About
User Reference
C++ API
luafaudes
Developer
Links
libFAUDES online
libFAUDES

Sections

Index

1_generator.cpp

Go to the documentation of this file.
00001 /** @file 1_generator.cpp 
00002 
00003 Tutorial, Generator methods. 
00004 
00005 The Generator class implements the 5-tuple automaton G, consisting of
00006 - Set of States Q, 
00007 - Alphabet Sigma, 
00008 - Transition Relation Delta,
00009 - Set of Initial States Qo, and
00010 - Set of Marked States Qm.
00011 
00012 This tutorial demonstrates how to insert/erase states, events and transitions. 
00013 It also demonstrates file IO.
00014 
00015 @ingroup Tutorials 
00016 
00017 @include 1_generator.cpp
00018 */
00019 
00020 
00021 #include "libfaudes.h"
00022 
00023 // make faudes namespace available
00024 using namespace faudes;
00025 
00026 
00027 
00028 /////////////////
00029 // main program
00030 /////////////////
00031 
00032 int main() {
00033 
00034   ////////////////////////////////////////////
00035   // Constructors (part 1) and filling example
00036   ////////////////////////////////////////////
00037 
00038   // at first we create an empty Generator object
00039 
00040   Generator g1;
00041 
00042   // do some random "user interaction" stuff with the Generator g1
00043 
00044   g1.InsState("s1");  
00045   g1.InsState("s2");                  
00046   g1.InsState("s3");                  
00047 
00048   g1.InsEvent("a");         
00049   g1.InsEvent("b");
00050 
00051   g1.SetTransition("s1", "a", "s2");  
00052   g1.SetTransition("s2", "a", "s3");  
00053   g1.SetTransition("s3", "b", "s1");
00054 
00055   g1.SetInitState("s1");              
00056   g1.SetMarkedState("s2");
00057   g1.SetMarkedState("s3");
00058 
00059   // inspect result on console
00060 
00061   std::cout << "################################\n";
00062   std::cout << "# tutorial, handcraft generator \n";
00063   g1.Write();
00064   std::cout << "################################\n";
00065 
00066   // record test case
00067   FAUDES_TEST_DUMP("g1", g1); 
00068 
00069   ///////////////////////////////////////////////////
00070   // Constructors (part 2) & Copying and versioning
00071   ///////////////////////////////////////////////////
00072 
00073   // Create a  1:1 copy of the Generator with the copy constructor ... 
00074 
00075   Generator g_copy(g1);
00076 
00077   // ... with assignment method, or assignement operator
00078 
00079   Generator g2;
00080   g2.Assign(g1);
00081   Generator g3=g2;
00082 
00083   // create a Generator copy with versioned events (for testing algorithms):
00084   // versioning by an integer. E.g. for integer 3 events {"a", "b", "c"}
00085   // become {"a_3", "b_3", "c_3"}.
00086 
00087   Generator version1;
00088   g3.Version(3, version1);
00089 
00090   // versioning by a string. "a" -> "a_versionstring"
00091 
00092   Generator version2;
00093   g3.Version("str", version2);
00094 
00095   // inspect result on console
00096 
00097   std::cout << "################################\n";
00098   std::cout << "# tutorial, version of generator \n";
00099   version2.Write();
00100   std::cout << "################################\n";
00101 
00102   // record test case
00103   FAUDES_TEST_DUMP("generator", version1); 
00104 
00105 
00106   ///////////////////////////////////////////////
00107   // Methods for Input/Output
00108   ///////////////////////////////////////////////
00109 
00110   // read a Generator from file 
00111 
00112   g2.Read("data/simplemachine.gen");
00113 
00114   // create a Generator by reading a Generator file
00115 
00116   Generator g4("data/simplemachine.gen");
00117 
00118 
00119   // write a Generator to file 
00120   // (map state indices to begin with 1)
00121 
00122   g4.Write("tmp_simplemachine.gen");
00123 
00124   // write a Generator to file by appending the output 
00125   // (map state indeces to begin with 1)
00126 
00127   g4.Write("tmp_simplemachine.gen", std::ios::out|std::ios::app);
00128 
00129   // debug output of Generator to console 
00130   // (use actual state indices)
00131 
00132   std::cout << "################################\n";
00133   std::cout << "# tutorial, debug dump \n";
00134   g4.DWrite();
00135   std::cout << "################################\n";
00136 
00137   // create dotfile for further processing by graphviz 
00138   // (map state indices to begin with 1)
00139 
00140   g4.DotWrite("tmp_simplemachine.dot"); 
00141   g4.DDotWrite("tmp_simplemachine_debug.dot");
00142 
00143   // there also is a convenience method, that runs graphviz to
00144   // generate graphical output; requires  "dot" binary in $PATH
00145   try {
00146     g4.GraphWrite("tmp_simplemachin.png");
00147   } catch(faudes::Exception& exception) {
00148     std::cout << "1_generator: cannot execute graphviz' dot. " << std::endl;
00149   } 
00150 
00151 
00152   // create a debug string for an event with symbolic name + index
00153 
00154   std::string str_singleevent = g1.EStr(2);
00155 
00156   // create a debug string for a state with symbolic name + index.
