
Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Regelungstechnik
Prof. Dr.-Ing. G. Roppenecker Prof. Dr.-Ing. Th. Moor

Matthias Singer

Projektarbeit

Supervisor synthesis for discrete event systems with colored

marking: Algorithmic Implementation and Case Studies

Als Projektarbeit

vorgelegt von

Matthias Singer

Betreuer: Betreuer: Ausgabedatum: 01.03.08

Dr.-Ing. Klaus Schmidt Prof. Dr.-Ing. Th. Moor Abgabedatum: 18.07.08

Projektarbeit

Supervisor synthesis for discrete event systems with colored
marking: Algorithmic Implementation and Case Studies

Aufgabenstellung:

Recently, efficient methods for the supervisory control of multitasking discrete event systems

(MDES) have been developed. In contrast to the classical supervisory control theory by

Ramadge/Wonham, MDES are modeled by colored marking generators, that is, automata

where states can have multiple colors that represent distinct tasks. The main goal of the

controller design is then to find supervisors that are nonblocking with respect to each

individual color.

In this thesis, the advantages of multitasking supervisory control shall be investigated. In the

first step, algorithmic support for the synthesis of multitasking supervisors has to be provided.

To this end, the C++-software library libFAUDES which has been developed at the Chair

of Automatic Control of the University of Erlangen-Nuremberg shall be used. The original

library supports the analysis of discrete event systems (DES) and the synthesis of supervisors

for DES according to the supervisory control theory by Ramadge/Wonham. In this work, a

plugin for multitasking supervisory control has to be implemented. Second, a study of two

example systems has to be carried out. The cat-and-mouse-in-a-maze example shall be

extended to two connected floors, and modular multitasking supervisory control has to be

applied to solve control problems that involve multiple tasks for the cat and the mouse.

Finally, hierarchical multitasking supervisory control shall be applied to the model of a

manufacturing system with several components, and the benefit of using multiple colors has

to be discussed.

Es wird ausdrücklich auf die „Richtlinien zur Anfertigung von Studien- und Diplomarbeiten“
hingewiesen.

(Prof. Dr.-Ing. Th. Moor) (Dr.-Ing. K. Schmidt)

Matthias Singer

i

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne fremdeHilfe und ohne Benutzung

anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher

oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser

als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich

oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, den 18. Juli 2008

Matthias Singer

ii

Contents

1 Introduction 1

2 Definitions 5

2.1 Formal Languages and Automata .6

2.2 Natural Projection . 7

2.3 Accessibility and Coaccessibility 9

2.4 Blocking . 10

2.5 Colored Parallel Composition .. . 11

2.6 Multitasking Supervisory Control 12

2.7 Multitasking Hierarchical and Decentralized Control 13

3 Multitasking Plugin for the libFAUDES Software Library 17

3.1 Plugin Description . 18

3.2 Representation of Colors .19

3.3 Class “mtcGenerator” . 21

3.3.1 Interface Methods . 21

3.3.2 Implementation Details . 22

3.4 Further Functions . 24

3.4.1 Deterministic . 24

3.4.2 Project . 25

3.4.3 Parallel . 26

3.4.4 SupConNB . 28

iii

3.4.5 Statemin . 29

3.4.6 UniqueInit . 31

4 Examples 32

4.1 Cat and Mouse in a Maze . 32

4.1.1 Description of the Example and the Requirements 32

4.1.2 Modeling and Specification . 34

4.1.3 Computing the supervisor . 36

4.2 Fischertechnik Production Plant 37

4.2.1 General Description of the Production Plant and the Chosen Part

for this Example . 37

4.2.2 Modeling and Specification . 41

4.2.3 Hierarchical Structure . 45

5 Conclusion 50

Bibliography 52

Appendix 54

A Fischertechnik Production Plant 54

A.1 Models and Specifications for Conveyor Belt 4 and its additional compo-

nents . 54

A.2 Hierarchy Diagrams . 59

1

Chapter 1

Introduction

Various technical systems such as communication networks,manufacturing systems or

decentralized sensor-actuator-systems can be modeled asdiscrete event systems (DES).

For this reason, the modeling of DES and the investigation oftheir behavior has attracted

a lot of interest during the last two decades. New methods to control and verify discrete

event systems have been developed.

The initial effort has been made by P.J. Ramadge and W.M. Wonham [RW87], who pub-

lished their work on a “Supervisory Control Theory” in the late 1980s. They introduced

minimal restrictive supervisors which may constrain a plant’s behavior by disabling con-

trollable events in order to comply with a given specification. In this context, the speci-

fication both expresses the sequences of events that are allowed and marks certain tasks

that have to be achieved in the controlled behavior.

The computation of minimally restrictive supervisors froma given plant model and a

specification can be carried out by computational tools suchas the software library lib-

FAUDES which is developed by the Discrete Event Systems group of the Chair of Au-

tomatic Control at the University of Erlangen-Nürnberg. Itis a universally applicable

program library for DES written in C++ and its sources are freely available [lib08] under

the terms of the GNU Lesser General Public License [lgp07].

Considering the standard supervisory control theory, there are two main difficulties which

have to be overcome.

First, the number of system states increases enormously forsystems that consist of a grow-

ing number of components. This phenomenon is also known as “state space explosion”

[RW87]. It results in a very high complexity of the regarded models, such that comput-

ing those models leads to an enormous memory consumption. Consequently, only small

2

Guc, elevator

Guc, doors Ruc, elevator

Suc, elevator

Figure 1.1: Model, specification and supervisor for a simpleelevator

models can be examined, which is in contradiction to the desire for a practical application.

This problem can be diminished by using hierarchical abstraction. Models and specifi-

cations are divided into several little parts, which are combined step by step to an entire

model. In doing so, several levels of abstraction are obtained. Events that are not impor-

tant to the next higher level can there be omitted. As a result, the highest level automaton’s

size is significantly smaller than the one of a monolithic automaton [Sch05].

Second, there often are systems that require the completionof several distinct tasks. In the

classical approach, the marking of all states that represent the completion of a task would

imply, that all tasks have to be completed in one state and at the same time. From the

practical point of view, this constitutes an unnecessary restriction of the DES modeling

formalism as demonstrated in the following example.

A simple elevator only runs between two floors (Guc, elevator in Figure 1.1). There are four

states describing the elevator being on floor one or two, or moving up or down, and four

eventsmove_up, move_down, andup anddown which describe the arrival of the elevator

at the respective floor. In the initial state, the elevator ison the lower floor. In another

3

model Guc, doors, we consider the operation of the doors of the elevator whichcan be

modeled by two states, one for doors open and the initial one for doors closed. The events

consequently areopen_doors andclose_doors.

The specificationRuc, elevator forbids the movement of the elevator when the doors are

open. Furthermore, it guarantees that the doors do not open before the elevator has

stopped.

As the supervisor should guarantee that the doors can be opened on every floor, we choose

state 2 symbolizing open doors as marked state inGuc, doors. We also want the elevator

to move upwards and downwards. For this reason the corresponding states 2 and 4 of

Guc, elevator are marked, too. As can be seen, these markings do not get along with our

specificationRuc, elevator and cause a conflict between states 2 and 4 ofGuc, elevator and

state 2 ofGuc, doors. The resulting supervisorSuc, elevator either enables the movement of

the elevator what implies that the doors have to be closed, orit allows the doors to be

opened which requires that the elevator has arrived at one ofboth floors and does not

move until the doors are closed again. Hence, simultaneous completion of both tasks is

not possible.

To solve this problem, simple markings have been replaced bycolored markings in

[dQC04], [dQC05]. So, the completion of several tasks can bemarked by several types

of markings, namely colors (Figure 1.2). A Colored Marking Supervisor as is introduced

then assures that all tasks can be completed independently of each other. In accordance to

our example, this means opening the doors and movement of theelevator do not have to

happen at the same time, but can occur alternately, what resolves our conflict.

However, introducing colored markings does not solve the problem of state space ex-

plosion. To this end, K. Schmidt, M. H. Queiroz and J. E. R. Cury combined the idea

of hierarchical control and colored marking and showed the efficiency of the combined

approach [SQC07].

In this thesis, it is explained how we integrated a multitasking plugin into the libFAUDES

software library. It offers the necessary methods for creating CMGs and for operating

on them, for instance for inserting colors into states, for state minimization, the parallel

composition or the strongly trim operations. Functions forthe supervisor synthesis and

abstraction also are available. Together, the examinationof hierarchical multitasking DES

and the synthesis of multitasking supervisors is enabled.

First, Chapter 2 describes basic facts concerning languages, generators and their prop-

erties. Furthermore, an introduction to CMGs and hierarchical design methods is given.

4

Gc, elevator

Gc, doors Rc, elevator

Sc, elevator

{Cmoving}
{Cmoving}

{Cmoving}

{Cmoving}

{Copen}

{Copen}

{Copen}

Figure 1.2: Model, specification and supervisor with colored states for a simple elevator

Chapter 3 offers detailed information about the libFAUDES multitasking plugin, espe-

cially about the data structure for saving color labels and the adaption of the required and

already mentioned functions.

To conclude, two examples shall illustrate the effectiveness of hierarchical multitasking

control of DES in Chapter 4. The first one is an adaption of the cat and mouse in a maze

example introduced by Ramadge and Wonham [RW87], the secondone realizes a part

of a manufacturing system model K. Schmidt described in his dissertation [Sch05] and

which is available at the Chair of Automatic Control.

5

Chapter 2

Definitions

At first, a short introduction to the topic of DES shall be given and basic definitions

are presented. For further information and proofs, interested readers are advised to con-

sult appropriate literature, e.g. [CL99] for general aspects of DES or [dQC04] regarding

multitasking systems. Details about hierarchical and decentralized multitasking control,

especially, can be found in [SQC07].

For illustrating some of the following definitions, a generator example as depicted in

Figure 2.1 is introduced.

1 2
e1

5

e2
3

e4

6

e3

4
e6

e4

7

e4

e5

{c1, c2}

{c1}

{c2}

Gex

Figure 2.1: AutomatonGex for illustration of following definitions

In our automaton graphs, colored markings result in the coloring of the state node, if a

state only contains one color label. In case of several colored markings, it is framed by

rectangles in the appropriate colors. Besides, the respective color names are printed next

to the corresponding states in curly brackets.

2.1. FORMAL LANGUAGES AND AUTOMATA 6

2.1 Formal Languages and Automata

Let Σ be an event set (alphabet). The set containing the empty stringε and all finite strings

of elements ofΣ is denoted as theKleene-ClosureΣ∗. A languageL is a subset ofΣ∗ and

it is prefix closedif L = L with

L := {s∈ Σ∗ : ∃t ∈ Σ∗ s.t.(st∈ L)}

being theprefix-closure.

In this case,L contains all strings inL and their prefixes, whereas in general,L ⊆ L.

A Colored Marking Generator (CMG)is defined as a 6-tuple

G = (Q, Σ, C, δ, χ, q0),

whereQ is a set of states,Σ a set of events,C a set of colors,δ : Q×Σ → Pwr(Q) (power

set ofQ) denotes the transition function,χ : Q→ Pwr(C) describes the marking function,

andq0 is the initial state.

Γ : Q→ Pwr(Σ) is calledeligible event functionor active event functionsuch thatΓ(q) is

the set of events that are feasible inq∈ Q.

For exemplifying this definition, we refer to the automatonGex from Figure 2.1, which

establishes the sets

Q = {1, 2, 3, 4, 5, 6, 7},

Σ = {e1, e2, e3, e4, e5, e6},

C = {c1, c2},

δ(1, e1) = 2, δ(2, e3) = 6, δ(1, e2) = 5, ...,

χ{1} = {c1, c2}, χ(3) = {c1}, χ(6) = {c2},

q0 = {1}, and

Γ{1} = {e1, e2}, Γ(2) = {e3, e4}, Γ(5) = {e4}, ...

A CMG is termedfinite automatonwhen its set of states is finite. Furthermore, it is called

deterministicif it only contains one initial stateq0 and if in every stateq there are no active

eventsγ appearing multiple times and leading to separate successorstates. Otherwise, it

is nondeterministic.

