* State pairs */
- 5: Idx x_{tmp} /* Temporary state index */
- 6: EventSet $\Sigma_{shared} := \Sigma_1 \cap \Sigma_2 /*$ The shared alphabet */
- 7: /* Initialization */

```
8: for all (x_1, x_2) \in X_{0,1} \times X_{0,2} do
```

```
9: Push (X_{waiting}, (x_1, x_2))
```

```
10: end for
```

16:

```
11: /* Start */
```

```
12: while X_{waiting} \neq \emptyset do
```

```
13: p_{current} := \text{Pop}(X_{waiting})
```

```
14: /* Iteration over all transitions at current state in G^1 */
```

```
15: for all t_1 \in \text{Transitions}(\delta_1, p_{current}, \text{first}) do
```

```
/* If the event of the current transition is not shared */
```

```
17: if t_1 \cdot x_1 \notin \Sigma_{shared} then
```

```
18: p_{new} := (t_1 \cdot x^2, p_{current} \cdot \text{second})
```

```
19: if p_{new} \notin \text{Keys}(RCMap) then
```

```
20: push (X_{waiting}, p_{new})
```

```
21: x_{tmp} := \text{InsState}(X_{1\parallel 2})
```

22:	$RCMap\left[p_{new}\right] := x_{tmp}$
23:	else
24:	$x_{tmp} := RCMap\left[p_{new}\right]$
25:	end if
26:	<code>SetTransition</code> ($\delta_{1\parallel 2}$, $RCMap\left[p_{current} ight]$, t_{1} . ev , x_{tmp})
27:	/* If the event of the current transition is shared */
28:	else
29:	for all $t_2 \in$ Transitions (δ_2 , t_1 .ev) do
30:	$p_{new} := (t_1 \cdot \texttt{x2}, t_2 \cdot \texttt{x2})$
31:	if $p_{new} \notin \texttt{Keys}\left(RCMap ight)$ then
32:	push($X_{waiting}$, p_{new})
33:	$x_{tmp} := \texttt{InsState}\left(X_{1\parallel 2} ight)$
34:	$RCMap\left[p_{new}\right] := x_{tmp}$
35:	else
36:	$x_{tmp} := RCMap\left[p_{new}\right]$
37:	end if
38:	SetTransition($\delta_{1\parallel 2}$, $RCMap\left[p_{current} ight]$, t_1 .ev, x_{tmp})
39:	end for
40:	end if
41:	end for
42:	/* Iteration over all transitions at current state in G^2 */
43:	for all $t_2 \in$ Transitions (δ_2 , $p_{current}$.second) do
44:	/* If the event of the current transition is unshared */
45:	if $t_2 . ev \notin \Sigma_{shared}$ then
46:	$p_{new} := (p_{current}.first, t_2.x2)$
47:	if $p_{new} \notin \texttt{Keys}\left(RCMap ight)$ then
48:	<code>Push</code> ($X_{waiting}$, p_{new})
49:	$x_{tmp} := \texttt{InsState}\left(X_{res} ight)$
50:	$RCMap\left[p_{new}\right] := x_{tmp}$
51:	else
52:	$x_{tmp} := RCMap \left[p_{new} \right]$
53:	end if
54:	end if
55:	end for
56:	/* Mark states in $G^{1\parallel 2}$ */
57:	for all $x_1 \in X_{m,1}$ do
58:	for all $x_2 \in X_{\mathrm{m},2}$ do
59:	$\mathbf{if}(x_1,x_2)\in \mathtt{Keys}\left(RCMap ight)$ then
60:	$X_{m,1\ 2} := X_{m,1\ 2} \cup \{RCMap\left[(x_1, x_2)\right]\}$

61:	end if
62:	end for
63:	end for
64:	end while
65:	end function

Note: The map RCMap, given as a reference parameter in the function, can be used for constructing state names of $G_{1\parallel 2}$ on demand as proposed in Section 3.3.1. If this is not required a convenience PARALLEL function can be created that hides the parameter.

4.1.2 Projection

The natural projection is defined in Definition 3.2.2. The algorithm resembles the abstract algorithm provided in Chapter 3.

Algorithm 4.2 (Projection). Given a finite automaton $G = (X, \Sigma, \delta, X_0, X_m)$ and a projection alphabet $\Sigma_0 \subseteq \Sigma$. The function PROJECT applies the projection $p_0 : \Sigma^* \to \Sigma_0^*$ directly on the automaton G. In addition, a helper function COMPACCREACH (compute accessible reach) is given that computes the states that are reachable by invisible transitions (meaning $t \cdot ev \notin \Sigma_{proj}$) from a given state.

Let G_0 be the resulting automaton of a function call PROJECT(G, Σ_0). Then $L(G_0) = p_0(L(G))$ and $L_m(G_0) = p_0(L_m(G))$.

```
1: function PROJECT(Generator G_{\&}, EventSet \Sigma_{\&}^{0})
```

```
2: /* local variables */
```

```
3: StateSet X_{reach} /* reachable states */
```

```
4: Stack<Idx> X<sub>waiting</sub>/* waiting list */
```

```
5: StateSet X<sub>done</sub> /* processed states */
```

```
6: Idx x<sub>current</sub> /* current state */
```

```
7: /* start */
```

```
8: for all x \in X_0 do
```

```
9: Push (X_{waiting}, x)
```

```
10: end for
```

```
11: while X_{waiting} \neq \emptyset do
```

```
12: x_{current} := \text{Pop}(X_{waiting})
```

```
13: X_{done} := X_{done} \cup \{x_{current}\}
```

```
/* compute accessible reach local paths<sup>1</sup> */
14:
             COMPACCREACH(G, \Sigma^0, X_{reach}, x_{current})
15:
             for all t \in \text{Transitions}(\delta, x_{current}) do
16:
                  if t \cdot ev \notin \Sigma^0 then
17:
                      DelTransition (\delta, t)
18:
                  end if
19:
             end for
20:
21:
             for all x_{reach} \in X_{reach} do
                  for all t \in \text{Transitions}(\delta, x_{reach}) do
22:
                      if t \cdot ev \in \Sigma^0 then
23:
                           SetTransition (x_{current}, t.ev, t.x2)
24:
                           if t \cdot x^2 \notin X_{done} then
25:
26:
                                Push (X_{waiting}, t.x2)
                           end if
27:
                      end if
28:
                  end for
29:
                  /* if locally reachable state is marked, mark x_{current} */
30:
                  if x_{reach} \in X_m then
31:
                      X_{\rm m} := X_{\rm m} \cup \{x_{current}\}
32:
33:
                  end if
34:
             end for
         end while
35:
36: end function
```

The COMPACCREACH function is defined as follows.

```
1: function COMPACCREACH(Generator G_{\&}, EventSet \Sigma_{\&}^{0}, StateSet X_{\&}^{reach},
Idx x_{start})
2: /* local variables */
```

```
Stack<Idx> X<sub>waiting</sub>
 3:
 4:
           \operatorname{Idx} x_{current}
           /* start */
 5:
           Push (X_{waiting}, x_{start})
 6:
           while X_{waiting} \neq \emptyset do
 7:
 8:
                 x_{current} := \operatorname{Pop}\left(X_{waiting}\right)
                 for all t \in \text{Transitions}(\delta, x_{current}) do
 9:
                      if t . ev \notin \Sigma^0 \wedge t . x2 \notin X^{reach} then
10:
```

```
11: Push(X_{waiting}, t.x2)
```

¹A local path is a sequence of low-level events in $\Sigma - \Sigma^0$.

12: $X^{reach} := X^{reach} \cup \{t \, . \, x2\}$ 13: end if 14: end for 15: end while 16: end function

4.1.3 Inverse Projection

The *inverse projection* is defined as follows.

Definition 4.1.1 (Inverse Projection [Won04]). For an alphabet $\Sigma_0 \subseteq \Sigma$ the *inverse projection* $(p_0)^{-1} : \Sigma_0^* \to 2^{\Sigma^*}$ is

$$(p_0)^{-1}(t) := \{s \in \Sigma^* \mid p_0(s) = t\}$$

for $t \in \Sigma_0^*$.

The inverse projection of a language $L_0 \in \Sigma_0^*$ is

$$(p_0)^{-1}(L_0) := \{s \in \Sigma^* \mid \exists t \in L_0 \text{ s.t. } p_0(s) = t\}.$$

Algorithm 4.3 (Inverse Projection). Given a finite automaton $G_0 = (X_0, \Sigma_0, \delta, X_{0,0}, X_{m,0})$ and a alphabet $\Sigma_0 \subseteq \Sigma$. The generated language of the automaton is extended to alphabet Σ directly in the automaton by the function INVPROJECT. Let *G* be the resulting automaton of a function call INVPROJECT(*G*, Σ). Then $L(G) = (p_0)^{-1} (L(G_0))$ and $L_m(G) = (p_0)^{-1} (L_m(G_0))$.