00157   // If there is no symblic name, a symbolic name of the index is constructed.
00158 
00159   std::string str_singlestate = g1.SStr(3);
00160 
00161   // build string of events in the Generator's alphabet
00162 
00163   std::string str_alph =  g1.AlphabetToString();
00164 
00165   // build string of states in the Generator's set of states
00166   std::string str_states = g1.StatesToString();
00167 
00168   // there also are TransRelToString(), InitStatesToString() and  MarkedStatesToString()  
00169 
00170 
00171   //////////////////////////////////////
00172   // Accessing the Generator's Members
00173   //////////////////////////////////////
00174 
00175   // get the Generator's name
00176 
00177   std::string str_name = g1.Name();
00178 
00179   // set new name for Generator
00180 
00181   g1.Name("NewName");
00182 
00183 
00184 
00185   // the core members alphabet, stateset and transitionrelation may be retrieved 
00186   // as const references; ie. they can be inspected freely, but write access is 
00187   // exclusively via the provided Generator methods.
00188 
00189   // retrieve a const reference to and copy of the Generator's alphabet
00190 
00191   const EventSet&  eset_ref_alph  = g1.Alphabet();
00192   EventSet         eset_copy_alph = g1.Alphabet();
00193 
00194   // you cannot alter the alphabet of a generator via an  alphabet method
00195   // eset_ref_alph.Insert("new_event");  // compile time error!
00196 
00197   // however, the copy can be altered, but with no effect on the original generator
00198 
00199   eset_copy_alph.Insert("new_event"); 
00200   if(g1.ExistsEvent("new_event")) std::cout << "### THIS CANNOT HAPPEN ###";
00201 
00202   // retrieve a const reference to and copy of the Generator's set of states "mStates"
00203 
00204   const StateSet& sset_ref_states = g1.States();
00205   StateSet sset_copy_states = g1.States();
00206 
00207   // retrieve a const reference to and a copy of the Generator's transition relation "mTransRel"
00208 
00209   const TransSet& tset_ref_trel = g1.TransRel();
00210   TransSet tset_copy_trel = g1.TransRel();
00211 
00212   // same with initial states and marked states
00213 
00214   const StateSet& sset_ref_istates = g1.InitStates();
00215   StateSet sset_copy_istates = g1.InitStates();
00216 
00217   const StateSet& sset_ref_mstates = g1.MarkedStates();
00218   StateSet sset_copy_mstates = g1.MarkedStates();
00219 
00220 
00221 
00222   //////////////////////////////////////////////////////////////////////////////
00223   // Modifying the 5-tuple Generator (X, Sigma, Delta, X0 and Xm)
00224   //////////////////////////////////////////////////////////////////////////////
00225 
00226   // insert an event by it's symbolic name in the alphabet
00227   // (if the event is not known so far, a new index for the symbolic name is generated) 
00228   g1.InsEvent("newevent");
00229 
00230 
00231   // insert an existing event into the Generator's alphabet (mAlphabet)
00232   // (by "existing event" we refer to an event that has been previously inserted to some Generator)
00233 
00234   g1.InsEvent(1);   // of course index 1 is already in the alphabet here...