The language generated by the generator Gis designated as

L(G) :=
{

s∈ Σ∗ | f (q0, s) is defined
}

.

2.2. NATURAL PROJECTION 7

As for multiple classes of tasks in one CMG different color labels c ∈ C are used for

markings, the languages

Lc(G) =
{

s∈ L(G) | c∈ χ
(

δ(q0(s))
)

}

∈ Pwr(Σ∗), ∀c∈C

mark the completion of a task of a respective class or colorc∈C. Consequently,

ΛC =
{

(Lc | c), c∈C
}

⊆ Pwr(Pwr(Σ∗)×C)

defines acolored behavior, i.e., the set of pairs of colored languages with their respective

color.

For a nonempty set of colorsB with /0 ⊂ B⊆C the language marked by Bis defined as

LB(G) :=
{

s∈ L(G) | B∩χ
(

δ(q0, s)
)

6= /0
}

,

what means that any generated strings is a prefix of any completed task marked with a

colorb∈ B.

For our example automatonGex depicted in Figure 2.1, the language generated byGex

results as

L(Gex) =
{

e1, e1e4, e1e3e5, e1e3e5e4, e1e3e5e4e1, ...,

e2, e2e4, e2e4e5, e2e4e5e4, ...
}

,

its colored behavior as

ΛC(Gex) =
{

(

{e1e4, e1e3e5e4, e2e4e5e4, e1e3e5e4e1e4, ...}, c1
)

,

(

{e1e3, e2e4, e1e3e5e4, e2e4e5e4, ...}, c2
)

}

.

2.2 Natural Projection

There are two event setsΣ1 and Σ2, which naturally are subsets ofΣ1 ∪Σ2. Then, the

natural projection Pi : (Σ1∪Σ2)
∗ → Σ∗

i for i = 1, 2 erases events in a string formed from

the larger event setΣ1∪Σ2, that do not belong to the smaller one (Σ1 or Σ2).

It is defined as follows:

Pi(ε) := ε,

Pi(e) :=

{

e if e∈ Σi

ε if e 6∈ Σi.

2.2. NATURAL PROJECTION 8

Strings can be viewed as the concatenation of single elements such that

Pi(se) := Pi(s) Pi(e)

for the prefixs∈ (Σ1∪Σ2)
∗ and an evente∈ (Σ1∪Σ2).

The projection for the languageL(G) can be obtained by applying it to all strings in the

language.

With the natural projectionp0 : Σ∗ → Σ∗
0 the colored natural projectionm0 :

Pwr(Pwr(Σ∗)×C) → Pwr(Pwr(Σ∗
0)×C) for CMGs is defined such that

Lc (m0(ΛC)) = p0(Lc(ΛC)) , ∀c∈C.

The projected colored behavior can again be realized by a CMGG0 such that for each

c∈C, ΛC(G0) = m0(ΛC(G)).

1

5

e2

2e1

4
e6

6
e4

7

e4

e5

3
e4

e5

{c1, c2}

{c1}

{c2}

{c2}

Gpro j

Figure 2.2: Gpro j as the projection’s result forGex and the alphabetΣ1 =

{e1, e2, e4, e5, e6}

The colored natural projection applied on the automatonGex from Figure 2.1 with the

alphabetΣ1 = {e1, e2, e4, e5, e6}, wheree3 is missing, consequently results in the au-

tomatonGpro j shown in Figure 2.2.

The result for the language generated byGpro j

L(Gpro j) =
{

e1, e1e4, e1e5, e1e5e4, e1e5e4e1, ...

e2, e2e4, e2e4e5, e2e4e5e4, ...
}

and the colored behavior forGpro j

ΛC(Gpro j) =
{(

{e1e4, e1e5e4, e2e4e5e4, e1e5e4e1e4, ...}, c1
)

,
(

{e1, e2e4, e1e5e4, e2e4e5e4, ...}, c2
)}

2.3. ACCESSIBILITY AND COACCESSIBILITY 9

differ from L(Gex) andΛC(Gex) in that way, that in the respective strings contained in

L(Gpro j) andΛC(Gpro j) the evente3 is erased.

The inverse projectionP−1
1 : Σ∗

1 → Pwr((Σ1∪Σ2)
∗) extends a smaller event setΣ1 by all

eventse∈ Σ1∪Σ2 with e∈ Σ2−Σ1. In an automaton representation, the inserted events

appear in all states as self-loops (see Figure 2.3).

1

e3

5

e2

2e1

4

e3

e6

e3

6
e4

7

e4

e3e5

e3 3
e4

e3

e5

e3

{c1, c2}

{c1}

{c2}

{c2}

Ginvpro j

Figure 2.3: Inverse projection applied on the automatonGpro j, where evente3 was miss-

ing, with the original alphabetΣ1 containinge3

2.3 Accessibility and Coaccessibility

Accessibility describes an automaton’s property that all its states can be reached by start-

ing in an initial state and following the transition relation. So, stateq∈ Q is accessibleif

there exists ans∈ Σ∗ such thatδ(q0,s) = q. G is called accessible ifq is accessible for

everyq∈ Q.

A stateq∈ Q of a CMG isweakly coaccessible w.r.t. its color set Cif starting atq at least

one state that marks one or more colors ofC can be reached with an existing sequence of

transitions. This means, there exists ac∈C and as∈ Σ∗ such thatc∈ χ(δ(q,s)).

q∈Q is strongly coaccessible w.r.t. Cif starting at stateq there is a sequence of transitions

for everyc∈C that leads to a state marked byc:

∀c∈C,∃s∈ Σ∗ s.t.c∈ χ(δ(q,s)).

2.4. BLOCKING 10

A CMG is weakly trim, if it is accessible and weakly coaccessible w.r.t.c. It is called

strongly trim, if it is accessible and strongly coaccessible.

1

e3

4

e2

2e1

e3

5
e4

6

e4

e3e5

e3 3
e4

e3

e5

e3

1

e3

3

e2

2e1

e3

4
e4

5

e4

e3
e5

e3

e5

e3

{c1, c2}

{c1, c2}

{c1}

{c1}
{c1}

{c1}

{c2}

Gacc Gstrcoac

Figure 2.4: The accessible form of the automatonGinvpro j from Figure 2.3 is shown on

the left side, its also strongly coaccessible version on theright.

The automatonGinvpro j from Figure 2.3 is already weakly coaccessible w.r.t. the color set

C = {c1, c2}, as from any state at least one colored state can be reached. However, it is

not accessible and not yet strongly coaccessible. When applying the accessible operation

on the automaton, it looses state4 (Figure 2.4). To even make it strongly coaccessible,

state3 has to be erased, as from there no state colored byc2 can be reached.

2.4 Blocking

A CMG G is weakly nonblocking w.r.t. Cif

L(G) = LC(G).

So, any generated string can complete a task marked with a color c ∈ C. An equivalent

statement is that the accessible part ofG is weakly coaccessible.

G isstrongly nonblocking w.r.t. Cif

∀c∈C, L(G) = Lc(G),

which says that any string can be completed to all tasks. Equivalently, the accessible part

of G has to be strongly coaccessible.

2.5. COLORED PARALLEL COMPOSITION 11

Using those definitions, we examine the blocking behavior ofGex from Figure 2.1 by

regarding the appropriate languages. The language generated byGex is

L(Gex) = {e1, e2, e1e3, e1e4, e2e4, e1e3e5, ...},

whereas the prefix closures of the colored marked languages result to

Lc1(Gex) = {e1e4, e1e3e5e4, e2e4e5e4, e2e3e5e4e1e3, ...} and

Lc2(Gex) = {e1e3, e2e4, e1e3e5e4, e2e4e5e4, ...}.

As Lc2 does not contain the prefixe1e4 which is contained inL(Gex), the automaton

cannot be strongly nonblocking.Lc1, however, is identical toL(Gex). Therefore, at least

weakly nonblocking is given.

2.5 Colored Parallel Composition

The parallel composition of two colored behaviorsMB andNC, with MB ⊆ NC if B ⊆ C

and∀b∈ B, Lb(MB) ⊆ Lb(NC), is defined as

MB ‖ MC := {Lb(MB) ‖ Lb(NC), b, ∀b∈ B∩C} ∪

{(Lb(MB) ‖ LC(NC), b), ∀b∈ B−C} ∪

{(LB(MB) ‖ Lb(NC), b), ∀b∈C−B}

with a resulting color setB∪C.

For exemplification, those colored behaviors can be represented as two automata with col-

ored markings. With the definition above, their compositioncan be explained as follows.

A colored label existing in the current states of both automata to combine leads to the

composition’s resulting state also possessing this label.On the other hand, colors appear-

ing in both automata, but only in one of the compared states are not considered in the

respective composition state. However, if a state’s color in one of the single automata

does not appear in the other one at all, then it is adopted to the result.

Therefore, the parallel composition for two CMGsG1 = (Q1, Σ1, C1, δ1, χ1, q0,1) and

G2 = (Q2, Σ2, C2, δ2, χ2, q0,2) is defined as

G1 ‖ G2 := Ac
(

Q1×Q2, Σ1∪Σ2, C1∪C2, δ, χ, (q0,1, q0,2)
)

, with

2.6. MULTITASKING SUPERVISORY CONTROL 12

δ
(

(q1,q2), σ
)

=

(

δ1(q1,σ), δ2(q2,σ)
)

, if σ ∈ Γ1(q1)∩Γ2(q2)
(

δ1(q1,σ), q2
)

, if σ ∈ Γ1(q1)\Σ2
(

q1, δ2(q2,σ)
)

, if σ ∈ Γ2(q2)\Σ1

undefined otherwise,

χ((q1,q2)) = [χ1(q1)∪ (C2−C1)]∩ [χ2(q2)∪ (C1−C2)],

Γ
(

(q1,q2)
)

= [Γ1(q1)∪ (Σ2−Σ1)]∩ [Γ2(q2)∪ (Σ1−Σ2)],

andAcbeing the accessible operation which deletes unreachable states from a generator.

In general,L(G1 ‖ G2) = L(G1) ‖ L(G2). Furthermore, ifC1 = C2 or if G1 andG2 are

weakly coaccessible w.r.t. their respective color sets, the relationΛC(G1 ‖G2)= ΛC(G1) ‖

ΛC(G2) is valid as well.

2.6 Multitasking Supervisory Control

An open loop behavior of a DES, which is modeled by a CMG, has tobe controlled

by a supervisor such that a safety specificationAD, theadmissible language, is fulfilled.

Moreover, strongly nonblocking of the controlled system has to be guaranteed.

A coloring supervisor S: L(G) → Pwr(Σ)×Pwr(E) wherePwr(Σ) represents the set of

enabled events andPwr(E) a set of new colors which indicate the completion of a task is

admissibleif ∀s∈ L(G), Σu∩Γ(δ(q0, s)) ⊆ R (S(s)).

Here,Σu contains all uncontrollable events andR (S(s)) identifies the events the supervi-

sor does not prevent after occurrence of the string s. Thus, it always enables all uncontrol-

lable events of the active event set.

An admissible coloring supervisor, which is strongly nonblocking w.r.t. D such that

ΛD(S/G) = AD andL(S/G) = LD(AD), exists if the following conditions are fulfilled:

• controllability:LD(AD)Σu∩L(G) ⊆ (LD(AD))

• D-closure:Ld(AD) = Ld(AD)∩Ld(G), ∀d ∈ (D∩C)

• strong nonblocking ofAD w.r.t. D

Controllability means that any uncontrollable event occurring after an allowed string that

is feasible in the automaton’s current state always has to bepermitted by the supervisor,

as disabling it is impossible anyway.

2.7. MULTITASKING HIERARCHICAL AND DECENTRALIZED CONTROL 13

In case that controllability and strongly nonblocking are not fulfilled, the supremal con-

trollable and strongly nonblocking supervisorSCNB(AD, G, D) can be computed with

complexity polynomial in the number of states of the model [dQC04].