1: function INVPROJECT(Generator $G_{\&}^0$, EventSet $\Sigma_{\&}$)

- 2: /* local variables */
- 3: EventSet $\Sigma_{new} := \Sigma \setminus \Sigma^0$

```
4: /* start */
```

- 5: for all $x \in X_0$ do
- 6: **for all** $\sigma \in \Sigma_{new}$ **do**
- 7: SetTransition(δ_0, x, σ, x)

```
8: end for
```

```
9: end for
```

10: end function
4.2 Automata Operations

4.2.1 Accessible

The *accessible* operation removes all states, that cannot be reached by a transition path starting at an initial state from an automaton. Formally [CL99],

- ACCESSIBLE(G) := $(X_{acc}, \Sigma, \delta_{acc}, X_0, X_{m,acc})$, where
- $X_{acc} := \{x \in X \mid \exists s \in \Sigma^*, \exists x_0 \in X_0 \text{ s.t. } \delta(x_0, s) = x\},\$
- $X_{\mathrm{m},acc} := X_{\mathrm{m}} \cap X_{acc}$,
- $\delta_{acc} := \delta|_{X_{acc} \times \Sigma \to X_{acc}}.$

Algorithm 4.4 (Accessible Automaton). Given an automaton $G = (X, \Sigma, \delta, X_0, X_m)$. The ACCESSIBLE function returns True if the automaton is nonempty and no states had to be removed, otherwise False. Internally the set of reachable states is computed by the function ACCESSIBLESET while ACCESSIBLE only removes the set difference and handles the return value. ACCESSIBLESET uses the recursive function CHECKACCESSIBLE to compute the set of reachable states. The ACCESSIBLESET function is also used in other algorithms. The accessible operation has no effect on L(G) and $L_m(G)$.

```
1: function ACCESSIBLE(Generator G_{\&})
 2:
         /* local variables */
         StateSet X_{not\_accessible}
 3:
        /* start */
 4:
         if X = \emptyset then
 5:
             return False
 6:
 7:
         end if
         X_{not \ accessible} := X \setminus \text{ACCESSIBLESET}(G)
 8:
         if X_{not \ accessible} \neq \emptyset then
9:
             for all x \in X_{not\_accessible} do
10:
                  X := X \setminus \{x\}
11:
                  for all t \in \text{Transitions}(\delta, x) do
12:
                       DelTransition (\delta, t)
13:
                  end for
14:
                  X_0 := X_0 \setminus \{x\}
15:
```

```
16:X_{\rm m} := X_{\rm m} \setminus \{x\}17:end for18:return False19:else20:return True21:end if22:end function
```

The ACCESSIBLESET function returns a StateSet containing the reachable states in an automaton.

```
1: function ACCESSIBLESET(Generator G_{\&})
      /* local variables */
2:
      StateSet X_{acc}
3:
      /* start */
4:
      for all x \in X_0 do
5:
          CHECKACCESSIBLE(G, X_{acc}, x)
6:
7:
      end for
      return X_{acc}
8:
9: end function
1: function CHECKACCESSIBLE(Generator G_{\&}, StateSet X_{\&}^{acc}, Idx x^{start})
```

```
2: if x^{start} \notin X^{acc} then

3: X^{acc} := X^{acc} \cup \{x^{start}\}

4: for all t \in \text{Transitions}(\delta, x^{start}) do

5: CHECKACCESSIBLE(G, X^{acc}, t \cdot x^2)

6: end for

7: end if

8: end function
```

4.2.2 Coaccessible

Corresponding to the *accessible* operation the *coaccessible* operation removes all states from an automaton, that do not have a transition path to a marked state. Formally [CL99],

• COACCESSIBLE(G) := $(X_{coacc}, \Sigma, \delta_{coacc}, X_{0,coacc}, X_{m})$, where

- $X_{coacc} := \{x \in X \mid \exists s \in \Sigma^*, \exists x_m \in X_m \text{ s.t. } \delta(x_m, s) \in X_m\},\$
- $X_{0,coacc} := \{ x_0 \in X_0 \mid x_0 \in X_{coacc} \},\$
- $\delta_{coacc} := \delta|_{X_{coacc} \times \Sigma \to X_{coacc}}.$

Algorithm 4.5 (Coaccessible Automaton). Given an automaton $G = (X, \Sigma, \delta, X_0, X_m)$. At first the set of coaccessible states is computed by the function COACCESSIBLE-SET, that itself calls the recursive function CHECKCOACCESSIBLE. COACCESSIBLE returns True if all states in the automaton are coaccessible and False if not. While $L(COACCESSIBLE(G)) = \overline{L_m(G)}$ the operation has no effect on $L_m(G)$.

1: function COACCESSIBLE(Generator $G_{\&}$) /* local variables */ 2: StateSet $X_{not \ coaccessible}$ 3: /* start */ 4: if $X = \emptyset$ then 5: return False 6: 7: end if $X_{not_coaccessible} := X \setminus COACCESSIBLESET(G)$ 8: 9: if $X_{not_coaccessible} \neq \emptyset$ then for all $x \in X_{not_coaccessible}$ do 10: $X := X \setminus \{x\}$ 11: for all $t \in \text{Transitions}(\delta, x)$ do 12: 13: DelTransition (δ , t) end for 14: $X_0 := X_0 \setminus \{x\}$ 15: $X_{\mathrm{m}} := X_{\mathrm{m}} \setminus \{x\}$ 16: 17: end for return False 18: 19: else return True 20: end if 21: 22: end function

The COACCESSIBLESET function returns a StateSet containing the states that can reach a marked state via a transition path.

1: function COACCESSIBLESET(Generator $G_{\&}$)

2: /* local variables */

```
3: StateSet X_{coacc}
```

- 4: TransSet<Sortx2evx1> $\delta_r = \delta$ /* build x2,ev,x1 sorted set of transitions */
- 5: /* start */
- 6: for all $x \in X_{\mathrm{m}}$ do
- 7: CHECKCOACCESSIBLE($G, \delta_r, X_{coacc}, x$)
- 8: end for

```
9: return X_{coacc}
```

```
10: end function
```

```
1: function CHECKCOACCESSIBLE(Generator G_{\&}, TransSet<Sortx2evx1> \delta_{\&}^{r}, StateSet X_{\&}^{coacc}, Idx x^{start})
```

- 2: **if** $x^{start} \notin X^{coacc}$ then
- 3: $X^{coacc} := X^{coacc} \cup \{x^{start}\}$
- 4: **for all** $t \in \text{Transitions}(\delta^r, x^{start})$ **do**
- 5: CHECKACCESSIBLE($G, X^{coacc}, t.x1$)
- 6: end for
- 7: **end if**
- 8: end function

4.2.3 Trim

Trim is a convenience method for computing the accessible and coaccessible part of an automaton. An automaton is *trim* if all states in the automaton are accessible and coaccessible. Formally, the trim operation is defined as

• TRIM := ACCESSIBLE(G) \land COACCESSIBLE(G).

Algorithm 4.6 (Trim Automaton). Given an automaton $G = (X, \Sigma, \delta, X_0, X_m)$. The TRIM function removes states by calling the ACCESSIBLE and the COACCESSIBLE function. If no state is removed True is returned, else the result is False.

```
1: function TRIM(Generator G_{\&})
```

```
2: /* local variables */
```

- 3: Bool *is_accessible*
- 4: Bool *is_coaccessible*
- 5: /* start */
- 6: $is_accessible := ACCESSIBLE(G)$
- 7: $is_coaccessible := COACCESSIBLE(G)$
- 8: **if** $is_accessible = True \land is_coaccessible = True$ **then**
- 9: return True
- 10: **else**

```
11: return False
```

```
12: end if
```

```
13: end function
```

4.2.4 Determine

The *determine* method computes the deterministic automaton for a nondeterministic one by subset construction, according to Definition 3.2.3.

The implementation of the method is straightforward. In Section 3.2.3 two main areas of computation in subset construction have been pointed out. The set inclusion tests in the set of subsets by a hash table and supporting set signatures is directly implemented in the stated algorithm. The optimization by multiway merge according to [Les95] to compute the deterministic successor states of a subset is illustrated at the end of the section.

Algorithm 4.7 (Deterministic Automaton). For a given nondeterministic automaton $G_{nd} = (X_{nd}, \Sigma, \delta_{nd}, X_{0,nd}, X_{m,nd})$ the DETERMINE function computes the deterministic automaton $G_d = (X_d, \Sigma, \delta_d, x_{0,d}, X_{m,d})$ such that $L(G_d) = L(G_{nd})$ and $L_m(G_d) = L_m(G_{nd})$. In addition the function DETERMINISTIC is provided, that checks a given automaton $G = (X, \Sigma, \delta, X_0, X_m)$ for nondeterminism.

The DETERMINE function is implemented by two additional call-by-reference parameter *PowerStates* and *DetStates* that hold information for the implementation of the algorithms in [Sch05b]. This will be discussed in Chapter 6.

```
1: function DETERMINE(Generator G^{nd}_{\&}, Generator G^{d}_{\&}, Vector <StateSet>

PowerStates_{\&}, Vector<Idx> DetStates_{\&})
```

```
2: /* local variables */
```

```
3: StateSet X_{new} /* holds newly constructed subsets */y
```

```
4: Idx x_{new}
```

```
5: Map<int, Vector<int>> HashMap /* implements a hash table */
```

```
6: int sig /* set signature */
```

```
7: int i, j /* vector indices */
```

```
8: Bool new
```

```
9: /* start */
```

```
10: \Sigma_d := \Sigma_{nd}
```

```
11: /* initialization */
```

```
12: x_{new} := \text{InsState}(X_d)
```

```
13: for all x \in X_{nd,0} do
```

```
14: X_{new} := X_{new} \cup \{x\}
```

```
15: end for
```

```
16: sig := Signature(X_{new})
```

```
17: PushBack (PowerStates, X_{new}); PushBack (DetStates, x_{new})
```

```
18: /* creates new map entry and directly adds vector element */
```

```
19: PushBack(HashMap[sig], Lastindex(PowerStates))
```

```
20: /* iteration over all vector entries */
```

```
21: for i := 0; i \leq \text{LastIndex}(PowerStates); i := i + 1 do
```

```
22: X_{new} := \emptyset
```

```
23:for all \sigma \in \Sigma_{nd} do24:for all x \in PowerStates [i] do
```

```
for all t \in \text{Transitions}(\delta_{nd}, x, \sigma) do
```

```
27: end for
```