00235 
00236   // insert a bunch of events (EventSet) and get the integer index if requested
00237 
00238   EventSet eset1;
00239   eset1.Insert("newevent1");
00240   Idx idx_tmp = eset1.Insert("newevent2");
00241   g1.InsEvents(eset1);
00242 
00243   // delete an event from Generator ie delete from alphabet and transition relation
00244 
00245   g1.DelEvent("newevent1"); // by symbolic name
00246   g1.DelEvent(idx_tmp);     // by index
00247 
00248   // delete a bunch of events
00249   // g1.DelEvents(eset1); // .. of course we have already deleted them before...
00250 
00251   // insert a new state. The state gets a integer index that is unique within
00252   // the Generator
00253 
00254   idx_tmp = g1.InsState();            // anonymous state
00255   idx_tmp = g1.InsState("newstate2"); // named state
00256   idx_tmp = g1.InsState("77"); // named state
00257 
00258   // insert a new state as initial state
00259 
00260   idx_tmp = g1.InsInitState();
00261   idx_tmp = g1.InsInitState("newinitstate");
00262 
00263   // ... same for marked states
00264 
00265   idx_tmp = g1.InsMarkedState();
00266   idx_tmp = g1.InsMarkedState("newmarkedstate");
00267 
00268 
00269   // delete single states from Generator ie stateset and transitionrelation
00270 
00271   g1.DelState(idx_tmp); // by index (relatively fast, for algorithms)
00272   g1.DelState("newinitstate"); // by symbolic name, if name assigned
00273 
00274   // delete a bunch of states 
00275   // (this should be more efficient than deleting states individually)
00276 
00277   StateSet stateset1;
00278   stateset1.Insert(1);
00279   stateset1.Insert(2);
00280   stateset1.Insert(3);
00281   g1.DelStates(stateset1);
00282 
00283   // for further proceeding we insert some new states and events...
00284 
00285   Idx idx_s10 = g1.InsState("s10");
00286   Idx idx_s11 = g1.InsState("s11");
00287   Idx idx_s12 = g1.InsState("s12");
00288   Idx idx_e10 = g1.InsEvent("e10");
00289   Idx idx_e11 = g1.InsEvent("e11");
00290 
00291   // set a state that already exists in Generator as initial state
00292 
00293   g1.SetInitState(idx_s10);
00294 
00295   // set a state that already exists in Generator as marked state
00296 
00297   g1.SetMarkedState(idx_s11);
00298 
00299   // unset an existing state as initial state (does not remove from mStates)
00300 
00301   g1.ClrInitState(idx_s10); 
00302 
00303   // unset an existing state as marked state (does not remove from stateset)
00304 
00305   g1.ClrMarkedState(idx_s10); 
00306 
00307   // clear all initial states (does not remove from stateset)
00308 
00309   //   g1.ClrInitStates();  // we do not really do it here, so it's commented
00310 
00311   // clear all marked states (mStates stays untouched)
00312 
00313   //   g1.ClrMarkedStates();  // we do not really do it here, so it's commented
00314 
00315   // set a transition for existing states and events
00316 
00317   g1.SetTransition(idx_s10, idx_e10, idx_s11); // by indices
00318   g1.SetTransition("s10", "e11", "s10"); // by symbolic names (slow)
00319 
00320 
00321   // report back to console
00322 
00323   std::cout << "################################\n";
00324   std::cout << "# tutorial, on the way ... \n";
00325   g1.Write();
00326   std::cout << "################################\n";
00327 
00328 
00329   // clear a transition (does not touch mStates, mInitStates and mMarkedStates)
00330 
00331   g1.ClrTransition(idx_s10, idx_e10, idx_s11); // by index
00332 
00333   // transitions can also be cleared by names (slower) or by an assigned
00334   // TransSet::Iterator (faster); use ClearTransRel() to remove all transitions
00335 
00336 
00337   // clear the symbolic name for a state in the StateSymbolTable
00338 
00339   g1.ClrStateName(idx_s10); 
00340 
00341   // exists event index/name in mAlphabet?