2.7 Multitasking Hierarchical and Decentralized Control

System models can often be composed by separate controlled DESGi with a respective

color setCi which are represented by finite automata. The overall systemmodel results as

G :=‖n
i=1 Gi with color setC :=

n
[

i=1

Ci

Σi,u andΣi,c denote the uncontrollable and controllable events of the subsystemGi . The

events shared in different components are designated asΣs and have to agree on their

control status, what means that for two subsystemsGi andGk with i 6= k

Σi,u∩Σk,c = /0.

If this condition is fulfilled,Σu andΣc of the overall system result as

Σu =
n

[

i=1

Σi,u

Σc =
n

[

i=1

Σi,c.

Before composing subsystems, they mostly can be reduced to asmaller number of states

by natural projection. In this step, events of a componentGi being not essential for the

high-level are erased from the low-level alphabet. This procedure calledhierarchical ab-

straction is based on the idea that the low-level supervisor takes careof all low-level

events. All other ones - especially all shared events - are contained in the high-level al-

phabetΣ0,i , such thatΣs∩Σi ⊆ Σ0,i ⊆ Σi .

As follows, colored marking high-level plantsG0,i for the respective subsystemsGi result

as

L(G0,i) = pi
(

L(Gi)
)

ΛC(G0,i) = m0,i
(

ΛC(Gi)
)

with the natural projectionpi : Σ∗
i → Σ∗

0,i and the colored projectionm0,i : Σ∗
i → Σ∗

0,i .

2.7. MULTITASKING HIERARCHICAL AND DECENTRALIZED CONTROL 14

Then, the overall high-level plant evaluates to the CMGG0 with

L(G0) = p0(‖
n
i=1 L(Gi)) = ‖n

i=1 L(G0,i)

ΛC(G0) = m0(‖
n
i=1 ΛC(Gi)) = ‖n

i=1 ΛC(Gi,0),

with the controllability properties taken over from the low-level.

The specification needed for computing a high-level supervisor is given as a colored be-

havior AD with its color setD. Based on it, a supremal controllable and strongly non-

blocking supervisorS0 : L(G0) → Pwr(Σ0)×Pwr(E) with a set of new colorsE = D−C

can then be computed.

The control action for the low-level supervisorS : L(G) → Pwr(Σ)×Pwr(E) is defined

for eachs∈ L(G) as

S(s) :=
(

S0
(

p0(s)
)

∪ (Σ−Σ0), I
(

S0(p0(s))
)

)

with I
(

S0(p0(s))
)

representing the high-level supervisor’s colors.

Thus, the low-level supervisor compasses an alphabet with all events from the high-level

supervisor and, additionally, the low-level events that are not of interest to the high level

and, therefore, are not in the abstraction alphabet. The colors used at the high level are the

same as in the subsystems. They cannot be neglected, as they stand for tasks to complete.

The control action each subsystem can observe after a strings can be described as

(R (S(s))∩Σi, I (S(s))∩ (Ci ∪E)).

Following the mentioned steps, hierarchical consistency can be guaranteed and the super-

visor implementation is carried out such thatp0(L(S/G)) = L(S0/G0).

To ensure a nonblocking behavior of the supervised system, the observer condition for

CMGs is required.

Definition 2.7.1 (Colored Observer) Let L = L ⊆ Σ∗ be a language, ΛC ∈

Pwr(Pwr(Σ∗) × C) with LC(ΛC) ⊆ L a colored behavior, and define the natural

projection p0 : Σ∗ → Σ∗
0 and the colored natural projection m0 : Pwr

(

Pwr(Σ∗×C)
)

→

Pwr
(

Pwr(Σ∗
0×C)

)

for Σ0 ⊆ Σ. Then, m0 is a ΛC-observer (w.r.t. L) iff for each c∈C, it

holds that∀s∈ L and∀t ∈ Σ∗
0 with p0(s)t ∈ p0

(

Lc(ΛC)
)

∃u∈ Σ∗ s.t. su∈ Lc(ΛC)∧ p0(su) = p0(s)t.

2.7. MULTITASKING HIERARCHICAL AND DECENTRALIZED CONTROL 15

Strongly nonblocking control can be achieved for allc∈C for Lc(S/G) = L(S/G) if m0,i

is aΛC(Gi)-observer fori = 1, ...,n.

To demonstrate the meaning of this definition, we chose the following automaton, which

is deduced from the workpiece detection element presented in Chapter 4.2.2. It shall be

examined if the observer condition holds for two different projection alphabets,Σ1 =

{a, c, d, f} andΣ2 = {a, c, d, e, f}.

1

2a

3

b
5d

4

c

d

e

f

{c1}

{c2}

Gobs

Figure 2.5: Automaton for illustrating the observer condition

Σ1 = {a, d, e, f}: Let p1 be the natural projection for the alphabetΣ1. We examine the

observer condition fors= abcandt = d. As p1(Gobs) = {ad, ae, ad f ad, ...} and

consequentlyp1(abc)d = ad ∈ p1(Gobs), s and t are valid values for testing the

colored observer condition. With stringabcwe arrive at state4. However, there is

no stringu such thatabcu∈ Lc2(Gobs) andp0(u) = t. So, it is shown for the color

c2 and the alphabetΣ1 thatmΣ1→Σ1,0 is not aΛC(Gobs)-observer.

Σ2 = {a, c, d, e, f}: We regard the same strings for the natural projectionp2 with the

alphabetΣ2. Other than in the previous case, the projection step now delivers the

languagep2(Gobs) = {ad, ace, ad f ad, ...}. To attain the same critical case than

above, we again chooset = d. Doing so,p2(s)t = p2(abc)d = acd 6∈ p2(Gobs).

Hence, this case does not affect the observer condition.

For all other stringssand all othert ∈Σ2 the compliance with the observer condition

can easily be verified.

Definition 2.7.2 (Nonblocking Control) If m0,i is a ΛC(Gi)-observer (w.r.t. L(Gi)) for

i = 1, ...,n, then

• m0 is a ΛC(G)-observer (w.r.t. L(G))

2.7. MULTITASKING HIERARCHICAL AND DECENTRALIZED CONTROL 16

• the closed loop is nonblocking:Lc(S/G) = L(S/G), ∀c∈C.

Note that the minimal generator forp0(L(G)) maximally has as many states as the mini-

mal generator forL(G) [SQC07]. Moreover, the closed-loop on the high-level represents

a finite automaton for which further abstraction may be possible.

17

Chapter 3

Multitasking Plugin for the libFAUDES

Software Library

The libFAUDES software library developed at the Chair of Automatic Control at the

Friedrich-Alexander-University Erlangen-Nürnberg is a tool for handling finite automata

and regular languages. The most important feature in the supervisory control context is

the possibility to compute minimally restrictive supervisors from a given plant model and

an appropriate specification. The adequate algorithms and data structures for the classical

approach [RW89] of marked generators have already been implemented. Also, algorithms

for designing hierarchical systems as in [Sch05] for generators with a single color are

available.

The libFAUDES project is based on an object-oriented concept developed in the program-

ming language C++. Its sources are freely available under the terms of the GNU Lesser

General Puclic License on our homepage [lib08] and may be used for own projects or be

extended with own algorithms.

As was pointed out in the introduction of this thesis, the application of the classical ap-

proach is not always satisfactory for the supervisor designin multitasking systems. For

this reason, we developed a libFAUDES plugin for the computational procedures for mul-

titasking systems. This plugin introduces colored markings as state attributes that are

used for functions such as the natural projection, the parallel composition or testing the

observer condition presented in the previous section.

3.1. PLUGIN DESCRIPTION 18

3.1 Plugin Description

The multitasking plugin consists of several files, which contain important functions

and necessary classes for the handling of multitasking generators. Thereby, the class

TmtcGeneratoris the most important one for the software user. It offers methods for

• constructing and destructing generators,

• inserting and manipulating states, colored markings, events and transitions,

• naming and querying of data,

• input and output of generators or its single components, e.g. its color set.

Other functions, for instance the computation of the parallel composition or a colored

supervisor and making a generator deterministic or accessible, are added in own files and

do not belong to theTmtcGeneratorclass. Nevertheless, they belong to the plugin and are

designed for the use with multitasking generators in Section 3.4.

The classTmtcGeneratorinherits fromvGenerator(Figure 3.1), which only contains vir-

tual classes for the generator interface definitions. The derived classTaGeneratorimple-

ments almost all methods for setting up generators in the classical approach. Controlla-

bility properties are realized in the classTcGenerator. As our multitasking plugin inherits

from theTcGeneratorclass, many methods from the classesTaGeneratorandTcGen-

erator can directly be used. Only methods which have to observe colored markings are

reimplemented inTmtcGenerator.

Figure 3.1: Inheritance diagram for class TmtcGenerator

TheTmtcGeneratorclass is, as well as its base classes, realized as a template class, what

is indicated by the preceding template parameter T in its identifier. Templates offer a

very efficient way of defining properties, as only required parts are linked to the program.

3.2. REPRESENTATION OF COLORS 19

Besides, the integration of templates is carried out duringcompilation and modifying

them is possible with low complexity.

The compiler expects four class template parameters to be passed. They are

• GlobalAttributefor the generator,

• StateAttributefor single states,

• EventAttributefor single events, and

• TransAttributefor single transitions.

With colored markings affecting the states, they consequently are represented as state

attributes, whereas the controllability properties of events are saved in the event attribute.

The global attributes or transition ones are not needed for our approach. Thus, the void

attributeAttributeVoidis inserted for them. However, they are already considered in the

libFAUDES concept as a future implementation may require them.

The identifier of a classTmtcGenerator<AttributeVoid, AttributeColoredState, At-

tributeCFlags,AttributeVoid>is abbreviated as mtcGenerator by an appropriate C++ type

declaration in our implementation. An example is given in Section 3.3.1.

3.2 Representation of Colors

The colors belonging to a particular state are saved in the classAttributeColoredState. It is

inserted for every state as its corresponding state attribute StateAttr. The correlation with

other classes and the respective data members are shown in the collaboration diagram in

Figure 3.2.

The classAttributeColoredStateis derived fromAttributeFlagswhich in turn inherits from

AttributeVoid. As we do not use any methods or data members fromAttributeFlags, di-

rectly inheriting fromAttributeVoidwould also be possible, but for consistency with the

classAttributeCFlagswhich takes care of the controllability status of events,Attribute-

Flagsis taken as base class. Its membermFlagsdoes not allocate any further cache mem-

ory, as its value is initialized to the static default valuemDefFlags= 0x0. For this reason,

the methodIsDefaultwhich only tests ifmFlags = mDefFlags, is reimplemented inAt-

tributeColoredStateand then allows to easily find out if a state is colored or not. For that,

the method additionally determines ifmColorsis empty.

3.2. REPRESENTATION OF COLORS 20

NameSet#mpSymbolTableAttributeColoredState+mColors+mpColorSymbolTable ColorSet�msSymbolTable

AttributeVoidAttributeFlags+mFlags+mDefFlags

SymbolTable�mMyName�mIndexMap�mNameMap�mMaxIndex�mNextIndex�msEventSymbolTable
#mpSymbolTable+mColors
�msEventSymbolTable

�msSymbolTable+mpColorSymbolTable
Figure 3.2: Class diagram for collaborating classes of AttributeColoredState

Each state’sAttributeColoredStateclass has a color set mColors as data member, where

the color labels eventually are saved. It is derived fromNameSet, which is based on an

index setmIndexSet. There, the color indices are inserted.ColorSetitself contains a static

color symbol table, which means there is one color name symbol table for all color sets

belonging to this generator. The pointermpSymbolTablein classNameSethas to be set

to this symbol table with every constructor call. Dereferencing it then is basis for saving

color names and for looking them up again.

Color names usually are saved in a global color symbol table,which means there is one

symbol table for all color sets in all generators. The membermpSymbolTablecontained in

ColorSetandmpColorSymbolTablefrom classTmtcGeneratorare initialized to reference

this global color symbol table.