25:

31:

37:

38:

```
28: end for
```

```
29: sig := Signature(X_{new})
```

```
30: \qquad new := True
```

```
if sig \in Keys(HashMap) then
/* iteration over vector of PowerStates vector indices */
```

```
32:/* iteration over vector of PowerStat33:for all j \in HashMap[sig] do
```

```
34: if X_{new} = PowerStates[j] then
35: new := False
```

```
        so:
        new := False

        36:
        break; /* end for all loop */
```

end for

```
end if
```

72

39.	end if
40:	if <i>new</i> = True then
41:	$x_{new} := \texttt{InsState}(X_d)$
42:	PushBack ($PowerStates$, X_{new}); PushBack ($DetStates$, x_{new})
43:	<code>PushBack(HashMap[sig], Lastindex(PowerStates))</code>
44:	for all $x \in X_{new}$ do
45:	if $x \in X_{\mathrm{m},nd}$ then
46:	$X_{\mathrm{m},d} := X_{\mathrm{m},d} \cup x_{new}$
47:	break; /* end for all loop */
48:	end if
49:	end for
50:	end if
51:	/* introduce transition in G^d */
52:	<code>SetTransition(δ_d, $DetStates[i]$, σ, x_{new})</code>
53:	end for
54:	end for
55:	end function

The function DETERMINISTIC only tests if an automaton is deterministic.

```
1: function DETERMINISTIC(Generator G_{\&})
```

```
/* local variables */
 2:
         \operatorname{Idx} x_{last} := 0
 3:
         \operatorname{Idx} \sigma_{last} := 0
 4:
         /* start */
 5:
         if Size (X_0) > 1 then
 6:
             return False
 7:
 8:
         else
             for all t \in \delta do
9:
                  if x_{last} = t . x1 \land \sigma_{last} = t . ev then
10:
                       return False
11:
                  end if
12:
                  x_{last} := t . x 1; \sigma_{last} := t . ev
13:
             end for
14:
         end if
15:
         return True
16:
17: end function
```

Optimization by Multiway Merge

As already noted the algorithm can be optimized by a multiway merge to compute the successor states of a deterministic state. In line 23 an iteration over all events is done. For each nondeterministic state in the subset, the transitions from the state driven by the current event have to be computed in the two nested loops in the lines 24 to 28. This causes a computational expensive search in the set of transitions in an inner loop.

The search can be avoided by placing an iterator for each state in the subset at the first transition of that state in the set of transitions. Then a multiway merge of the transitions at which the iterators currently point to is applied. This results in two vectors, a vector of events with event indices in ascending order and a vector of corresponding successor states. The vector of events is partitioned, where each corresponding partition element in the successor state vector builds a new deterministic state that will be processed according to lines 29 to 52. As partitioning the resulting vectors is trivial this is not included. The multiway merge algorithm is given as follows.

```
1: Idx \sigma_{last}
 2: Idx x_{last}
 3: Vector<Idx> EventVector
 4: Vector<Idx> StateVector
 5: /* vector of TransSet iterators */
 6: Vector<TransSet::Iterator>Iterators
 7: /* place an iterator at each state of the subset in \delta */
 8: for all x \in PowerStates[i] do
        Iterator it := Find(\delta, x)
 9:
10:
        if it \neq \text{End}(\delta) then
11:
            PushBack (Iterators, it)
12:
        end if
13: end for
14: while Iterators \neq \emptyset do
15:
        find it \in Iterators such that it \cdot ev is the smallest
16:
        x_{last} := it \cdot x1
17:
        \sigma_{last} := it . ev
        loop
18:
            if it = \text{End}(\delta) \lor it \cdot x1 \neq x_{last} then
19:
                 Iterators := Iterators \setminus \{it\}
20:
```

```
else if it.ev = \sigma_{last} then
21:
               PushBack (EventVector, it.ev)
22:
               PushBack (StateVector, it.x2)
23:
               it++ /* set iterator to next transition */
24:
25:
           else
               break; /* exit loop */
26:
           end if
27:
28:
       end loop
29: end while
```

The algorithm initialization for a subset is shown in Figure 4.1. It is assumed the lexical ordering of the events resembles the ordering of their indices. At first the transition 5 - a - 9 is read at it [0]. Then the next iterator with the lowest event, it [1] is chosen. After successively reading two transitions 8 - a - 2 and 8 - a - 8, it [0] is chosen again. Then the transitions 5 - b - 8 and 5 - b - 15 are read. After reading 8 - b - 13 at it [1] this iterator is removed. The algorithm continues with 11 - b - 5, 5 - c - 3 and the removal of iterator it [0]. At last the rest of the transitions at it [2] is read, 11 - c - 6 and 11 - c - 10.

Figure 4.1: Initialization of multiway merge of transitions from a subset

4.2.5 State Space Minimization

The state space minimization method constructs a *canonical recognizer* for a deterministic finite automaton. As already stated in Section 2.1, the resulting set of states of the minimized automaton is unique up to an isomorphism [HU79]. Algorithm 4.8 (State Space Minimization). For a given deterministic automaton $G = (X, \Sigma, \delta, X_0, X_m)$ the STATEMIN function computes the canonical recognizer $G_{min} = (X_{min}, \Sigma, \delta_{min}, x_{0,min}, X_{m,min})$, such that $L(G_{min}) = L(G)$ and $L_m(G_{min}) = L_m(G)$. This function directly implements the algorithm provided in [Hop71, AHU⁺83] with a complexity of $\mathcal{O}(|\Sigma| \cdot |X| \cdot \log |X|)$ to compute the canonical recognizer.

```
1: function STATEMIN(Generator G_{\&}, Generator G_{\&}^{min})
        /* local variables; naming corresponds to [AHU+83] */
 2:
        Vector<StateSet> B /* blocks */
3:
 4:
        int i, j
 5:
        Set<int> Waiting
        TransSet<Sortevx2x1>\delta_r := \delta /* ev_r x_2 x_1 sorted transition relation */
 6:
        StateSet X_{current}, X_{inverse}, X_{\cap}, X_{-}
 7:
        Map<Idx, int> IndexMap /* maps blocks to new states */
8:
9:
        \operatorname{Idx} x_{new}
        /* start */
10:
        ACCESSIBLE(G) /* ensure G contains only accessible states */
11:
        if Size(X) \leq 1 then
12:
            G^{min} := \operatorname{Copy}(G)
13:
14:
            return
        end if
15:
        \Sigma_{min} := \Sigma
16:
        /* set up blocks */
17:
        i := 0
18:
        if Size(X) - Size(X_m) > 0 then
19:
            PushBack (B, X \setminus X_m)
20:
            Waiting := Waiting \cup \{i\}
21:
22:
            i := i + 1
        end if
23:
        PushBack (B, X_m)
24:
25:
        Waiting := Waiting \cup \{i\}
        i := i + 1
26:
        while Waiting \neq \emptyset do
27:
            pick i \in Waiting; Waiting := Waiting \setminus \{i\}
28:
            x_{current} := B[i]
29:
            /* compute X_{inverse} := f^{-1}(B[i]) for each \sigma \in \Sigma */
30:
            for all \sigma \in \Sigma do
31:
                X_{inverse} := \emptyset
32:
                for all x \in X_{current} do
33:
```

34.	for all $t \in \text{TransitionsByeyx}^{2}(\delta_{x}, \sigma, x)$ do
35.	$X_{inverse} := X_{inverse} \bigcup \{t, x\}$
36.	end for
37:	end for
38:	if $X_{inverse} \neq \emptyset$ then
39:	for $i = 0$: $i < \text{Size}(B)$, $i := i + 1$ do
40:	$X_{\cap} := B[j] \cap X_{inverse}$
41:	$X_{-} := B[j] \setminus X_{0}$
42:	if $X_{\cap} = \emptyset \lor X_{-} = \emptyset$ then
43:	continue /* next for iteration */
44:	end if
45:	PushBack (B , X_{\cap})
46:	$B[j] := X_{-}$ /* replace old block */
47:	if $j \in Waiting$ then/* mark both waiting */
48:	$Waiting := Waiting \cup \{\texttt{LastIndex}(B)\}$
49:	else /* mark only smaller as waiting */
50:	if Size(X_{\cap}) > Size(X_{-}) then
51:	$Waiting := Waiting \cup \{\texttt{LastIndex}(B)\}$
52:	else
53:	$Waiting := Waiting \cup \{j\}$
54:	end if
55:	end if
56:	end for
57:	end if
58:	end for
59:	end while
60:	/* build minimized generator */
61:	for $i:=0, i\leq \texttt{LastIndex}(B)$, $i:=i+1$ do
62:	$x_{new} := \texttt{InsState}(X_{min})$
63:	for all $x \in B[i]$ do
64:	$IndexMap\left[x ight]:=i$
65:	if $x \in X_0$ then
66:	$X_{0,min} := X_{0,min} \cup \{x_{new}\}$
67:	end if
68:	if $x \in X_{m,min}$ then
69:	$X_{\mathrm{m},min} := X_{\mathrm{m},min} \cup \{x_{new}\}$
70:	end if

 $^{^1 \}mbox{TransitionsByevx2}$ is defined according to Section 3.3.3 as a object method that returns a $\mbox{TransSet<Sortevx2x1>}$ iterator.