00342 
00343   bool bool_eventexists1 = g1.ExistsEvent("e11"); 
00344   bool bool_eventexists2 = g1.ExistsEvent(2); 
00345 
00346 
00347   // exists state in mStates?
00348 
00349   bool bool_stateexists1 = g1.ExistsState(4); 
00350 
00351 
00352   // check if a state is an initial state
00353 
00354   bool bool_initstateexists = g1.ExistsInitState(4); 
00355 
00356   // check if a state is a marked state
00357 
00358   bool bool_ismarkedstate = g1.ExistsMarkedState(4); 
00359 
00360   // look up event name for index in the EventSymbolTable of the event domain
00361 
00362   std::string str_eventname1 = g1.EventName(1);
00363 
00364   // look up event index for name in the EventSymbolTable of the event domain
00365 
00366   Idx idx_eventindex = g1.EventIndex("e11");
00367 
00368   // get symbolic name assigned to state (returns "" if no name assigned).
00369 
00370   std::string str_tmp = g1.StateName(idx_s10);
00371 
00372   // get index for symbolic state name. only possible for state names of states in
00373   // the Generator 
00374 
00375   idx_tmp = g1.StateIndex("s12");
00376 
00377   // clear Generator (including alphabet)
00378 
00379   g4.Clear();
00380 
00381   // get the number of events in the Generator's alphabet
00382 
00383   Idx idx_eventnum = g1.AlphabetSize();
00384 
00385   // get the number of states
00386 
00387   Idx idx_statenum = g1.Size();
00388 
00389   // get the number of transitions
00390 
00391   Idx idx_transnum = g1.TransRelSize();
00392 
00393   // there also are InitStatesSize(), MarkedStatesSize()
00394 
00395   // is the alphabet of the Generator empty?
00396 
00397   bool bool_alphempty = g1.AlphabetEmpty();
00398 
00399   // is the Generator empty (number of states == 0) ?
00400 
00401   bool bool_isempty = g1.Empty();
00402 
00403   // see also TransRelEmpty, InitStatesEmpty, MarkedStatesEmpty
00404 
00405 
00406   // insert a small loop 
00407 
00408   Idx initstate = g1.InsInitState("in");
00409   Idx markedstate = g1.InsMarkedState("out");
00410   g1.SetTransition("in","a","out");
00411   g1.SetTransition("out","a","in");
00412 
00413 
00414   // show effect on console 
00415 
00416   std::cout << "################################\n";
00417   std::cout << "# tutorial, after ins and del \n";
00418   g1.DWrite();
00419   std::cout << "################################\n";
00420 
00421   // record test case
00422   FAUDES_TEST_DUMP("g1, edited", g1); 
00423 
00424   ///////////////////////
00425   // Iterators
00426   ///////////////////////
00427 
00428   // since the core members are all implemented as sets, iterators
00429   // effectively are cont_iterators, i.e. you cannot change the 
00430   // current value of an iterator. instead you may remove the value 
00431   // and insert the new value.