Furthermore, the current implementation ofTmtcGeneratoralso allows to set up a local

color symbol table for each generator. Doing so, we are able to erase color names when

deleting a color label from a generator’s state. Using the global color symbol table what is

the standard case, requires that color names are not erased,as it cannot be tested if there is

another generator using the respective color as well. By contrast, establishing a local color

symbol table resets the pointermpColorSymbolTableaccordingly, and consequently the

comparison of this pointer withmpSymbolTablefrom classColorSettells us if a global

3.3. CLASS “MTCGENERATOR” 21

color symbol table or a local one is in use. In the latter case,the appropriate color name

can be deleted.

Although using a local color symbol table has slightly been tested, its faultless functional-

ity cannot be guaranteed. If this part of our plugin shall be used, it is in the programmers’

hands to ensure accuracy.

3.3 Class “mtcGenerator”

3.3.1 Interface Methods

Multitasking generators are established using their abbreviated identifiermtcGenerator.

The automatonGex from Figure 2.1, for instance, can be generated using the following

code sequence:

1 mtcGenera to r gen ;

2

3 s t 1 = gen . I n s I n i t S t a t e () ;

4 s t 2 = gen . I n s S t a t e () ;

5 s t 3 = gen . I n s S t a t e () ;

6

7 eva = gen . I n s E v en t (" a ") ;

8 evb = gen . I n s E v en t (" b ") ;

9 evc = gen . I n s E v en t (" c ") ;

10

11 gen . S e t T r a n s i t i o n (s t1 , eva , s t 2) ;

12 gen . S e t T r a n s i t i o n (s t1 , evc , s t 3) ;

13 gen . S e t T r a n s i t i o n (s t2 , evb , s t 1) ;

14

15 gen . I n s Co l o r (s t1 , " i n i t ") ;

16

17 gen . Wr i te (" example . gen ") ;

18 gen . Co lo rDotWr i te (" example . do t ") ;

The first command establishes the generatorgen. As is already known from the standard

implementation, states, events and transitions are inserted next. The methodInsColor

then assigns statest1 the color labelinit. The output methodsWrite andColorDotWrite

3.3. CLASS “MTCGENERATOR” 22

then generate files with the specified names containing the generator information.Write

thereby creates a .gen file, which is the standard libFAUDES generator file format.Color-

DotWritedelivers a file in the Graphviz [gra08] .dot file format. It canbe used to directly

create a graphical output as an automaton.

In the following, some important methods provided by this class are presented. A detailed

description is provided in the Doxygen [dox08] documentation.

• InsColoredStateand InsColor are used to insert colored states or to add colored

markings to existing states.

• DelColorerases a color from one or all states,ClrStateColorsdeletes all colors from

one state whereasClrStateAttributesdeletes all colors from all states.DelStates

erases whole states including their attributes.

• Colorsreturns all the generator’s colors,StateColorsthe ones of a respective state.

• ColoredStatesdelivers a state set containing all labeled states or stateslabeled with

an appropriate color, respectively.

• The methodsExistsColorand IsColoredcan be used to find out about the color

label status of a generator or a state.

• ColorNameallows to find out the color name to an index,ColorIndexserves for the

reverse case.

• Accessible, which is inherited from the base class,StronglyCoacandStronglyTrim

are used to make generators reachable and strongly coreachable. IsAccessible, Is-

StronglyCoac, andIsStronglyTrimare used for testing those properties.

3.3.2 Implementation Details

Saving and Querying of Color Labels

The internal way of saving colors for a certain state or testing for its existence is always

the same and shall be explained taking the following code sequence as an example.

1 S t a t e A t t r∗ a t t r = A t t r i b u t e p (S t a t e I n d e x) ;

2 a t t r −>mColors . I n s e r t (Co lo r Index) ;

3.3. CLASS “MTCGENERATOR” 23

The methodAttributepreturns aStateAttr*pointer to the attribute specified byStateIndex.

If there is not an attribute yet, a void attribute will be created and returned. The pointer

then enables the access to the attribute’s according color set and its methods, for instance,

for inserting a color.

If the color set belonging to a state shall only be examined, but not changed, the method

Attribute which returns a constant reference to the according attribute should be used.

Doing so, unintentional changes of the attribute can be avoided.

Accessibility Operations

The Accessibleoperation, which ensures that all states in a generator are reachable, is

reimplemented inTmtcGenerator, although accessibility does not depend on colored

markings. It is necessary, because the base class implementation does not take care of

possible attributes when removing unreachable states. Thereimplemented method, by

contrast, deletes both the forbidden states and their attributes.IsAccessiblecould be in-

herited from the base class, but for consistency, a wrapper function is implemented in

TmtcGenerator.

The StronglyCoacand methods which address the stronlgy coaccessibility, have to be

implemented in TmtcGenerator, as the color status is the crucial property to observe.

Both operations are based on the methodStronglyCoacSetwhich returns a state set with

all strongly coaccessible states. As this function would affect the original generator by

inserting marked states, a copy of the generator to examine is set up andStronglyCoacSet

is applied on the copy. Therefore, the original generator does not need to be modified for

finding the strongly coaccessible states and soIsStronglyCoaccan be called on constant

generators.

The functionality of the methodStronglyCoacSetis as follows. First, it iterates over all

the generator’s colorsci . All states labeled with the current colorci then are set as marked

states in the classical way, such thatCoaccessibleSetfrom the base class can be car-

ried out. This method returns the set of coaccessible statesQtmp relating to the classical

markings - what in this case means - to the current colorci . The intersection of all those

coaccessible state sets for all colorsci finally results in the strongly coaccessible state set

Qstrcoacwhich is returned.

1 S t a t e S e t S t ro n g l y Co acSe t (void) {

2 S t a t e S e t Qstrcoac;

3 f o r a l l c o l o r s ci of g e n e r a t o r G {

3.4. FURTHER FUNCTIONS 24

4 c l e a r marked s t a t e s ;

5 s e t a l l s t a t e s l a b e l e d wi thci as marked s t a t e s ;

6 / / per fo rm c o a c c e s s i b l e o p e r a t i o n from TaGenerator

7 S t a t e S e t Qtmp = C o a c c e s s i b l e S e t () ;

8 Qstrcoac= Qstrcoac ∗ Qtmp;

9 }

10 c l e a r marked s t a t e s ;

11 re turn Qstrcoac;

12 }

StronglyCoacuses this result and deletes all states being not strongly coaccessible. Com-

paring the strongly coaccessible state set with the generator’s state set in the method

IsStronglyCoacallows an assertion about the generator being strongly coaccessible or

not.

3.4 Further Functions

Further important functions related to the supervisory control are implemented in separate

files. This concerns

• functions such asDeterministic, Project, andParallel, and

• the strongly nonblocking supervisor computation inSupConNB.

Their realization shall be explained in the following sections. Most of the particular

functions’ implementations take more parameters than absolutely necessary. That is why

wrapper functions which only require necessary parametersand represent the user inter-

face are established.

3.4.1 Deterministic

The functionDeterministic(see Section 2.1) takes a nondeterministic mtcGeneratorG

and creates a deterministic generator that has the same closed and colored languages as

the original one. This resulting generator is inserted intothe empty mtcGeneratorGdet.

1 void D e t e r m i n i s t i c (cons t mtcGenera to r& G ,

2 . . . ,

3.4. FURTHER FUNCTIONS 25

3 mtcGenera to r& Gdet)

At first, the function checks if there exists at least one initial stateq0. If there is none, the

function returns. Otherwise, one initial stateq0,det is inserted intoGdet.

In the classical theory, one of the original initial states being marked would lead to the

resulting generator’s initial state being marked, too. Concerning multitasking automata,

this rule is adapted in that way thatGdet’s initial state gets all color labels of all initial

states of the original generatorG. Therefore, for each initial stateq0, i a setCi with its

respective colors is generated and assigned toGdet’s initial stateq0,det.

1 q0,det = Gdet . I n s I n i t S t a t e () ;

2 f o r a l l q0, i i n G {

3 Co l o rSe t C = S t a t e C o l o r s (q0, i) ;

4 i f (C 6= /0) → Gdet . I n s Co l o r (q0,det , C) ;

5 }

To determine all other states to insert inGdet, we start atG’s initial states and follow all

feasible strings. All states which could be reached when following a particular string are

combined to separate state setsQi . For each of those state sets, a stateqi,det is inserted

into Gdet. Following the classical theory, a marked state contained in Qi would lead to

the equivalent stateqi,det also having to be marked. Related to multitasking automata

this means, that all colors appearing inQi have to be present inqi,det, too. Therefore, an

iteration over all states inQi is started and all single states’ color sets are added toqi,det.

1 qi,det = Gdet . I n s S t a t e () ;

2 f o r a l l s t a t e s q i n Qi {

3 Co l o rSe t Ci = G . S t a t e C o l o r s (qi) ;

4 i f (Ci 6= /0) → Gdet . I n s Co l o r (qi,det , Ci) ;

5 }

3.4.2 Project

Within the Project operation (see Section 2.2), there also are states to combine. All states

qi,reach which, starting fromq, can be reached by transitions with events not being in the

high-level alphabetΣpro j, are merged into a single stateqi,pro j in the resulting automaton

Gpro j. If a singleqi,reachis marked, thenqi,pro j also has to be marked. According to colored

labeling, the equivalent solution is that all colors appearing in the respective original states

3.4. FURTHER FUNCTIONS 26

qi,reachhave to be transferred toqi,pro j. This procedure is again carried out by iterating over

G’s affected statesqi,reachand inserting the appropriate color setsCi into qi,pro j.

1 void Pro jec tNonDet (m tcGenera to r& G ,

2 cons t Even tSe t& Σpro j) {

3 . . .

4 f o r a l l l o c a l a c c e s s i b l e s t a t e sqi,reach from q {

5 . . .

6 Co l o rSe t Ci = G . S t a t e C o l o r s (qi,reach) ;

7 i f (Ci 6= /0) → G . I n s Co l o r (qi,pro j , Ci) ;

8 }

9 . . .

10 }

3.4.3 Parallel

The parallel composition (see Section 2.5) in the classicaltheory handles two statesq1

andq2 such that the new arising stateq1,2 is marked, if both original states were marked.

However, if only one state is marked, but the regarded state from the other automaton does

not have any marked state, then the composed system’s equivalent state has to be marked,

too. In all other cases, the new state stays unmarked.

Regarding colored markings, the procedure is very much the same. All colors, which

appear inq1 andq2 have to be inserted toq1,2 as well. All colors being part of one state

q1 or q2 and which do not appear in the respective other generator at all, also have to be

inserted toq1,2.

In order to easier compute the parallel composition for generators with colored markings,

a helper function calledComposedColorSetwas implemented to determine the resulting

state’s color labels.

As parameters, both original generatorsG1 andG2 are passed together with their current

statesq1 andq2. Their particular color setsC1 andC2 are also given as parameters, al-

though it would be possible to compute them in the function itself. In case of multiple

usage as in theParallel function, however, it is more efficient to generate these color sets

once and then pass them to the particular subfunctions.

Eventually, a reference to a color set where to save the composed colors has to be passed.

These colors can afterwards be inserted to the new state of the composed system.

3.4. FURTHER FUNCTIONS 27

The function is realized as follows.

1 void ComposedColorSet (

2 cons t mtcGenera to r&G1 ,

3 cons t Idx q1 , Co l o rSe t& C1 ,

4 cons t mtcGenera to r&G2 ,

5 cons t Idx q2 , Co l o rSe t& C2 ,

6 Co l o rSe t& Ccomposed) {

7

8 A t t r i b u t e C o l o r e d S t a t e a t t r 1 , a t t r 2 ;

9 a t t r 1 = G1 . S t a t e s () . A t t r i b u t e (q1) ;

10 a t t r 2 = G1 . S t a t e s () . A t t r i b u t e (q2) ;

11

12 i f q1 i s c o l o r e d {

13 ∀ci ∈Cq1 do {

14 i f (ci ∈C2) {

15 i f q2 i s c o l o r e d and (ci ∈Cq2) → Ccomposed. I n s e r t (ci) ;

16 }

17 e l s e → Ccomposed. I n s e r t (ci) ;

18 }

19 }

20

21 i f q2 i s c o l o r e d {

22 ∀c j ∈Cq2 do {

23 i f (c j 6∈C1) → Ccomposed. I n s e r t (ci) ;

24 }

25 }

26 }

At first, both original generator’s current states’ attributes are obtained. They are neces-

sary for accessing the color sets of the respective states.