- 71: **end for**
- 72: **for all** $t \in \delta$ **do**
- 73: SetTransitions(δ_{min} , IndexMap[t.x1], t.ev, IndexMap[t.x2])
- 74: **end for**
- 75: **end for**
- 76: end function

Chapter 5

Automaton Extension and Algorithms for Supervisory Control

In this chapter, the automaton model specified in Chapter 3 is extended for the requirements of supervisory control by the introduction of uncontrollable events in Section 5.1. Then the extended model is applied to the Generator automaton class in Section 5.2 which results in the cGenerator class. At last the algorithm for computing the supremal controllable and nonblocking sublanguage is stated, with an additional section about implementing a function that tests controllability.

5.1 Introduction of Events Properties

When modelling DES in RW control theory the set of events Σ in a DES is divided into two disjoint sets, the set of controllable events Σ_c and the set of uncontrollable events Σ_{uc} . This was already shown in Section 2.2. It is assumed that the division is consistent for all automata. Therefore an event cannot be controllable in one automaton and uncontrollable in another automaton.

This is an important result for modelling DES in software as it means the controllability properties of events can be stored globally for all events in an system. As other theory approaches may introduce further event properties that are consistent within a system,

a general approach is required to hold a set of event properties for all events in an event domain.

Therefore an entity that holds the controllability property of events and is extensible to store further event properties is proposed as follows:

- Each property is stored as a set of binary values. Such a set is usually called a *bitset*. The required number of bits to store a property is one for binary properties like controllability, but may be bigger if a property can take more than two values. To efficiently access the bitset, it is implemented by the natural integer type of the computer architecture. Then a 32bit computer architecture can hold up to 32 event properties. If more bit values are required the double long integer can be used or any other data type that allows bit by bit manipulation.
- The mapping of events to their respective bitset is implemented by a Map<Idx, int>¹ where the key holds the event index and the value stores the bitset.

Bits in a bitset are enabled by combining the current value of the bitset with an int that has all bits, that are to be enabled by the logical AND operation set to 1. In contrast, bits are disabled by combining the current bitset value with an int having all bits set to 0 that are to be disabled by the logical OR operation. To retrieve a set of bits of the bitset, it is combined with an int where all bits that are to be retrieved are set to 1 by the AND operation. Bits which are not requested are set to 0 while the requested bits still have their value 0 or 1.

As an example, the controllability property may be represented by the first bit in an int. An event is modelled controllable if the controllable bit is set to 1 and uncontrollable if 0. Then defining an event e to be controllable requires a e OR 0×0000001 operation and defining it to be uncontrollable a e AND $0 \times FFFFFF0$ operation in the octal integer notation. The controllability property can be retrieved by a e AND 0×0000001 operation, which blends out all other bits. Determining the value then simply is done by comparing the retrieved value with 0×0000001 or 0×0000000 .

¹Note that this can also be implemented by a Vector<int> if the Vector index type is compatible with Idx for performance optimizations. However the more general Map solution is proposed here, as a Vector always requires to allocate as much element blocks in memory as required to access the largest Idx by a vector index. In contrast a Map can also hold only bitsets for a subset of the events.

The entity that holds the controllability property of all events within an event domain is called an *eventflagtable*, representing the flag character of a bit. The implementation as an ADT is presented in the next section.

5.2 Controllable Generator Class Implementation

The Generator class introduced in Section 3.3.3 has no implementation of controllable events. In this section, the class is extended to a controllable Generator class that suits the requirements of supervisory control. An *eventflagtable* entity located outside of the data structure of an automaton was proposed to provide the controllability property for events. The implementation of this entity as the ADT FlagTable will be shown at first, followed by the extended automaton class cGenerator.

FlagTable

The FlagTable ADT is created by a FlagTable<TBitsetType>statement and holds a Map<Idx, TBitsetType>object internally. This more general implementation of the specified *eventflagtable* entity by a variable type for storing the bitset is well suited for different approaches in theory and can be used to assign attributes to events and states. For the RW control theory a FlagTable<int> is used as proposed before.

The FlagTable provides the following methods:

• SetFlags(index,flags)

This method enables flags in the bitset by the logical OR operation. The first parameter contains the Idx identifier and the second holds a TFlagType having all bits that are to be enabled set to 1.

• ClrFlags(index,flags)

This method disables flags in the bitset by the logical AND operation on the inverse argument. The first parameter specifies the Idx identifier. The second holds a TBitSetType, where all flags that are to be disabled are set to 0 while all other have to be set to 1.

• GetFlags(index,flags,defaultflags)

The method retrieves bits of a bitset by the logical AND operation. Like in the other methods, the first parameter specifies the Idx type identifier. The second parameter holds the set of bits that are to be retrieved. Bits of interest have to be set to 1, the remaining bits are set to 0. The third parameter contains the default bitset value, that is returned if no bitset was stored in the map for the given identifier.

• ExistsFlag(index)

This method will be called, to test if the internal map contains a bitset for a identifier. The index parameter specifies the Idx type identifier. True is returned, ff a bitset exists for the identifier, else False.

With the FlagTable ADT, the extension of the Generator class for supervisory control can now be implemented.

cGenerator

The object class that implements an automaton with controllable and uncontrollable events is called cGenerator (controllable Generator). In addition to the Generator class, it contains a pointer to a FlagTable<int> object outside the class that holds the controllability properties of events within an event domain. The class implements the same 5-tuple automaton $G := (X, \Sigma, \delta, X_0, X_m)$ as the Generator class with an additional division of Σ in the two disjoint sets Σ_c and Σ_{uc} that is modelled by the FlagTable class.

The cGenerator class provides methods to support the handling of controllable events like SetControllable(index), SetUncontrollable(index) to set the controllability property of an event or IsControllable(index) to test the controllability property of an event. As the implementation of methods for controllable events is straightforward this is not covered here.

In algorithms a cGenerator object will be stated by the symbol *G*. The alphabet of uncontrollable events is implicitly included by the statement of a cGenerator object.

Figure 5.1: cGenerator class

5.3 Nonblocking Supremal Controllable Sublanguage

The supremal controllable sublanguage as well as the nonblocking control theorem are defined in Definition 2.2.5 as the union of all controllable sublanguages that agree with a specification language $E \subseteq L(G)$. This algorithm computes the solution to the basic problem of supervisory control as stated in Section 2.2.

At first the algorithm computes the parallel composition of a plant G and a specification G_{spec} with $L(G_{spec}) = E$ which results in the supervisor automaton G_{sup} . Then in a loop two operations are executed until a fixpoint is reached:

- The supremal controllable sublanguage of G_{sup} with respect to G is computed. This requires identifying bad states, where strings followed in G and G_{sup} in parallel leave G_{sup} via an uncontrollable event. Then all transitions and states are removed from G_{sup} that can reach the bad states via uncontrollable events.
- The TRIM operation is executed on *G*_{sup}.

A fixpoint is reached, when no string of L(G) leaves $L(G_{sup})$ via an uncontrollable event and G_{sup} is trim. This is also the case, if all states in G_{sup} have been removed and G_{sup} consists of the empty language \emptyset . Then computing a supervisor for the specification G_{spec} is not possible at all.

The algorithm is implemented by the function SUPCONNB that computes the nonblocking supremal controllable sublanguage and calls PARALLEL and then executes SUPCON and TRIM in a loop. SUPCON computes the supremal controllable sublanguage and calls the function REMOVEUCBACKWARDS (remove uncontrollable backwards) to remove states and transitions in G_{sup} . The PARALLEL function is stated in Section 4.1.1 and TRIM is introduced in Section 4.2.3. Remarks on optimizing the algorithm are given at the end of the section .

Algorithm 5.1 (Supremal Controllable Sublanguage). Given a finite automaton of type cGenerator $G := (X, \Sigma, \delta, X_0, X_m)$ with a set of uncontrollable events $\Sigma_{uc} \subseteq \Sigma$ and a specification automaton of type Generator $G_{spec} := (X_{spec}, \Sigma_{spec}, \delta_{spec}, X_{0,spec}, X_{m,spec})$. Then a supervisor automaton $G_{sup} := (X_{sup}, \Sigma_{sup}, \delta_{sup}, X_{0,sup}, X_{m,sup})$ is computed that either solves the basic supervisory control problem or contains the empty language \emptyset . A reference parameter Map<Idx, Pair<Idx, Idx>> RCMap is used to hold the mapping of states $x_{sup} \in X_{sup}$ to combined states $(x, x_{spec}) \in X \times X_{spec}$.

```
Require: \Sigma = \Sigma_{spec}
```

- 1: function SUPCONNB(cGenerator $G_{\&}^{spec}$, Map<Idx, Pair<Idx, Idx>> $RCMap_{\&}$, cGenerator $G_{\&}^{sup}$)
- 2: /* local variables */
- 3: Bool *is_controllable*, *is_trim*
- 4: /* start */
- 5: PARALLEL($G, G^{spec}, G^{sup}, RCMap$)
- 6: repeat
- 7: $is_controllable := SUPCON(G, G^{sup}, RCMap)$

```
8: is\_trim := \text{TRIM}(G^{sup})
```