00432 
00433   // iteration over alphabet indices (member "mAlphabet")
00434 
00435   std::cout << "################################\n";
00436   std::cout << "# tutorial, iterators 1         \n";
00437   EventSet::Iterator eit;
00438   for (eit = g1.AlphabetBegin(); eit != g1.AlphabetEnd(); ++eit) {
00439     std::cout << "event \"" << g1.EventName(*eit) << "\" with index "<< *eit << std::endl;
00440   }
00441   std::cout << "################################\n";
00442 
00443   // iteration over state indices (member "mStates")
00444 
00445   std::cout << "################################\n";
00446   std::cout << "# tutorial, iterators 2         \n";
00447   StateSet::Iterator sit;
00448   for (sit = g1.StatesBegin(); sit != g1.StatesEnd(); ++sit) {
00449     std::cout << *sit << std::endl;
00450   }
00451   std::cout << "################################\n";
00452 
00453   // iteration over complete transition relation (member "mTransRel")
00454 
00455   std::cout << "################################\n";
00456   std::cout << "# tutorial, iterators 3         \n";
00457   TransSet::Iterator tit;
00458   for (tit = g1.TransRelBegin(); tit != g1.TransRelEnd(); ++tit) {
00459     std::cout << g1.TStr(*tit) << std::endl;
00460   }
00461   std::cout << "################################\n";
00462 
00463   // iteration over transitions from a given state; note that we avoid
00464   // computation of the end of the iteration in every step
00465 
00466   std::cout << "################################\n";
00467   std::cout << "# tutorial, iterators 4         \n";
00468   idx_tmp = g1.StateIndex("s1");
00469   TransSet::Iterator tit_end;
00470   tit = g1.TransRelBegin(idx_tmp);
00471   tit_end = g1.TransRelEnd(idx_tmp);
00472   for (; tit != tit_end; ++tit) {
00473     std::cout << g1.TStr(*tit) << std::endl;
00474   }
00475   std::cout << "################################\n";
00476 
00477   // variations: transitions of given state index + given event index:
00478   // TransRelBegin(x1, ev) - TransRelEnd(x1, ev)
00479 
00480   // iteration over initial and marked states:
00481   // InitStatesBegin() - InitStatesEnd()  (member "mInitStates")
00482   // MarkedStatesBegin() - MarkedStatesEnd() (member "mMarkedStates")
00483 
00484 
00485   ////////////////////////////////////////////////////////////
00486   // retrieve copies of the Generator's transition releation
00487   // in different sorting orders than X1 -> Ev -> X2
00488   ////////////////////////////////////////////////////////////
00489 
00490   // note: the availabity of iterator ranges depends on the sorting order;
00491   // eg iteration with specified x2 requires X2->Ev->X1 or X2->X1->Ev sorting.
00492 
00493   // retrieve a copy that is sorted by X2 -> Ev -> X1 by the binary
00494   // predicate TransSort::X2EvX1. 
00495   
00496   TransSetX2EvX1 tset_x2evx1;
00497   g1.TransRel(tset_x2evx1);
00498 
00499   // report to console
00500 
00501   std::cout << "################################\n";
00502   std::cout << "# tutorial, x2-ev-x1 sorting\n";
00503   TransSetX2EvX1::Iterator tit2;
00504   for (tit2 = tset_x2evx1.Begin(); tit2 != tset_x2evx1.End(); ++tit2) {
00505     std::cout << g1.TStr(*tit2) << std::endl;
00506   }
00507   std::cout << "################################\n";
00508 
00509 
00510 
00511   ////////////////////////
00512   // Convenience Methods
00513   ////////////////////////
00514 
00515   // remove all events from mAlphabet, that do not have a transition in
00516   // mTransRel:  g1.MinimizeAlphabet()
00517 
00518   // get an EventSet containing all the events that drive some transition 
00519 
00520   EventSet eset_usedevents = g1.UsedEvents();
00521 
00522   // get an EventSet containing all the events that do not drive any transition
00523 
00524   EventSet eset_unusedevents = g1.UnusedEvents();
00525 
00526   // return the active event set at a given state 
00527 
00528   EventSet eset_activeeventset = g1.ActiveEventSet(idx_s12);
00529 
00530   // return a StateSet containing all the states that are connected by
00531   // some transition 
00532 
00533   StateSet sset_trel_sspace = g1.TransRelStateSpace();
00534 
00535   // return a StateSet containing all the successor states of a given predecessor
00536   // state.
00537 
00538   StateSet sset_successors = g1.TransRelStateSpace(idx_s12);
00539 
00540   // note: if you need predecessor states, use a resorted transition relation
00541 
00542   /////////////////////////////////
00543   // Symbolic state name handling
00544   /////////////////////////////////
00545 
00546   // are symbolic state names enabled? depending on this boolean value
00547   // library functions like Determine or StateMin may create symbolic
00548   // state names.