Then, an iteration over all colors contained in stateq1 is started. If a particular colorci

appears in generator 1 and generator 2, it is only taken over to the resulting generator if

it is also contained in the second generator’s current state. The condition ifq2 is colored

or not from line 15, can be checked with low computational costs. That is why it is tested

before all colors are gone through in order to findci .

3.4. FURTHER FUNCTIONS 28

A color only appearing in the first generator is directly inserted to the composed color set.

In the next step, the second iteration is carried out over allcolors ofq2. Colors appearing

in both generators have either been considered when examining q1’s colors or they are

irrelevant, because of not being part ofq1’s labels. So, only those colors solely existing in

generator 2 have to be regarded. Their subset which is contained inq2 consequently has

to be added to the composed set.

3.4.4 SupConNB

The SupConNBfunction implements the computation of the supremal controllable and

strongly nonblocking (SCSNB) supervisor (see Section 2.6)from a given model and an

appropriate specification. In fact, it is only a wrapper function for SupconParallel, where

the implementation is actually realized.

1 void S u p c o n P a r a l l e l (cons t mtcGenera to r&Gplant ,

2 cons t mtcGenera to r&Gspec,

3 . . . ,

4 mtcGenera to r& Gres)

The rules for markings in the classical way and for CMGs thereby are the same as de-

scribed in the section parallel (see Section 3.4.3). Only colors appearing either in both

generators’ current states or appearing only in one regarded state and not being part of the

other generator are inserted to the respective resulting generator’s state. Consequently,

the color labeling of particular states is carried out in thesame way than in Parallel, what

means that the already familiar functionComposedColorSetcan be used again.

In the first step, both generators’ color setsCplant andCspecare established. They comprise

all colors occurring in the plant or the specification. Then,starting from their initial states

q0,plant andq0,specwe begin with finding out about their color labels. For that stepCom-

posedColorSetis called with the plant’s and the specification’s respective properties as

parameters. The resulting composed color setCcomposedis then added to the new inserted

initial state in the SCSNB generator.

1 Co l o rSe t Cplant = Gplant . Co lo rs () ;

2 Co l o rSe t Cspec = Gspec. Co lo rs () ;

3

4 Co l o rSe t Ccomposed;

5 ComposedColorSet (Gplant , q0,plant , Cplant ,

3.4. FURTHER FUNCTIONS 29

6 Gspec, q0,spec, Cspec,

7 Ccomposed) ;

8 i f (Ccomposed6= /0) {

9 Idx qnew = Gres . I n s I n i t S t a t e () ;

10 . . .

11 Gres . I n s Co l o r (qnew , Ccomposed) ;

12 }

From the model’s and the specification’s current states we then proceed by following

common feasible transitions. For each new pair of states(qplant, qspec) reached by this

method, we insert an appropriate state toGres, compose its respective color set and set it

as the new state’s color set.

1 i f (qplant, qspec) i s new {

2 ComposedColorSet (Gplant , qplant , Cplant ,

3 Gspec, qspec, Cspec,

4 Ccomposed) ;

5 i f (Ccomposed6= /0) {

6 Idx qnew = Gres . I n s S t a t e () ;

7 Gres . I n s Co l o r (qnew , Ccomposed) ;

8 }

9 . . .

10 }

Finally, all states forbidden by the supervisor, but already contained inGres, are deleted

after having erased their color labels.

1 f o r a l l f o r b i d d e n s t a t e sqf orbidden {

2 Gres . C l r S t a t e A t t r i b u t e (qf orbidden) ;

3 }

4 Gres . D e l S t a t e s (Qf orbidden) ;

3.4.5 Statemin

The state minimization tries to reduce an automaton’s number of states by merging states

without changing the generator’s languageL and - in the classical theory - the marked

languageLm generated by the generator. Accordingly, colored behaviors ΛC shall not be

changed when state minimization is applied to CMGs.

3.4. FURTHER FUNCTIONS 30

In the classical theory, only states with the same marking status can be equivalent. This

means, either all those states to merge are marked, or none ofthem. Relating to CMGs, an

equivalent solution is that states can only be equivalent, if they possess the same colored

markings. That is, all colors appearing in one state also have to be contained in the other

states which should be merged with it, but no further ones.

The implementation of the state minimization algorithm requires two generators as pa-

rameters. The first one is the one to minimize, the second one holds the resulting genera-

tor.

1 void Sta teM in (m tcGenera to r& rGen ,

2 mtcGenera to r& rResGen , . . .)

Within the function, all distinct color setsCj of all generator’s statesqi are established.

To every color setCj a set of those states which are labeled by it is assigned. Whatresults

is saved in the map
〈

Cj ,Q j
〉

which contains all possible color setsCj and the particular

statesQ j where they occur.

The vector〈Qk〉 also receives all state sets with states labeled by the same colors.

First, all uncolored statesqu,i are inserted to a state setQu, which is added to〈Qk〉 at

positionk = 0.

1 i f t h e r e a re u n co l o red s t a t e squ,i {

2 l oop over a l l qu,i and add them t o Qu ;

3 add Qu t o v e c t o r 〈Qk〉 ;

4 i n c r e a s e k ;

5 }

Afterwards, an iteration over all colored states is started. All state color sets which are

not yet contained in
〈

Cj ,Q j
〉

, thereby are inserted into it. Finally, the states are inserted

relating to their color labels to the corresponding state set.

1 f o r a l l s t a t e s qi {

2 i f c u r r e n t s t a t e ‘s c o l o r s e tCi ∈
〈

Cj ,Q j
〉

{

3 i n s e r t qi i n t o Q j

4 }

5 e l s e {

6 c r e a t e new s t a t e s e t Qnew and i n s e r t q j ;

7 i n s e r t {Cj , Qnew} i n t o
〈

Cj ,Q j
〉

;

8 }

3.4. FURTHER FUNCTIONS 31

9 }

After these sorting procedures, all state setsQ j are added to the vector〈Qk〉. At the end,

a loop over〈Qk〉 is carried out. The color labels for each state in the respective state set is

detected by examining the first state. If it is nonempty, it isset as the color marking of the

resulting generator’s equivalent state.

1 f o r a l l s t a t e s e t sQ j of
〈

Cj ,Q j
〉

{

2 add Q j t o 〈Qk〉 ;

3 i n c r e a s e k ;

4 }

5 . . .

6 l oop over a l l b l o ck s 〈Qk〉 {

7 g e t c o l o r s e t Ck,1 of f i r s t s t a t e i n 〈Qk〉 ;

8 i f (Ck,1 6= /0) → s e t Ck,1 f o r e q u i v a l e n t s t a t eqnew i n Gres;

9 }

3.4.6 UniqueInit

The functionUniqueInit checks if there are multiple initial states. If so, they are com-

bined to a new initial stateq0,unique getting all color labels the original initial statesq0, i

possessed. The implementation of the respective mechanismis as follows. The initial

states’ single color sets are read and, provided that they are not empty, inserted into the

new initial state’s color set.

1 void U n i q u e I n i t (m tcGenera to r&G) {

2 f o r a l l q0, i {

3 . . .

4 Co l o rSe t C = G . S t a t e C o l o r s (q0, i) ;

5 i f (C 6= /0) {

6 G . I n s Co l o r (q0,unique, C) ;

7 }

8 . . .

9 }

32

Chapter 4

Examples

In this chapter, two examples which have been evaluated using the libFAUDES multi-

tasking plugin are presented. The first one is an adaption of the cat and mouse problem

presented in [RW89] that was modified by Cury [dQC04]. It exemplifies the use of colored

marking generators and the possibility to split up models for easier computation.

The second example describes a part of the Fischertechnik plant, a production plant model

at the Chair of Automatic Control at the University Erlangen. This example is adequate

to demonstrate the efficiency of multitasking hierarchicalcontrol and its algorithms.

4.1 Cat and Mouse in a Maze

In the cat and mouse in a maze example, the application of modular multitasking control

is demonstrated. To this end, a model that consists of several components is controlled by

disjoint supervisors instead of one monolithic supervisor. An advantage of doing so is the

fact that the number of supervisor states is reduced. In combination with colored marking

supervisors, it can also be assured that the completion of several independent tasks can be

achieved.

4.1.1 Description of the Example and the Requirements

A maze with two identical floors and five rooms on each floor is investigated. The floor

plan is shown in Figure 4.1. At the beginning, there is a cat inroom 0 on the first floor.

A mouse is situated in room 4 on the second one. For both animals there is some food in

room 3 on floor 1.

4.1. CAT AND MOUSE IN A MAZE 33

1 2

3

0

4

c 2 (1)

c 1 (2)

m 1 (2)

m 2 (1)

m 0 - 4 (1)c 4 - 0 (1)

m 4 - 3 (1)

c 3 - 4 (1)

m 3 - 0 (1)

c 0 - 3 (1)

c 1 - 3 (1)

c 3 - 1 (1)

m 1 - 0 (1)

m 2 - 1 (1)

c 1 - 2 (1)

c 0 - 1 (1)

m 0 - 2 (1) c 2 - 0 (1)
1 2

3

0

4

c 2 (1)

c 1 (2)

m 1 (2)

m 2 (1)

m 0 - 4 (2)c 4 - 0 (2)

m 4 - 3 (2)

c 3 - 4 (2)

m 3 - 0 (2)

c 0 - 3 (2)

c 1 - 3 (2)

c 3 - 1 (2)

m 1 - 0 (2)

m 2 - 1 (2)

c 1 - 2 (2)

c 0 - 1 (2)

m 0 - 2 (2) c 2 - 0 (2)

F i r s t F l oo r S e c o n d F l o o r

Figure 4.1: Both floors of the cat and mouse in a maze example

Cat and mouse cannot move freely from room to room. The possible paths for each animal

are shown in the figure above. Each eventmx-y(i) indicates that the mouse moves from

room x to room y on level i of the maze. An eventcx-y(i) accordingly denotes the

movement from room x to room y on level i for the cat.

As there is a connection between both floors in each level’s room 0, floor changes are

possible for both animals.mu(v) andcu(v) specify the mouse and the cat, respectively,

moving from room 0 on floor v to room 0 on floor u.

All room changes except the uncontrollable eventsΣuc =

{c3-1(1), c1-3(1), c3-1(2), c1-3(2)} which specify the cat going from room 3

to room 1 or vice versa can be prevented, as they represent controllable events.

Preventing one event in this case can be imagined as a door which can be opened and

closed by a supervisor. For the four uncontrollable events there would be no doors to

close, so on both levels the cat can move from room 3 to room 1 orvice versa without the

supervisor being able to forbid it.

The task of the supervisor is to avoid that cat and mouse stay in the same room. Fur-

thermore, it has to guarantee that both animals can move withmaximal freedom, that

returning to their respective initial rooms is possible, and that they always have a chance

to access the food.

4.1. CAT AND MOUSE IN A MAZE 34

4.1.2 Modeling and Specification

For modeling the plant, room models for each room on both floors and for both animals

were created. This resulted in twenty room models for five rooms on two floors and two

animals. An automatonCl
r denotes the model for the cat in room r on floor l. As an

example, the model automatonC1
0 for room 0 on floor 1 is shown in Figure 4.2. All other

rooms are created in the same way.

C0_1(1) C0_0(1)

c0−1(1)

c0−3(1)

c2(1)

c4−0(1)

c2−0(1)

c1(2)

{Cinit}

C1
0

Figure 4.2: ModelC1
0 for room 0 on floor 1 for the cat.

A stateCx_y(i) thereby represents the number of cats (y) being in room x on floor i. In

this example, the colored stateC0_1(1)expresses that the cat should always be able to

return to the initial state of room 0 on floor 1. The other one represents the empty room.

In addition to the single room models, there is a counter model for each floor (Figure 4.3).

It observes the fact that there only is one cat. It is necessary, because otherwise the parallel

composition would generate states for more than one cat in the system, what is excluded

by the example definition.