- 9: **until** $is_controllable \land is_trim$
- 10: end function

The SUPCON function follows strings in G and G_{sup} and calls REMOVEUCBACKWARDS if a bad state is found.

```
1: function SUPCON(cGenerator G_{\&}, Generator G_{\&}^{sup}, Map<Idx, Pair<Idx,
```

```
Idx > RCMap_{\&})
        /* local variables */
 2:
         Stack<Idx> Xwaiting, Xwaiting, sup /* waiting list */
3:
         StateSet X_{discovered} /* discovered states in X_{sup} */
 4:
         StateSetX_{bad} /* forbidden states in X_{sup} */
 5:
 6:
         Idx x_{current}, x_{current,sup}
         TransSet<Sortx2evx1>\delta_r := \delta / x_{2,ev,x1} sorted set of transitions */
 7:
 8:
         /* start */
        /* initialize waiting list */
9:
         for all x \in X_0 do
10:
             for all x_{sup} \in X_{0,sup} do
11:
                  Push (X_{waiting}, x)
12:
                  Push (X_{waiting, sup}, x_{sup})
13:
             end for
14:
         end for
15:
         while X_{waiting} \neq \emptyset do
16:
             x_{current} := \text{Pop}(X_{waiting})
17:
             x_{current,sup} := \operatorname{Pop}\left(X_{waiting,sup}\right)
18:
             /* process all transitions at current state in G */
19:
             for all t \in \text{Transitions}(\delta, x_{current}) do
20:
                  if t \cdot ev \in \Sigma_{uc} \wedge t \cdot ev \notin \Lambda(\delta_{sup}, x_{current, sup}) then
21:
                      REMOVEUCBACKWARDS(G^{sup}, \delta_r, X_{bad}, x_{current,sup})
22:
                      break /* continue with next pair on waiting list */
23:
24:
                  else
25:
                      for all t_{sup} \in \text{Transitions}(\delta_{sup}, x_{current, sup}, t.ev) do
                           /* add successor states to waiting list if undiscovered */
26:
                           if x_{current,sup} \notin X_{discovered} then
27:
                               Push (X_{waiting}, t.x2)
28:
29:
                               Push (X_{waiting,sup}, t_{sup}.x2)
30:
                           end if
                           /* if successor state is not forbidden add to backward transitions */
31:
                           if t_{sup}. x2 \notin X_{bad} then
32:
33:
                                SetTransition (\delta_r, t_{sup})
                           else if t \cdot ev \in \Sigma_{uc} then
34:
                               REMOVEUCBACKWARDS(G^{sup}, \delta_r, X_{bad}, x_{current,sup})
35:
                               t := \text{End} (\delta, x_{current}) /* exit outer loop on next iteration */
36:
                               break; /* exit inner loop */
37:
38:
                           end if
                      end for
39:
```

```
end if
40:
            end for
41:
            X_{discovered} := X_{discovered} \cup \{x_{current,sup}\}
42:
        end while
43:
        if X_{forbidden} = \emptyset then
44:
            return True
45:
        else
46:
47:
            return False
        end if
48:
49: end function
```

The function REMOVEUCBACKWARDS removes all states and transitions backwards that could make G_{sup} reach a bad state, i.e. along uncontrollable events.

1: function REMOVEUCBACKWARDS(cGenerator $G_{\&}^{sup}$, TransSet< Sortx2evx1>

```
\delta^r_{\&}\text{, StateSet}\,X^{bad}_{\&}\text{, Idx}\,x^{start} )
          /* local variables */
 2:
          Stack<Idx> Xwaiting
 3:
          \operatorname{Idx} x_{current}
 4:
          /* start */
 5:
          Push (X_{waiting} , x^{start})
 6:
          X^{bad} := X^{bad} \cup \{x^{start}\}
 7:
          while X_{waiting} \neq \emptyset do
 8:
 9:
               x_{current} := \operatorname{Pop}\left(X_{waiting}\right)
               /* remove transitions containing uncontrollable events backwards */
10:
               for all t \in \text{TransitionsByx2}(\delta^r, x_{current}) do
11:
                     if t \cdot ev \in \Sigma_{uc} \wedge t \cdot x1 \notin X^{bad} then
12:
                          Push(X_{waiting}, t.x1)
13:
                          X^{bad} := X^{bad} \cup \{t \, . \, x1\}
14:
15:
                     end if
               end for
16:
               /* remove x_{current} from G^{sup} */
17:
               X_{sup} := X_{sup} \setminus \{x_{current}\}
18:
               for all t \in \text{Transitions} (\delta_{sup}, x_{current}) do
19:
                     DelTransition (\delta_{sup}, t)
20:
               end for
21:
                X_{0,sup} := X_{0,sup} \setminus \{x_{current}\}
22:
               X_{\mathrm{m},sup} := X_{\mathrm{m},sup} \setminus \{x_{current}\}
23:
          end while
24:
```

25: end function

Optimization Notes

Two optimizations are possible for computing a supervisor by the SUPCONNB function:

- The PARALLEL function in SUPCONNB can be exchanged by a function that performs the parallel composition by not following transitions from bad states. Instead bad states and the states that can be directly reached by transitions from bad states are stored in a set of bad states as in the SUPCON function.
- If both *G* and *G_{spec}* are known to be deterministic, a parallel composition function can take advantage of the transition ordering in δ and δ_{spec} by following transitions in both automata in parallel instead of using two nested loops, like in the PARALLEL function. This is possible because both automata operate on the same alphabet which is generally not the case in the PARALLEL function.

5.4 Controllability

The definition of *controllability* is given in Definition 2.2.3. The algorithm for a function CONTROLLABLE that tests the controllability of a given specification G_{spec} with respect to an automaton G is very similar to the SUPCON function. The only required change is, that no state may be deleted. Instead the CONTROLLABLE function must return False when a state is found, where G leaves the specification automaton G_{spec} by an uncontrollable event and True if no such state is found.

Chapter 6

Algorithms for Nonblocking Hierarchical Control

In [Sch05b], an extension to RW theory for the hierarchical control of decentralized DES is provided. Different from the RW control theory, this approach takes advantage of the decentralized structure of a system and enables the control of large scale systems, e.g. manufacturing systems. The decentralized system components are modelled as finite automata and build the lowest level of a multi-level control hierarchy. Then interacting components are abstracted to their common behavior and merged on a higher level of the control hierarchy. The abstraction is done by the natural projection of the alphabet on the lower level to the set of common events, referred to as the high-level alphabet. The main objective of the approach is a reduction of the state space. Each component on a level of the hierarchy is controlled by an own local supervisor and a supervisor on the next hierarchical level. The supervisor on the highest level then controls the whole system.

Formally, the low-level system is an automaton G and the high-level automaton G^{hi} is computed using the projection $p^{\text{hi}} : \Sigma^* \to (\Sigma^{\text{hi}})^*$ with $L(G^{\text{hi}}) := p^{\text{hi}}(L(G))$ and $L_{\text{m}}(G^{\text{hi}}) := p^{\text{hi}}(L_{\text{hi}}(G))$. The tuple (G, G^{hi}) is called a projected system.

For nonblocking control and hierarchical consistency of the modelled system several conditions have to be fulfilled. These are *marked string acceptance, locally nonblocking,*

liveness, marked string controllability and *mutual controllability*. Abstract algorithms for verification of the conditions are also provided in [Sch05b].

In this chapter, the algorithms for verification of *marked string acceptance* and *locally nonblocking* are adopted to the automaton model implemented in this thesis. The algorithms for verifying *Liveness, marked string controllability* and *mutual controllability* are included in Appendix A.1.

The *locally nonblocking* algorithm is stated as an example, how to implement an additional data structure, to support the visualization of states failing the condition in a graphical environment. The other algorithms are stated in versions that only verify the respective condition, without providing such additional data structures. However, the algorithm implementations in the practical part of this thesis all provide data structures for implementing such a visualization of failed states.

In [Sch05a] an improvement to the algorithm for verification of the locally nonblocking condition is provided that is incorporated in the implementation. [Sch05a] also provides data structures for an implementation of the control hierarchy which is not covered in this thesis.

At first a convenience method for deterministic language projection is presented followed by the introduction of entry states.

Deterministic Projection and Entry States

In [Sch05b] an automaton on a lower level in the control hierarchy *G* is abstracted to an automaton on a higher level G^{hi} by a deterministic projection of Σ to Σ^{hi} . The deterministic projection is applied by successively calling the function PROJECT, introduced in Section 4.1.2, and DETERMINE, introduced in Section 4.2.4. Therefore a convenience function is stated as follows.

- 1: function DETPROJECT(Generator $G_{\&}$, EventSet Σ^{hi} , Generator $G_{\&}^{hi}$, Map<Idx, StateSet> $EntryStateMap_{\&}$)
- 2: /* local variables */
- 3: Generator G_{tmp}
- $4: \qquad \texttt{Vector}{<}\texttt{StateSet}{} > PowerStates$

```
Vector<Idx> DetStates
5:
6:
       int i
       /* start */
7:
8:
       G_{tmp} := G
       Project (G_{tmp}, \Sigma^{hi})
9:
       Determine (G_{tmp}, G^{hi}, PowerStates, DetStates)
10:
       for i := 0; i < Size (PowerStates); i := i + 1 do
11:
           EntryStateMap [DetStates [i]] := PowerStates [i]
12:
       end for
13:
14: end function
```

Note that $L(G^{\text{hi}}) = p^{\text{hi}}(L(G))$ and $L_{\text{m}}(G^{\text{hi}}) = p^{\text{hi}}(L_{\text{m}}(G))$.

This convenience function provides the abstraction of an automaton G on a lower level of the control hierarchy to an automaton G^{hi} on a higher level by a deterministic projection of Σ to Σ^{hi} . A map, denoted EntryStateMap, from states in the high level automaton to the corresponding subsets of states in the low-level automaton is created as a by-product. These subsets are sets of *entry states* of the low-level automaton, which are required for the algorithmic verification of the conditions mentioned above. The formal definition of entry states is given as follows.