CC1_1 CC1_0

c2(1)

c1(2)

{Cinit , Ccat}

Ĉ1

Figure 4.3: Counter model̂C1 for the cat on floor 1

A supervisor now shall assure that it is always possible for the cat and the mouse to return

to their initial states, what implements that the cat can always come back to room 0 on

floor 1 and the mouse to room 4 on floor 2. Recall that this requirement is captured by

labeling the respective statesC0_1(1)andM4_1(2)with the colorCinit .

4.1. CAT AND MOUSE IN A MAZE 35

Other states to be marked with separate colors areC3_1(1)which is marked by colorCcat

andM3_1(1)which is marked by colorCmouse. These states describe the states where the

cat or the mouse, respectively, are eating independently from each other.

Sticking to the classical theory with one sort of marked states, independent attainability

of all marked states could not be ensured. In fact, the state where the cat is eating and the

one where it is in its initial state can impossibly be assigned to one single marked state,

as the cat cannot be in two rooms at the same time. Moreover, simply marking multiple

states would mean that it does not matter which of the states has to be reached. However,

in our case we want the cat to both come back to the initial state and be able to eat. What

follows is that the different meanings of markings go lost when composing the system and

thus, the supervisor cannot guarantee the possibility to reach all originally marked states.

With the introduction of colored markings and the appropriate colorsCcat, Cmouse, and

Cinit , by contrast, a multitasking supervisor is able to guarantee the independent reacha-

bility of these three aims from all the system’s states.

The specification also is divided into several parts, one specification automaton for every

room. One example for room 0 on floor 1 is shown in Figure 4.4. Itrepresents a counter

with three states:c0_0(1)denotes that the room is empty,c0_1(1)indicates that the cat is

inside andm0_1(1)stands for the mouse being present. So, this specification automaton

prevents the cat and the mouse being in one room at the same time, as both animals only

can enter empty rooms.

C0_1(1) 0_0(1)

c0−1(1)

c0−3(1)

c2(1)

c4−0(1)

c2−0(1)

c1(2)

M0_1(1)

m1−0(1)

m3−0(1)

m1(2)

m0−2(1)

m0−4(1)

m2(1)

D1
0

Figure 4.4: Specification automatonD1
0 for room 0 on floor 1.

The coordination between the single room models on one hand,and between the models

and the specification on the other hand is always realized by regarding the room changing

events.

4.1. CAT AND MOUSE IN A MAZE 36

4.1.3 Computing the supervisor

Before being able to compute the supervisor, the room modelshave to be composed by

parallel composition. Eventually, a plant generator and a specification generator shall be

available. As this plant generator for level 1 consists of 36states (as well as the plant

generator for level 2), the composition

C1 = C1
0 ‖C1

1 ‖C1
2 ‖C1

3 ‖C1
4 ‖ Ĉ1

for the cat on level 1 shall be presented in automatonC1 (Figure 4.5) as an intermediate

result. The cat’s possible paths can easily be retraced. When the cat goes up to level 2, we

arrive at state 4 and the automaton is not able to relate to thecat’s movement in level 2.

We return to the initial state 1 when the cat descends.

1

2

c0−1(1)

4

c2(1)

3
c0−3(1)

6
c1−2(1)

c1−3(1)

c1(2)

5c4−0(1)

c2−0(1)

c3−1(1)

c3−4(1)

C1

{Cinit}

{Ccat}

Figure 4.5: CompositionC1 for all room models concerning the cat and level 1.

The composition for the other level and for the mouse’s both level compositions is realized

in the same way.

The specification composition for level 1 results as

D1 = D1
0 ‖ D1

1 ‖ D1
2 ‖ D1

3 ‖ D1
4.

With those compositions available, we are able to compute two strongly nonblocking

supervisors, one for each level. They both consist of 27 states, what implements that the

4.2. FISCHERTECHNIK PRODUCTION PLANT 37

supervisor deleted 9 states on every floor. They either were forbidden by the specification

or resulted in blocking. The supervisor for level 1 is shown in Figure 4.6.

The parallel compositionD1 ‖ D2 of both modular supervisors results in a nonblocking

generator with 82 states. Hence, the two modular supervisors are nonconflicting and can

separately be implemented to achieve strongly nonblockingcontrol while obeying the

given specification. Furthermore, it turns out that a monolithic supervisor for the control

problem under study also has 82 states. This means that the modular supervisors achieve

maximal permissive control which is due to the fact that all shared events are controllable

[LW02].

Altogether, the insertion of colored markings and the use ofa modular structure lead to

two crucial advantages. First, the completion of several tasks which is indicated by appro-

priate color labels can be guaranteed by the designed supervisors, and second, the usage

of multiple modular supervisors reduces the state size of the implemented supervisors.

For this example, the number of states inC1 andC2 amount to 54, whereas the mono-

lithic supervisor has 82 states. For more complex systems, this proportion between the

respective state numbers can be much higher.

4.2 Fischertechnik Production Plant

The Fischertechnik production plant model at the Chair of Automatic Control shown in

Figure 4.7 is predestinated to demonstrate the use of multitasking hierarchical control. It

consists of several conveyor belts transporting parts froma stack feeder to two machine

heads with a drill on each and finally brings the finished workpieces to a deposition area.

All machine parts can thereby be modeled for themselves and several levels of specifi-

cation can be used. Furthermore, the completion of multipletasks is ensured by colored

marking.

4.2.1 General Description of the Production Plant and the Chosen

Part for this Example

The description of the plant operation follows the notationin Figure 4.8. Workpieces enter

the plant from a stack feeder sf. A sensor detects if there areany workpieces and if so,

they are transported by conveyor belt cb1 and other ones to both machine heads mh1 and

4.2.F
IS

C
H

E
R

T
E

C
H

N
IK

P
R

O
D

U
C

T
IO

N
P

L
A

N
T

3
8

1

2

c0−1(1)

4

c2(1)

3

c0−3(1)

11

m1(2)

15

c1−2(1)

c1−3(1)

c1(2)

5

m1(2)

m2(1)

6

m0−2(1)

7

m0−4(1)

24

c1(2)

27

m2−1(1)

8 c1(2)

9m4−3(1)
c2(1)

17

c0−1(1)
10

m4−3(1)

20

c0−3(1)
m2(1)

13

c1−2(1)

16

m0−2(1)

m0−4(1)

18

c1−3(1)

14

m0−4(1)

m2(1)

c2−0(1)

12m4−3(1)

c2−0(1)

m1(2)

19
c1−3(1)

c1−2(1)

c1−3(1)

21

22

m0−2(1)

23

m2(1)

c4−0(1)

25
m2−1(1)

c4−0(1)

m1(2)

c2(1)

c0−1(1)

26m2−1(1)

c0−3(1)

m1−0(1)

c4−0(1)

c2(1)

m1−0(1)

c1(2)

c3−1(1)

c3−4(1)

m1(2)

m3−0(1)

c1(2)

c2(1)

m3−0(1)

c2−0(1)

c3−1(1)

c3−4(1)

m2(1)

m0−2(1)

m0−4(1)

c3−1(1)

c3−4(1)

c3−1(1)

{Cinit}

{Ccat}

{Ccat}

{Ccat}

{Ccat}

{Cmouse}

{Cmouse}

{Cmouse}

S1

F
ig

u
re

4
.6

:S
u

p
erviso

rS1
fo

r
flo

o
r

1
o

fth
e

catan
d

m
o

u
se

in
a

m
aze

exam
p

le.

4.2. FISCHERTECHNIK PRODUCTION PLANT 39

Figure 4.7: Picture of the Fischertechnik production plant.

Figure 4.8: Fischertechnik Production Line: Schematic Overview.

4.2. FISCHERTECHNIK PRODUCTION PLANT 40

mh2 where processing takes place. At the end, the workpiecesare stored in one of two

deposition areas (rc1 and rc2).

All elements of the plant are labeled consistently. The stack feeder is specified assf, the

conveyor belts ascbX. The machine heads with the drills are abbreviated asmhXdY, the

rotary tables asrt and the workpiece detection elements which recognize the kind of

workpiece aswpdetX. X or Y, respectively, stand for the particular number of an element

and are necessary for an unambiguous labeling. The shared events between the separate

conveyor belts which coordinate the behavior of the composed plant arecbX-cbYwhere

X describes the origin and Y the destination of the respective workpiece.

In this work, we regard the framed part of the plant scheme in Figure 4.8. It consist of

conveyor belt cb4 which is combined with a machine head (mh1d1), conveyor belt cb11

which also takes the role of a rotary table (rt1) and conveyorbelt 7 (cb7), which brings

along a workpiece detection element. It allows to distinguish workpieces of separate types

when they are going from cb7 to cb11 (cb7-cb11) or from cb11 to cb7 (cb11-cb7). Thus,

workpiece characteristics can be regarded and different behaviors for different types of

workpieces can be considered in the model and the specification of the conveyor belt

where they arrive.

In our study, we consider two types of workpieces: Workpiece1 denotes a workpiece

which is completely and correctly processed, whereas workpiece 2 stands for workpieces

which have not yet been processed or which are of insufficientquality. Therefore, those

workpieces have to be transported to cb4 where processing orreprocessing, respectively,

takes place.

Workpieces which are destined for the chosen part of the plant may either arrive at con-

veyor belt cb12 or cb15. Those from cb12 shall be drilled and transported via cb11 and

cb7 to cb15 (Figure 4.9) or be directly returned to cb12 without being processed. If a

workpiece is of bad quality, which is detected when being moved from cb11 to cb7, it

shall return to cb4, be reprocessed, and afterwards be delivered to cb12. Workpieces ar-

riving at cb7 and coming from cb15 also shall go to cb4, be processed there and finally

leave the section towards cb12. If one of those workpieces isdetected as already finished

when leaving cb7 towards cb11, which means it is already processed and of good quality,

it need not be drilled any more and therefore shall be stoppedat cb11 and be returned to

cb15.

Colored marking assures that all tasks can be terminated. Inthis case, it is determined that

all workpieces can be drilled and that all conveyor belts canreturn to an empty state.

4.2. FISCHERTECHNIK PRODUCTION PLANT 41

wp

wp

wp

wp

wp

Parts arriving

from cb12

Parts arriving

from cb15

Figure 4.9: Paths of workpiece transportation in cb4 - cb7 - cb11.

Of course, the supervisor to develop has to guarantee strongly nonblocking and shall

ensure that each workpiece can be drilled.

4.2.2 Modeling and Specification

Level 0

The modeling of the considered production plant’s part is carried out in a hierarchical

way. The hierarchy level is attached to every automaton’s name in square brackets. On

the first level all single elements of this section are described as automata. Doing so,

we get automata cb4[0], cb7[0], and cb11[0] which denote theconveyor belts, mh1d1[0]

which stands for the machine head and the drill, and rt1[0] which denotes the rotary table.

wpdet7[0] or wpdet11[0] are special parts that detect the status of a workpiece arriving at

cb7 or cb11, respectively. Note, that detection of a workpiece is only possible when it is

transported from cb7 to cb11 or the other way round.

The colors introduced for the observed part of the plant are set that way, that every con-

veyor belt is able to return to an empty state. Furthermore, one color which denotes

that a workpiece has just been drilled is introduced. Thus, the overall color set results

in C = {Cdrilled, Ccb4, Ccb7, Ccb11}.

4.2. FISCHERTECHNIK PRODUCTION PLANT 42

In addition to the mentioned models, there is cb7cb11[0] (Figure 4.10), which makes sure

that in cb7 or cb11 no illegitimate states are possible. For instance, let there be a workpiece

transported from cb11 to cb7 which is detected as one of insufficient quality. It would

be transported back to cb11. Consequently, when returning to cb11, we already know

that it has not yet been processed accordingly and therefore, we do not need to regard

the possible behavior for a workpiece 1. The model cb7cb11[0] takes care of all those

possible dependencies and reduces the state space of the resulting model accordingly.

Nevertheless, it does not constrain the system in an undesirable way. It does not say what

events to allow after a special type of workpiece appeared. It simply excludes impossible

events that unnecessarily enlarge our model.