Definition 6.0.1 (Entry States [Sch05b]). Let $G = (X, \Sigma, \delta, X_0, X_m)$ be an automaton that is abstracted to an automaton $G^{hi} = (X^{hi}, \Sigma^{hi}, \delta^{hi}, X^{0,hi}, X^{m,hi})$ by a projection $p^{hi} : \Sigma^* \to (\Sigma^{hi})^*$. For each state $x^{hi} \in X^{hi}$ a set of low-level entry states $X_{en,x^{hi}}$ is defined as

$$X_{\mathrm{en},\mathrm{x}^{\mathrm{hi}}} := \left\{ x \in X \mid x = \delta\left(x_0, s_{\mathrm{en}}\right) \text{ for } s_{\mathrm{en}} \in L_{\mathrm{en},\mathrm{x}^{\mathrm{hi}}} \right\} \subseteq X$$

with $L_{\text{en,shi}} := \{s \in L(G) \mid p^{\text{hi}}(s) = s^{\text{hi}} \land \nexists s' < s \text{ s.t. } p^{\text{hi}}(s') = s^{\text{hi}}\} \subseteq \Sigma^*$ which is denoted the set of *entry strings* [dCCK02].

This means when following strings in the low-level automaton and the corresponding projected strings in the high-level automaton, the entry states in the low level automaton correspond to these states in the high level automaton, where the same sequences of high level events have been executed with a minimum length of the low level string.

6.1 Verification of Marked String Acceptance

We assume that a deterministic projected system with (G, G^{hi}) is given. Marked string acceptance guarantees, that all low-level strings $s \in L(G)$ which reach the low level entry states $X_{en,x^{hi}} \in X$ of a marked high level state $x^{hi} \in X^{hi}$, pass a marked low level state before a high level event is generated. This condition ensures, that transitions executed in the low level automaton always reach a marked state when the high level automaton reaches a marked state, too.

The definition of marked string acceptance is given in [Sch05b].

The following algorithm corresponds to the abstract algorithm in [Sch05b]. However, the computation of entry states is not required, as this already is a result of the deterministic projection.

Algorithm 6.1 (Marked String Acceptance). Given the projected system as stated above with an entry state map *EntryStateMap* that is the result of the deterministic projection function DETPROJECT. The function MARKEDSTRINGACCEPTANCE returns True if marked string acceptance is guaranteed for the system and False if not. The helper function CHECKLOCALMSA checks the property for a single entry state.

```
1: function MARKEDSTRINGACCEPTANCE(Generator G_{\&}^{\text{ho}}, Generator G_{\&}^{\text{hi}}, Map <Idx, StateSet> EntryStateMap_{\&})
```

```
2:
       /* local variables */
3:
       StateSet X_{done}
       Bool result
4:
       /* start */
5:
       for all x_{m,hi} \in X_{m,hi} do
6:
7:
           for all x_{entry} \in EntryStateMap[x_{m,hi}] do
               result := CheckLocalMSA(G^{lo}, G^{hi}, X_{done}, x_{entry})
8:
               if result = False then
9:
10:
                   return False
               end if
11:
           end for
12:
        end for
13:
       return True
14:
15: end function
```

CHECKLOCALMSA returns True if marked string acceptance is guaranteed for the given entry state and False if not.

1: function CHECKLOCALMSA(Generator $G_{\&}^{\text{lo}}$, Generator $G_{\&}^{\text{hi}}$, StateSet $X_{\&}^{done}$, Idx x^{entry})

```
/* local variables */
 2:
          Stack < Idx > X_{waiting}
 3:
 4:
          \operatorname{Idx} x_{current}
 5:
         /* start */
         if x^{entry} \notin X_{done} then
 6:
              Push (X_{waiting}, x^{entry})
 7:
         end if
 8:
 9:
         while X_{waiting} \neq \emptyset do
               x_{current} := \operatorname{Pop}\left(X_{waiting}\right)
10:
11:
              if x_{current} \notin X_{m,lo} then
                    for all t_{lo} \in \text{Transitions}(\delta_{lo}, x_{current}) do
12:
                        if t_{lo}. ev \in \Sigma_{hi} then
13:
                             return False
14:
                        end if
15:
                        if t_{lo} \cdot x^2 \notin X_{done} then
16:
17:
                             Push (X_{waiting}, t_{lo}.x2)
                        end if
18:
                   end for
19:
20:
              end if
          end while
21:
         return True
22:
23: end function
```

Note that the algorithm can be extended to compute the low level entry states, if a transition with a high level event is discovered before reaching a marked state by following invisible transitions backwards. This suggests implementing an additional data structure, that can store the associations between the bad entry states, the transitions that fail the marked string test and the corresponding high level state. Such an extended algorithm with an additional data structure is implemented in the practical part of this thesis.

6.2 Verification of the Locally Nonblocking Condition

Given a deterministic projected system (G, G^{hi}) . The locally nonblocking condition verifies, that no local transition path in *G* starting at a entry state reaches a state, that has not paths to all high-level events that are reachable in the high-level automaton. If this is the case then the low level automaton is *locally blocking* and the system can get stuck in the lower hierarchy of the system model.

The definition of the locally nonblocking condition is given in [Sch05b].

The algorithm of the MARKEDSTRINGACCEPTANCE function was stated in a simplified version¹, that computes only a boolean result. This algorithm is a detailed example for the computation of a more verbose result in conjunction with an additional data structure, that can be used for the visualization of the result in a graphical user interface.

Algorithm 6.2 (Locally Nonblocking). Given the projected system as stated above with an entry state map *EntryStateMap* that is the result of the deterministic projection function DETPROJECT. The function LOCALLYNONBLOCKING then returns True if the locally nonblocking condition is fulfilled and False if not. The helper functions LOWEX-ITSTATES, REACHABLEEVENTS and COMPACCREACH are introduced as stated below.

1: function LOCALLYNONBLOCKING(Generator $G_{\&}^{\text{ho}}$, Generator $G_{\&}^{\text{hi}}$, Map<Idx, StateSet> $EntryStateMap_{\&}$, Vector<LnbBlockingStates> BlockingResult)

```
2: /* local variables */
```

- 3: Bool result := True
- 4: TransSet<Idx, StateSet> $\delta_{lo,r}$ /* reverse sorted low level transition relation */
- 5: EventSet $\Sigma_{hi,active}$ /* high-level active event set */
- 6: StateSet $X_{lo,exitstates}$ /* low-level local exit states */
- 7: StateSet $X_{lo,blockingexitstates}$ /* low-level locally blocking exit states */
- 8: StateSet $X_{\text{lo,blocking}}$ /* low-level locally blocking states */
- 9: StateSet $X_{\text{lo.accreach}}$ /* low-level local accessible reach */

```
10: StateSet X_{lo,coaccreach} /* low-level local coaccessible reach */
```

11: StateSet $X_{lo,nonblockingexitstates}$ /* low-level locally nonblocking exit states */

12: /* start */

```
13: /* iteration over all high-level states */
```

```
14: for all x_{hi} \in X_{hi} do
```

15: /* clear local sets */

¹of the implementation in the practical part of the thesis

16:	$\Sigma_{\text{hi},active} := \emptyset; X_{\text{lo},exitstates} := \emptyset; X_{\text{lo},blockingexitstates} := \emptyset; X_{\text{lo},blocking} := \emptyset$
17:	$X_{\mathrm{lo},accreach} := \emptyset; X_{\mathrm{lo},coaccreach} := \emptyset; X_{\mathrm{lo},nonblockingexitstates} := \emptyset$
18:	/* compute active high-level event set accumulate and low level exit states */
19:	for all $t_{\rm hi} \in {\rm Transitions}\left(\delta_{\rm hi}, x_{\rm hi}\right)$ do
20:	$\Sigma_{ ext{hi},active} := \Sigma_{ ext{hi},active} \cup \{t_{ ext{hi}} ext{.ev}\}$
21:	LOWEXITSTATES(G^{hi} , $\delta_{\text{lo},r}$, $EntryStateMap$, t_{lo} . x2, $X_{\text{lo},exitstates}$)
22:	end for
23:	if $\Sigma_{hi,active} \neq \emptyset$ then
24:	continue;
25:	end if
26:	/* check if local exit states reach all high-level events */
27:	for all $x_{lo,exit} \in X_{lo,exitstates} do$
28:	if $\Sigma_{ ext{hi},active} \subset ext{ReachableEvents}(G^{ ext{lo}},G^{ ext{hi}},x_{ ext{lo},exit})$ then
29:	$X_{\text{lo}, blocking exitstates} := X_{\text{lo}, blocking exitstates} \cup \{x_{\text{lo}, exit}\}$
30:	end if
31:	end for
32:	/* compute locally nonblocking exit states */
33:	$X_{ ext{lo},nonblockingexitstates} := X_{ ext{lo},exitstates} \setminus X_{ ext{lo},blockingexitstates}$
34:	/* accumulate accessible reach of entry states */
35:	for all $x_{entry} \in EntryStateMap[x_{hi}]$ do
36:	$COMPACCREACH(G^{\mathrm{lo}}, \Sigma_{\mathrm{hi}}, X_{\mathrm{lo},accreach}, x_{entry})$
37:	end for
38:	/* accumulate coaccessible states for nonblocking exit states */
39:	for all $x_{exit} \in X_{lo, blocking exit states}$ do
40:	COMPCOACCREACH($\delta_{lo,r}, \Sigma_{hi}, X_{lo,coaccreach}, x_{exit}$)
41:	end for
42:	/* compute locally blocking states */
43:	$X_{\mathrm{lo},blocking} := X_{\mathrm{lo},accreach} \setminus X_{\mathrm{lo},coaccreach}$
44:	if $X_{\text{lo},blocking} \neq \emptyset$ then
45:	<pre>result := False /* locally nonblocking test fails */</pre>
46:	/* add blocking states with high-level state and low-level entry states to result */
47:	<code>PushBack</code> ($BlockingResult$,
48:	<code>LnbBlockingStates(x_{hi}, EntryStatesMap[x_{hi}], X_{\mathrm{lo}, blocking}))</code>
49:	end if
50:	end for
51:	return <i>result</i>
52:	end function

The LOWEXITSTATES function computes the low-level exit states for a high-level state.