1

cb11−cb4

s11wp2

cb11−cb7

cb7−cb11

cb7−cb15

s7wp2

2
cb7wp1ar

4cb11wp1ar

6cb7wp2ar

8

cb11wp2ar

cb7−cb15 3

cb7−cb11

cb11wp1ar

cb11−cb4

5
cb11−cb7

cb7wp1ar

cb7−cb15

7

cb7−cb11 s11wp2

cb11wp2ar
cb11−cb4

9

cb11−cb7

cb7wp2ar

s7wp2

cb11[0]

Figure 4.10: Model of the automaton linking cb7 and cb11.

As an example, of our proceedings, the hierarchical design of cb11 and the rotary table rt1

shall be regarded (Figure 4.11). First, the model for the conveyor belt cb11[0] is realized.

The shared eventscb7-cb11 and cb4-cb11 lead to a movement of the conveyor belt

in the required direction (cb11+x+y or cb11-x-y). The eventt_cb11 symbolizes the

time passing until the workpiece arrives (cb11wpar, cb11wp1ar, or cb11wp2ar). It is

necessary, as the movement could be stopped before the occurrence of an arriving event,

which leads back to the initial state, or afterwards. In the latter case, the procedure for

bringing the workpiece away has to follow. It is similar to the described event chain, only

the arriving events are replaced by the leaving onescb11wplv4 andcb11wplv7.

The according specification consists of two parts and is shown below that automaton.

cb11[0]_spec1 defines the correct functionality of cb11 considering in which direction

workpieces are transported. cb11_spec2[0], however, controls the handling of different

types of workpieces. Both specifications are combined by parallel composition to a sin-

4.2. FISCHERTECHNIK PRODUCTION PLANT 43

1

t_cb11

2

cb4−cb11

3
cb7−cb11

t_cb11

4

cb11−x−y

t_cb11 cb11+x+y

t_cb11

5

cb11wpar

cb11wp1ar

cb11wp2ar

t_cb11

6
cb11stp

t_cb11 7
cb11−cb4

9

cb11−cb7

t_cb11

8
cb11+x+y

t_cb11

11

cb11wplv4

t_cb11

10
cb11−x−y

t_cb11

cb11wplv7

cb11stp

t_cb11

1

2
cb4−cb11

3
cb7−cb11

17
cb11−x−y

4
cb11+x+y

5
t_cb11

6cb11wp1ar

7

cb11wp2ar

13
cb11stp

8
cb11stp

9
cb11−cb4

10
cb11+x+y

11
t_cb11

12
cb11wplv4

cb11stp

14
cb11−cb7

15
cb11−x−y

16
t_cb11

cb11wplv7

18t_cb11

19cb11wpar 20
cb11stp

cb11−cb7

1

2cb4−cb11

4

cb7−cb11

3

cb11wpar

cb11−cb7

5cb11wp1ar

6

cb11wp2ar

cb11−cb7

cb11−cb4

1

4
cb7−cb11

6
cb4−cb11

2

7

cb11−cb4

3
cb11−cb7

5
cb11wp2ar

8

cb11wp1ar

cb11stp

cb11wpar

cb11stp

cb11stp

1

2

cb4−cb11

5
cb7−cb11

3cb11−x−y

cb11stp

4
t_cb11

8
cb11wpar

6cb11+x+y

cb11stp

7
t_cb11

cb11wp1ar

cb11wp2ar

9
cb11stp

cb11−cb4

cb11−cb7

10cb11+x+y

12

cb11−x−y

cb11stp

11
t_cb11

14
cb11wplv4

cb11stp
13

t_cb11

cb11wplv7

cb11stp

cb11[0]

cb11[0]_spec1

cb11[0]_spec2

cb11[0]_sup

cb11[1]

{Ccb11}

{Ccb11}

{Ccb11}

Figure 4.11: Model, specifications and supervisor for cb11 on level 0.

4.2. FISCHERTECHNIK PRODUCTION PLANT 44

gle one. Together with the model cb11[0] the supervisor cb11[0]_sup in Figure 4.11 is

computed.

1

cb7stp

2cb11−cb7

3
s7wp1

7

cb7wp1ar

4
s7wp1

cb7wp1ar

5
s7wp2

cb7wp1ar

6
s7wp1

cb7wp2ar

cb7wp2ar

cb7stp

wpdet7[0]

Figure 4.12: Workpiece detection element modeled for cb7.

In our plant model, the workpieces are distinguished depending on the number of mag-

netic pins located on the workpiece (Figure 4.12). They either have 0, 1, or 2 pins which

means they represent a workpiece of the first type, or 3 or 4 pins what makes them a

workpiece 2. After the eventcb11-cb7 which indicates that a workpiece will arrive, the

number of sensor signalss7wp1 ands7wp2 that occur until the conveyor belt stops are

counted.s7wp1 ands7wp2 denote the same physical event, but the different labeling is

chosen to support the later abstraction step.

Before being able to abstract unramified process chains in cb11[0]_sup, the validity of the

observer condition for this supervisor and the abstractionalphabetΣpro j = {cb4-cb11,

cb11-cb4, cb7-cb11, cb11-cb7, cb11wpar, cb11wp1ar, cb11wp2ar, cb11stp} has

been verified with a positive result. Then, the following projection step for cb11[0]_sup

with Σpro j leads to the abstracted automaton cb11[1] shown in Figure 4.11. The other

plant elements such as the machine head with the drill mh1d1 or the conveyor belts cb4

and cb7 are dealt with the same manner (see Appendix A.1).

Level 1

On level 1, the combination of the rotary table and the conveyor belt is realized. The

parallel composition of cb11[1] and rt1[1] (Figure 4.13), which represents the abstraction

of the controlled rotary table, results in the level 1 model cb11rt1[1].rt1mvx andrt1mvy

describe the rotation in x or y direction,rt1stp occurs if the rotary table stops.

The corresponding specification also consists of several components. cb11[1]_spec

thereby assures that the conveyor belt does not move when thetable rotates. rt1[1]_spec1

4.2. FISCHERTECHNIK PRODUCTION PLANT 45

takes care that the conveyor belt only can start when the table is not rotating. The sec-

ond specification for the rotary table, rt1[1]_spec2, describes the necessity of a rotation

depending on the shared events. Building the parallel composition of those three specifi-

cations allows us to find a supervisor cb11[1]_sup for the second abstraction level.

After having checked that the observer condition is fulfilled for that supervisor and

the corresponding abstraction alphabetΣpro j = {cb4-cb11, cb11-cb4, cb7-cb11,

cb11-cb7, cb11wpar, cb11wp1ar, cb11wp2ar, s11wp2}, the abstraction step is carried

out for cb11[1]_sup and only the shared events that make upΣpro j are left in the ab-

stracted generator cb11[2]. The rotary table events do not longer appear on this level. The

abstracted generator version cb4[2] for conveyor belt cb4 is computed in the same way

(see Appendix A.1).

Level 2 and Final Result on Level 3

All level 2 abstractions of the single blocks around cb4, cb7and cb11 can in a further

step be composed to the model cb4cb7cb11. To ensure nonblocking, a specification with

a single state and self-loops for all possible events is created. For this one, the supervisor

will only take care of nonblocking, as the specification doesnot constrain the plant’s

behavior.

To attain the controlled level 3 plant model another abstraction step is carried out. The

resulting generator then consists of 37 states.

4.2.3 Hierarchical Structure

The hierarchical structure which results from that procedure is shown in the subsequent

diagrams (Figures 4.14 and 4.15).

As already described, the specification cb11[0]_spec for cb11 consists of two parts which

are composed by parallel composition. The resulting supervisor for it and the correspond-

ing model cb11[0] is then abstracted to cb11[1]. On this level, the abstractions for the

conveyor belt, the rotary mechanism and for the workpiece detection elements are com-

posed. With the appropriate specification for the first level(Figure 4.14, right side) the

supervisor for level 1 is computed and afterwards abstracted to the next higher level.

In the same manner, the other conveyor belts cb7 and cb4 including their respective ma-

chine parts are modeled and specified. cb7’s workpiece detection element is, as well as

4.2. FISCHERTECHNIK PRODUCTION PLANT 46

1

rt1mvx

rt1mvy

rt1stp

2cb4−cb11

cb7−cb11

3cb11−cb4

cb11−cb7

cb11wpar

cb11wp1ar

cb11wp2ar

cb11stp

1

cb11−cb4

cb4−cb11

cb11−cb7

cb7−cb11

2

rt1mvx

rt1mvy

rt1stp

1
2

cb4−cb11

4

cb7−cb11

cb11−cb4

5
cb11−cb7

3

rt1mvx

7

rt1mvy

8rt1mvy

6rt1mvx

cb11−cb4

cb11−cb7

cb4−cb11

cb7−cb11

1

2cb7−cb11

4

cb4−cb11

3
s11wp2

6

cb11wp1ar

5cb11wp2ar

cb11wpar

cb11−cb4

cb11−cb7

1

3rt1mvy 2

4

rt1mvx
rt1stp

rt1stp

rt1[1]

cb11[1]_spec rt1[1]_spec1

rt1[1]_spec2

cb11rt1[2]

{Ccb11}

Figure 4.13: Model, specifications and supervisor for cb11 and rt1 on level 1.

4.2. FISCHERTECHNIK PRODUCTION PLANT 47

c b 1 1 [0]

c b 1 1 [0] _ s u p

c b 1 1 [1]

w p d e t 1 1 [0] _ s u p

w p d e t 1 1 [1]

| |

r t 1 [0] _ s u p

r t1 [1]

| |

c b 1 1 [1] _ s p e c r t 1 [1] _ s p e c

c b 1 1 r t 1 [1] _ s u p

c b 1 1 r t 1 [2]

r t 11 [0] r t 1 [0] _ s p e cc b 1 1 [0] _ s p e c

c b 1 1 [0] _ s p e c 1 c b 1 1 [0] _ s p e c 2

||

| |

r t 1 [1] _ s p e c 1 r t 1 [1] _ s p e c 2

Figure 4.14: Hierarchical structure for level 1 and 2 for cb11.

4.2. FISCHERTECHNIK PRODUCTION PLANT 48

with cb11, composed with the level 1 supervisor. As there arenot further parts such as

drills or a rotary table to regard, no level 1 specification isnecessary. Hence, the composi-

tion’s result cb7wpdet7[1], the level 2 abstractions cb4cb7cb11[2] and cb11rt1[2], and the

model cb7cb11[0] are composed to the plant part’s model. Theappropriate specification

only consists of one state and self-loops for all events. Consequently, the supervisor to

synthesize shall only guarantee strongly nonblocking and,moreover, does not constrain

the model any further. The final result cb4cb7cb11[3] arisesfrom a further abstraction

step and can be used together with the rest of the overall plant.

The complete hierarchy tree can be found in Appendix A.2, thesupervisor cb4mh1d1[2]

and the separate models and specifications used in Appendix A.1. The automaton for the

top-level abstraction cb4cb7cb11[3] with its 37 states is provided in Appendix A.2-17.

c b 1 1 r t 1 [2]

| |

c b 4 c b 7 c b 1 1 [2] c b 4 c b 7 c b 1 1 [2] _ s p e c

c b 4 c b 7 c b 1 1 [2] _ s u p

c b 4 c b 7 c b 1 1 [3]

c b 7 c b 1 1 [0]

c b 4 m h 1 d 1 [2]

c b 7 w p d e t 7 [1]

Figure 4.15: Combination of all components to the strongly nonblocking supervisor

cb4cb7cb11[2]_sup which is abstracted to cb4cb7cb11[3] inthe last step.

The Fischertechnik production plant example clarifies the necessity of several markings

to ensure the completion of multiple tasks, what in this casemeant the production of

all workpieces (colorCdrilled) and that all of them can be carried away again (colors

Ccb4, Ccb7, andCcb11). Furthermore, this example verifies that the state space reduction

can be enormous for complex systems. A monolithic supervisor for the chosen part of

the plant would possess 27,614 states, whereas the combination of low- and high-level

4.2. FISCHERTECHNIK PRODUCTION PLANT 49

supervisors only leads to a sum of 277 states. Moreover, the monolithic synthesis requires

the evolution of a plant automaton with 2,336,400 states, while the largest automaton in

the hierarchical multitasking control has 254 states.

Together, this approach reduces the computational costs and the memory consumption in

the control unit very effectively. At this point, it has to bementioned that the reduced

complexity of the supervisor computation and implementation is accompanied with a

possible loss of maximal permissiveness. In our example case, the parallel composition

of all hierarchical supervisors leads to an automaton with 25,904 states which implies that

the control is more restrictive than the monolithic supervisor.

50

Chapter 5

Conclusion

This thesis first summarized the theoretical background of the multitasking supervisory

control theory. Therefore, colored marking generators (CMG) were introduced as a model

that represents multiple tasks by states with different colors. Based on such CMGs, rele-

vant properties such as strongly nonblocking have been introduced to express nonblocking

behavior w.r.t. different generator colors. Additionally, several operations for CMGs in-

cluding the colored marking parallel composition, the supervisor synthesis for CMGs and

tools for the hierarchical supervisory control of colored marking generators have been

presented.

As the first contribution of this thesis, the realization of necessary data structures and the

appropriate methods in a plugin for the libFAUDES software library was described. In

particular, the classTmtcGeneratorwas implemented as a representation of a CMG. It

extends thecGeneratorclass which is suitable for supervisor synthesis in the Ramadge/

Wonham framework by state attributes that serve for saving state colors. The methods

of this class allow the user to insert colors into a multitasking generator, to delete them,

and to analyze and modify the respective generator. Furthermore, methods for generator

input and output are included. Additionally, the plugin provides functions for the parallel

composition of several CMGs, for state minimization, and for the supervisor synthesis.

Despite its complexity, the plugin offers simple user interfaces and thus allows its users

to easily synthesize and analyze CMGs without knowing implementation details.

Finally, the multitasking plugin was used to implement two examples, the cat and mouse

in a maze and the Fischertechnik production plant. Both examples show the applicability

of CMGs, as they represent systems with several parallel tasks. In both cases, strongly

nonblocking behavior can comfortably be specified with colored markings and the re-

51

spective supervisors can be synthesized algorithmically.

Simultaneously using hierarchical design methods even enables the modeling of systems

with very high complexity, as separate system components can be modeled and controlled

on their own. Accordingly, the corresponding specifications can be divided into several

generators. This approach effectively increases the project’s clarity and thus helps to avoid

design faults. Furthermore, the number of states is dramatically reduced what minimizes

computational costs and the memory usage in the respective control units. For instance,

the analyzed part of the Fischertechnik production plant results in 27,614 supervisor states

when choosing a monolithic approach. In contrast, the appropriate hierarchical system

uses 10 individual supervisors with a sum of 277 states.

52

Bibliography

[CL99] C.G. Cassandras and S. Lafortune.Introduction to Discrete Event Systems.

Kluwer Academic Publishers, 1999.

[dox08] Doxygen - Source Code Documentation Generator Tool, 2008. Homepage:

http://www.doxygen.org.

[dQC04] M.H. de Queiroz and J.E.R. Cury. Multi-tasking supervisory control of discrete

event systems.WODES, 2004.

[dQC05] M. H. de Queiroz and J. E. R. Cury. Modular multitasking supervisory control

of composite des. InIn Proc. of the 16th IFAC World Congress, Prague, Czech

Republic, 2005.

[gra08] Graphviz - Graph Visualization Software, 2008. Homepage:

http://www.graphviz.org.

[lgp07] GNU Lesser General Public License, 2007. Homepage:

http://www.gnu.org/licenses/lgpl.html.

[lib08] The libFAUDES Software Library, 2008. Homepage: http://www.rt.eei.uni-

erlangen.de/FGdes/faudes/index.php.

[LW02] S-H. Lee and K.C. Wong. Structural decentralised control of concurrent des.

European Journal of Control, 35:1125–1134, October 2002.

[RW87] P.J. Ramadge and W.M. Wonham. Supervisory control ofa class of discrete

event systems.SIAM J. Control and Optimization, 25:206–230, 1987.

[RW89] P.J. Ramadge and W.M. Wonham. The control of discreteevent systems.Pro-

ceedings of the IEEE, 77:81–98, 1989.

Bibliography 53

[Sch05] K. Schmidt. Hierarchical control of decentralizeddiscrete event sys-

tems: Theory and application. PhD-thesis, Lehrstuhl für Regelungstech-

nik, Universität Erlangen-Nürnberg, 2005. Download: http://www.rt.eei.uni-

erlangen.de/FGdes/publications.html.

[SQC07] K. Schmidt, M. H. Queiroz, and J. E. R. Cury. Hierarchical and decentralized

multitasking control of discrete event systems.IEEE Conference on Decision

and Control, 2007.

54

Appendix A

Fischertechnik Production Plant

A.1 Models and Specifications for Conveyor Belt 4 and

its additional components

Figure A.1-1: Conveyor belt 4: cb4[0]

{Ccb4}

Figure A.1-2: Conveyor belt 4: cb4[0]_spec1

APPENDIX A: FISCHERTECHNIK PRODUCTION PLANT 55

Figure A.1-3: Conveyor belt 4: cb4[0]_spec2

{Ccb4}

Figure A.1-4: Conveyor belt 4: cb4[0]_spec

{Ccb4}

Figure A.1-5: Conveyor belt 4: cb4[0]_sup

{Ccb4}

Figure A.1-6: Conveyor belt 4: cb4[1]

APPENDIX A: FISCHERTECHNIK PRODUCTION PLANT 56

{C
d

ri
ll

e
d
}

Figure A.1-7: Machine head and drill: mh1d1[0]_sup

APPENDIX A: FISCHERTECHNIK PRODUCTION PLANT 57

{Cdrilled}

Figure A.1-8: Machine head and drill: mh1d1[1]

Figure A.1-9: Machine head and drill: mh1d1[1]_spec

{Cdrilled}

{Cdrilled}

{Cdrilled}

{Cdrilled}

{Cdrilled}

{Ccb4}

{Ccb4, Cdrilled}

Figure A.1-10: Conveyor belt 4 + machine head with drill: cb4mh1d1[1]

APPENDIX A: FISCHERTECHNIK PRODUCTION PLANT 58

Figure A.1-11: Conveyor belt 4 + machine head with drill: cb4mh1d1[1]_spec

{Cdrilled}

{Cdrilled}
{Ccb4}

Figure A.1-12: Conveyor belt 4 + machine head with drill: cb4mh1d1[1]_sup

APPENDIX A: FISCHERTECHNIK PRODUCTION PLANT 59

{Cdrilled}

{Cdrilled}

{Ccb4}

Figure A.1-13: Conveyor belt 4 + machine head with drill: cb4mh1d1[2]

A.2 Hierarchy Diagrams

m h 1 d 1 [0] _ s u p

c b 4 [1] _ s p e c m h 1 d 1 [1] _ s p e c

c b 4 [0] _ s u p

c b 4 [1] m h 1 d 1 [1]

| | | |

c b 4 m h 1 d 1 [1] _ s u p

c b 4 m h 1 d 1 [2]

c b 4 [0] c b 4 [0] _ s p e c

c b 4 [0] _ s p e c 1 c b 4 [0] _ s p e c 2

||

Figure A.2-14: Conveyor belt cb4 abstracted to level 2

APPENDIX A: FISCHERTECHNIK PRODUCTION PLANT 60

w p d e t 7 [0] _ s u p c b 7 [0] _ s u p

c b 7 [0] c b 7 [0] _ s p e c

||

c b 7 [0] _ s p e c 1 c b 7 [0] _ s p e c 2

c b 7 w p d e t 7 [1]

w p d e t 7 [1] c b 7 [1]

| |

Figure A.2-15: cb7 and the workpiece detection element combined on level 1

A
P

P
E

N
D

IX
A

:F
IS

C
H

E
R

T
E

C
H

N
IK

P
R

O
D

U
C

T
IO

N
P

L
A

N
T

6
1

c b 1 1 [0] c b 1 1 [0] _ s p e c

c b 1 1 [0] _ s p e c 1 c b 1 1 [0] _ s p e c 2

c b 1 1 [0] _ s u p

c b 1 1 [1]

w p d e t 1 1 [0] _ s u p

w p d e t 1 1 [1]

| |

r t 1 [0] _ s u p

r t1 [1]

| |

c b 1 1 [1] _ s p e c r t 1 [1] _ s p e c

r t 1 [1] _ s p e c 1 r t 1 [1] _ s p e c 2

c b 1 1 r t 1 [1] _ s u p

c b 1 1 r t 1 [2]

| |

c b 4 c b 7 c b 1 1 [2] c b 4 c b 7 c b 1 1 [2] _ s p e c

c b 4 c b 7 c b 1 1 [2] _ s u p

c b 4 c b 7 c b 1 1 [3]

c b 7 c b 1 1 [0]

m h 1 d 1 [0] _ s u p

c b 4 [1] _ s p e c m h 1 d 1 [1] _ s p e c

c b 4 [0] _ s p e c 1 c b 4 [0] _ s p e c 2

c b 4 [0] _ s u p

c b 4 [0] c b 4 [0] _ s p e c

c b 4 [1] m h 1 d 1 [1]

| | | |

c b 4 m h 1 d 1 [1] _ s u p

c b 4 m h 1 d 1 [2]

w p d e t 7 [0] _ s u p

w p d e t 7 [1]

c b 7 [0] _ s p e c

c b 7 [0] _ s p e c 1 c b 7 [0] _ s p e c 2

c b 7 [0]

c b 7 [0] _ s u p

c b 7 [1]

| |

r t 11 [0] r t 1 [0] _ s p e c

F
ig

u
re

A
.2

-1
6

:C
o

m
p

lete
h

ierarch
y

d
iag

ram
fo

r
th

e
co

n
sid

er
ed

p
arto

fth
e

F
isch

ertech
n

ik

p
ro

d
u

ctio
n

p
lan

tm
o

d
el

APPENDIX A: FISCHERTECHNIK PRODUCTION PLANT 62

1

28

cb15−cb7

31

cb12−cb4

2

32cb7wp1ar

3

cb4−cb12

17

37

s11wp2

20

cb4−cb12

19

15

mh1start

26

cb7−cb15

34cb4−cb12

36
cb4−cb12

cb12−cb4

cb7wp1ar

4

9

cb12−cb4

33

cb11−cb4

cb15−cb7

5

s11wp2

10

cb12−cb4

cb15−cb7

6

cb12−cb4

8
cb7wp1ar

7

cb7−cb15

13

cb12−cb4

cb12−cb4

16
cb7−cb15

cb15−cb7

cb4−cb12

cb15−cb7

cb4−cb12

s11wp2

11

12

s11wp2

cb4−cb12

30

cb11wp1ar

cb4−cb12

cb15−cb7

cb4−cb12

mh1start

cb7−cb15

14

cb4−cb12

22
cb7−cb15

cb4−cb12

s7wp2

cb7wp1ar

cb12−cb4

18

s11wp2

23

cb11wp1ar

cb4−cb12

cb12−cb4

s11wp2

21

cb15−cb7

mh1start

cb4−cb12

cb15−cb7

mh1start

cb7wp1ar

25

cb4−cb12

24

s7wp2

cb7wp1ar

cb12−cb4

cb7wp1ar

cb12−cb4

s7wp2

cb7wp1ar

cb4−cb12

27

mh1start

cb7−cb15

s11wp2

cb12−cb4

cb11wp1ar

29

mh1start

s11wp2

35

cb11wp1ar

cb7wp1ar

cb4−cb12

cb4−cb12

mh1start

cb15−cb7

mh1start

cb15−cb7

cb12−cb4

cb7−cb15

cb7wp1ar

mh1start

cb12−cb4

cb11−cb4

Figure A.2-17: Resulting level 3 abstraction with 37 states. Color meanings: blue = cb4

empty, red = cb7 empty, pink = cb11 empty, green = workpiece drilled