The definition of local exit states is given by the algorithm.

```
1: function LOWEXITSTATES(Generator G_{\&}^{hi}, TransSet<Sortx2evx1> \delta_{\&}^{lo,r}, Map <Idx, StateSet> EntryStateMap_{\&}, Idx x^{hi}, StateSet X^{lo,exitstates})
```

```
2: /* local variables */
```

```
3: for all x_{entry} \in EntryStateMap [x^{hi}] do

4: for all t_{lo} \in TransitionsByx2(\delta^{lo,r}, x_{entry}) do

5: if t_{lo} \cdot ev \in \Sigma_{hi} then

6: X^{lo,exitstates} := X^{lo,exitstates} \cup \{t_{lo} \cdot x1\}

7: end if

8: end for

9: end for
```

10: end function

The set of high-level events, that can be reached from a low-level state is computed by the REACHABLEEVENTS function.

```
1: function REACHABLEEVENTS(Generator G^{
m lo}_{\&\prime}, Generator G^{
m lo}_{\&\prime}, Idx x^{
m lo})
          /* local variables */
 2:
 3:
           Stack<Idx> Xwaiting
          EventSet \Sigma_{reachable}
 4:
          StateSet X_{done}
 5:
 6:
          \operatorname{Idx} x_{current}
          /* start */
 7:
          Push (X_{waiting}, x^{
m lo})
 8:
          X_{done} := X_{done} \cup \left\{ x^{\mathrm{lo}} \right\}
 9:
          while X_{waiting} \neq \emptyset do
10:
                x_{current} := \operatorname{Pop}\left(X_{waiting}\right)
11:
                for all t_{lo} \in \text{Transitions} (\delta_{lo}, x_{current}) do
12:
                     if t_{\rm lo} \, . \, {\rm ev} \in \Sigma_{\rm hi} then
13:
                          \Sigma_{reachable} := \Sigma_{reachable} \cup \{t_{lo} \cdot ev\}
14:
15:
                     else if t_{lo} \cdot x^2 \notin X_{done} then
16:
                          /* if low-level event and not already in done set */
17:
                          Push (X_{waiting}, t_{lo}, x^2)
18:
                           X_{done} := X_{done} \cup \{t_{lo} \cdot x^2\}
19:
                     end if
20:
                end for
21:
           end while
22:
          return \Sigma_{reachable}
23:
24: end function
```

Corresponding to the COMPACCREACH function introduced in Section 4.1.2, that computes the accessible reach of invisible transitions, the COMPCOACCREACH computes the coaccessible reach. A Sortx2evx1 sorted set of transitions is given for following transitions backwards.

1: function COMPCOACCREACH(TransSet<Sortx2evx1> $delta^r_{\&}$, EventSet $\Sigma^{hi}_{\&}$, StateSet $X^{coaccreach}_{\&}$, Idx x^{lo})

```
/* local variables */
 2:
          Stack<Idx> Xwaiting
 3:
 4:
          \operatorname{Idx} x_{current}
          /* start */
 5:
          Push (X_{waiting}, x^{lo})
 6:
          X_{coaccreach} := X_{coaccreach} \cup \left\{ x^{\mathrm{lo}} \right\}
 7:
          while X_{waiting} \neq \emptyset do
 8:
 9:
                x_{current} := \text{Pop}(X_{waiting})
                for all t_{\rm lo} \in {\tt TransitionsByx2}\left(\delta^r, x_{current}\right) do
10:
                     if t_{\rm lo}.ev \notin \Sigma^{\rm hi} \wedge t_{\rm lo}.x1 \notin X^{coaccreach} then
11:
12:
                           Push (X_{waiting}, t_{lo}.x1)
                          X^{coaccreach} := X^{coaccreach} \cup \{t_{lo} \, . \, x1\}
13:
                     end if
14:
                end for
15:
           end while
16:
17: end function
```

For post processing the resulting locally blocking states a data structure Vector< LnbBlockingStates> is introduced.

The type LnbBlockingStates is defined as follows:

```
struct LnbBlockingStates {
   Idx HiState /* high level state */
   StateSet LowEntries /* low level entry states */
   StateSet LowBlocking /* low level blocking states */
};
```

By holding the high level state and the low level entry states for each set of locally blocking states a graphical environment can provide a detailed visualization of the result. In the practical part of the thesis, such a supporting data structure for storing failed states is implemented for each of the verification methods in [Sch05b].

Chapter 7

Conclusions and Outlook

In SCT, computation requires efficient data structures and algorithms. In this thesis, a software model of an automaton is developed followed by the implementation of algorithms applied to the software model. The practical part of the thesis consists of an implementation of a software library for SCT in C++.

As a basis for further discussion the basic concepts of finite automata and regular language theory are introduced in Chapter 2, followed by an outline of the main results of RW control theory.

The software model of a automaton is developed in Chapter 3. At first two abstract data models of an automaton are introduced, the linked-list model and the set based model. These abstract models are evaluated by three algorithms, parallel composition, language projection and subset construction. In addition, the computational complexity of several important data access patterns that occur in inner loops of algorithms is shown. The evaluation concludes in a decision for the set based model as the evaluation by the projection algorithm has shown a weakness in the linked-list model. In the subsequent sections important implementation aspects of a set based automaton model are discussed. The resulting data structure specification is then implemented as the Generator automaton class abstract data types (ADTs) introduced before.

Following the implementation of the Generator class, algorithms for regular languages and finite automata are stated in Chapter 4. This includes the language methods parallel composition, projection and the automata algorithms determine and state space minimization, computing the equivalent deterministic automaton for a nondeterministic one and a canonical recognizer for a deterministic automaton, respectively.

In Chapter 5, the automaton data structure is extended to the requirements of supervisory control by specification of another ADT that can hold properties of events. For this specification, a more general implementation is stated, that can also be used to extend the Generator class to other approaches. The extended automaton model is then implemented as the cGenerator class. Algorithms for monolithic supervisory control, implemented by the cGenerator class are stated at the end of the chapter. Here the algorithmic solution of the basic supervisory control problem is presented.

Chapter 6 introduces implementations of algorithms for hierarchical control of decentralized systems according to the approach provided in [Sch05b]. A by-product of the deterministic projection, a map of high-level states to their low-level entry states is used to effectively implement the algorithms.

The practical part, the so called *FAUDES* software library is the main result of this thesis. It provides flexible set based data structures for modelling DES, that can be extended to different theory approaches. All basic automata and language algorithms are implemented. Also an algorithm for efficient monolithic supervisor computation and control-lability test in the RW control theory is included. In addition all verification algorithms for the hierarchical and decentralized approach provided in [Sch05b] are implemented, with data structures for the visualization of the results. Further on the library provides advanced features for the use as a base library in a graphical user interface. Beside the implementation of exception handling it provides extensible and user friendly data structures on top of the base classes for automata memory management in large applications. The library is also designed to implement mappings between the state indices of automata, that have been computed in functions and the state indices of function input automata by the usage of globally unique state indices. In addition a simple console application was developed as an example for using the data structures provided in the library and for testing purposes.

This software library will be provided to the public for free use under the GNU Lesser General Public License. It shall encourage external researchers to adopt the library for their own approaches and contribute to the further development.

Acknowledgement:

I would like to thank Klaus Schmidt and Prof. Th. Moor for providing me this interesting topic and for the freedom of research in developing the software library and writing the thesis. I also want to thank Alexander Dreweke and Gerd Hofmann for always answering my programming language related questions and the Studienprojekt for testing my code and for much fun at work. Finally I would like to thank my girlfriend Katja for her constant love and moral support during the time this thesis was written.
Bibliography

- [AHU⁺83] Alfred V. Aho, John E. Hopcroft, Jeffrey Ullman, J. D. Ullman, and J. E. Hopcroft. *Data Structures and Algorithms*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.
- [CC02] A.E.C. Da Cunha and J.E.R. Cury. Hierarchically Consistent Controlled Discrete Event Systems. *IFAC World Congress*, 2002.
- [CL99] C. G. Cassandras and S. Lafortune. *Introduction to Discrete Event Systems*. Kluwer, 1999.
- [dCCK02] Antonio E. C. da Cunha, Jose E. R. Cury, and Bruce H. Krogh. An Assume-Guarantee Reasoning for Hierarchical Coordination of Discrete Event Systems. Workshop on Discrete Event Systems, 2002.
- [dQC00] M. H. de Querioz and J. E. R. Cury. Modular Control of Composed Systems. *American Control Conference*, 2000.
- [fau] FAU Discrete Event Systems Library. http://www.rt.e-technik. uni-erlangen.de/FGdes/.
- [Hop71] John E. Hopcroft. An n log n algorithm for minimizing the states in a finite automaton. In Z. Kohavi, editor, *The Theory of Machines and Computations*, pages 189–196. Academic Press, 1971.
- [HU79] John E. Hopcroft and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages and Computation*. Addison-Wesley, 1979.

- [Knu98] Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.
- [Led02] R.J. Leduc. *Hierarchical Interface Based Supervisory Control*. PhD thesis, 2002.
- [Les95] Ted Leslie. Efficient Approaches to Subset Construction. Master's thesis, Computer Science, University of Waterloo, 1995.
- [LGP] GNU Lesser General Public License. http://www.gnu.org/copyleft/ lesser.html.
- [RW89] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. *Proceedings of the IEEE*, 77:81–89, 1989.
- [Sch05a] Berno Schlein. Erstellung einer Softwareumgebung fuer Anwendungen aus der Supervisory Control Theory: Hierarchischer und Dezentraler Entwurf, 2005.
- [Sch05b] Klaus Schmidt. *Hierarchcal Control of Decentralized Discrete Event Systems, Theory and Application.* PhD thesis, 2005.
- [Sup] Supremica. http://www.supremica.org.
- [TCT] TCT. http://www.control.utoronto.ca/people/profs/wonham/ wonham.html.
- [UMD] UMDES Software Library. http://www.eecs.umich.edu/umdes/ toolboxes.html.
- [Won04] W.M. Wonham. Supervisory Control of Discrete-Event Systems, 2004.
- [WR87] W. M. Wonham and P. J. Ramadge. On the Supremal Controllable Sublanguage of a Given Language. SIAM Journal of Control and Optimization, 25:637–659, 1987.
- [YL00] T. Yoo and S. Lafortune. A Generalized Framework for Decentralized Supervisory Control of Discrete Event Systems. *Workshop on Discrete Event Systems*, 2000.

[ZW01] Z. Zhang and W. Wonham. STCT: an efficient algorithm for supervisory control design, 2001.

Appendix A

Additional Methods

A.1 Algorithms for Nonblocking Hierarchical Control

A.1.1 Verification of Liveness

The *liveness* condition guarantees that each state has at least one transition. It is defined in [Sch05b].

Algorithm A.1 (Liveness). Given an automaton $G = (X, \Sigma, \delta, X_0, X_m)$. The function LIVENESS returns True if the automaton is live and False if not. The states failing the liveness condition are stored in the reference parameter X_{failed} .

```
1: function LIVENESS(Generator G_{\&}, StateSet X_{\&}^{failed})
        for all x \in X do
2:
            if Transitions (\delta, x) = \emptyset then
 3:
                X^{failed} := X^{failed} \cup \{x\}
 4:
            end if
 5:
 6:
        end for
        if X^{failed} = \emptyset then
7:
 8:
            return True
9:
        else
10:
            return False
11:
        end if
12: end function
```

A.1.2 Verification of Marked String Controllability

The definition of the marked string controllability condition for deterministic projected systems (G, G^{hi}) is given in [Sch05b]. It guarantees that if no high-level event is feasible in a marked high-level state of G^{hi} , then the low-level system G still can be controlled such that nonblocking occurs.

Algorithm A.2 (Marked String Controllability). Given a deterministic projected system (G, G^{hi}) and an entry state map EntryStateMap that is the result of the deterministic projection by the function DETPROJECT. The MARKEDSTRINGCONTROLLABILITY returns True if the marked string controllability condition holds and False if not. The helper function LOCALAUTOMATON is called to compute a local automaton starting from a specified entry state. Local automata are defined in [Sch05b].

```
1: function MARKEDSTRINGCONTROLLABILITY(cGenerator G_{\&}^{\text{lo}}, cGenerator G_{\&}^{\text{hi}}, Map<Idx, StateSet> EntryStateMap_{\&})
```

```
    /* local variables */
    Bool result := True
```

```
4: CGenerator G_{\text{lo.spec}} := G^{\text{lo}}
```

- 5: Bool gotucevent /* "got an uncontrollable event" */
- 6: cGenerator $G_{lo,local}$
- 7: cGenerator $G_{\mathrm{lo},sup}$
- 8: /* start */
- 9: $TRIM(G_{lo,spec})$

```
10: for all x_{m,hi} \in X_{m,hi} do
```

```
11: gotucevent := False
```

```
12: for all t_{\rm hi} \in {\rm Transitions} (\delta_{\rm hi}, x_{\rm m,hi}) do
```

```
13: if t_{\rm hi} . ev \in \Sigma_{\rm uc,hi} then
```

```
14: gotucevent := True
```

```
15: break /* exit for all loop */
```

```
16: end if
```

```
17: end for
```

```
18: if gotucevent = False then
```

```
19: for all x_{entry} \in EntryStateMap[x_{m,hi}] do
```

- 20: /* compute local automaton */
- 21: LOCALAUTOMATON($G^{\text{lo}}, \Sigma_{\text{hi}}, x_{entry}, G_{\text{lo},local}$)
- 22: /* build supervisor from local automaton */
- 23: SUPCONNB($G_{lo,local}, G_{lo,spec}, G_{lo,sup}$)

24:	if $X_{\mathrm{lo},sup} = \emptyset$ then
25:	result := False
26:	end if
27:	end for
28:	end if
29:	end for
30:	return result
31:	end function

The LOCALAUTOMATON function computes a local automaton by following transitions with events $t \cdot ev \notin \Sigma^{hi}$ in the low level automaton.

1: function LOCALAUTOMATON(cGenerator $G^{lo}_{\&}$, EventSet $\Sigma^{hi}_{\&}$, Idx x^{entry} , cGenerator G^{local})

```
/* local variables */
 2:
 3:
            \operatorname{Idx} x_{current}
            Stack<Idx> X<sub>waiting</sub>
 4:
 5:
           /* start */
            \Sigma_{local} := \Sigma
 6:
           X_{local} := X_{local} \cup \{x^{entry}\}
 7:
           X_{0,local} := X_{0,local} \cup \{x^{entry}\}
 8:
           \texttt{Push}\,(X_{waiting\,\text{\textbf{\textit{I}}}}\,x^{entry}\,)
 9:
10:
            while X_{waiting} \neq \emptyset do
                 x_{current} := \operatorname{Pop}\left(X_{waiting}\right)
11:
                 for all t_{\text{lo}}.ev \notin Transitions (\delta_{\text{lo}}, x_{current}) do
12:
                       if t_{\rm lo} \cdot ev \notin \Sigma_{\rm hi} then
13:
14:
                             if t_{lo} \cdot x2 \notin X_{local} then
                                   Push (X_{waiting}, t_{lo}.x2)
15:
16:
                                   X_{local} := X_{local} \cup \{t_{lo} \cdot x^2\}
                             end if
17:
18:
                             SetTransition(\delta_{local}, t_{
m lo})
                       end if
19:
                 end for
20:
                 if x_{current} \in X_{m,lo} then
21:
                        X_{\mathrm{m,local}} := X_{\mathrm{m,local}} \{ x_{current} \}
22:
                 end if
23:
            end while
24:
25: end function
```

A.1.3 Verification of Mutual Controllability

The definition of the mutual controllability condition is given in [Sch05b]. It requires decentralized subsystems of a composed system to agree on the occurrence of shared uncontrollable events.

Algorithm A.3 (Mutual Controllability). Given two automata $G_1 = (X_1, \Sigma_1, \delta_1, X_{0,1}, X_{m,1})$ and $G_2 = (X_2, \Sigma_2, \delta_2, X_{0,2}, X_{m,2})$ with the uncontrollable events $\Sigma_{uc,1} \subseteq \Sigma_1$ and $\Sigma_{uc,2} \subseteq \Sigma_2$. The function MUTUALCONTROLLABILITY returns True if the automata fulfill the mutual controllability condition and False if not.

```
1: function MUTUALCONTROLLABILITY (cGenerator G_{k}^{1}, cGenerator G_{k}^{2})
```

- 2: /* local variables */
- 3: EventSet $\Sigma_{12} := \Sigma_1 \cap \Sigma_2$
- 4: EventSet $\Sigma_{uc,12} := \Sigma_{uc,1} \cap \Sigma_{uc,2}$
- 5: Bool $result_{12}$
- 6: Bool $result_{21}$
- 7: cGenerator G_{tmp}
- 8: /* start */
- 9: **if** $\Sigma_{uc,12} = \emptyset$ **then**
- 10: return True
- 11: **end if**
- 12: /* $p_{21}^{-1}(p_{12}(L(G^2)))$ */
- 13: DETPROJECT(G^2 , Σ_{12} , G_{tmp})
- 14: INVPROJECT(G_{tmp}, Σ_1)
- 15: $result_{12} := \text{CONTROLLABLE}(G_{tmp}, G^1, \Sigma_{uc, 12})$
- 16: $/* p_{12}^{-1} (p_{21} (L (G^1))) */$
- 17: DETPROJECT(G^1 , Σ_{12} , G_{tmp})
- 18: INVPROJECT(G_{tmp}, Σ_2)
- 19: $result_{21} := \text{CONTROLLABLE}(G_{tmp}, G^2, \Sigma_{uc, 12})$
- 20: **if** $result_{12} = True \land result_{21} = True$ **then**

```
21: return True
```

- 22: **else**
- 23: return False
- 24: **end if**
- 25: end function

List of Figures

2.1	Example of a finite automaton	9
2.2	The supervisor S controls the plant G in a feedback loop	11
3.1	Linked states in the linked list automaton data model	18
3.2	A set based model holds the example automaton of Figure 2.1	19
3.3	Parallel composition of automata G_1 and G_2	21
3.4	Projection of an automaton G to G_{proj} over the alphabet Σ_{proj}	27
3.5	Simple set signature	56
3.6	Generator class	60
4.1	Initialization of multiway merge of transitions from a subset	75
5.1	cGenerator class	83