00549 
00550   bool bool_statenamesenabled = g1.StateNamesEnabled();
00551 
00552   // disable state name creation in resulting generators for functions in
00553   // the faudes library, that support this feature (nearly all) with
00554   // "false"; enable state name creation with "true".
00555 
00556   g1.StateNamesEnabled(true); // anyway .. true is the default value
00557 
00558   // clear existing symbolic statenames for states in the Generator
00559 
00560   // g1.ClearStateNames(); 
00561 
00562   // set symbolic names for all states in the generator. the symbolic name becomes
00563   // the equivalent string representation of the state's integer index. This is
00564   // only usefull for debugging purposes.
00565 
00566   g1.SetDefaultStateNames();
00567 
00568 
00569   // show effect on console 
00570 
00571   std::cout << "################################\n";
00572   std::cout << "# tutorial, default names \n";
00573   g1.Write();
00574   std::cout << "################################\n";
00575 
00576 
00577   ///////////////////////////////////
00578   // Accessible, Coaccessible, Complete, Trim
00579   ///////////////////////////////////
00580 
00581   // read example generator for reachability analysis
00582   Generator greach("data/trimness_nottrim.gen");
00583 
00584   std::cout << "################################\n";
00585   std::cout << "# tutorial, reachability test case  \n";
00586   greach.Write();
00587   std::cout << "# tutorial, reachability relevant sets \n";
00588   StateSet astates = greach.AccessibleSet();
00589   StateSet cstates = greach.CoaccessibleSet();
00590   StateSet tstates = greach.TerminalStates();
00591   astates.Write();
00592   cstates.Write();
00593   tstates.Write();   
00594   std::cout << "# tutorial, reachability analysis \n";
00595   bool isacc = greach.IsAccessible(); 
00596   if(isacc) 
00597     std::cout << "accesibility: ok [error]\n";
00598   else
00599     std::cout << "accesibility: failed [expected]\n";
00600   bool iscoacc = greach.IsCoaccessible(); 
00601   if(iscoacc) 
00602     std::cout << "coaccesibility: ok [error]\n";
00603   else
00604     std::cout << "coaccesibility: failed [expected]\n";
00605   bool iscompl = greach.IsComplete(); 
00606   if(iscompl) 
00607     std::cout << "completeness: ok [error]\n";
00608   else
00609     std::cout << "completeness: failed [expected]\n";
00610   bool istrim = greach.IsTrim(); 
00611   if(istrim) 
00612     std::cout << "trimness: ok [error]\n";
00613   else
00614     std::cout << "trimness: failed [expected]\n";
00615   bool isotrim = greach.IsOmegaTrim(); 
00616   if(isotrim) 
00617     std::cout << "w-trimness: ok [error]\n";
00618   else
00619     std::cout << "w-trimness: failed [expected]\n";
00620   std::cout << "################################\n";
00621   
00622   // record test case
00623   FAUDES_TEST_DUMP("acc",astates);
00624   FAUDES_TEST_DUMP("coacc",cstates);
00625   FAUDES_TEST_DUMP("term",tstates);
00626 
00627   // Make the Generator accessible by removing transitions and states. 
00628   // The routine returns true if the generator has an initial state.
00629   Generator gaccess(greach);
00630   gaccess.Name("GAccessible");
00631   bool bool_hasinit = gaccess.Accessible();
00632 
00633   // Make the Generator coaccessible by removing transitions and states.
00634   // The routine returns true if the generator has a marked state.
00635   Generator gcoaccess(greach);
00636   gcoaccess.Name("GCoccessible");
00637   bool bool_hasmarked = gcoaccess.Coaccessible();
00638 
00639   // Make the Generator complete by removing transitions and states. 
00640   // The routine returns true if the generator has an initial state.
00641   Generator gcompl(greach);
00642   gcompl.Name("GComplete");
00643   gcompl.Complete();
00644 
00645   // Make the Generator trim by removing transitions and states. 
00646   // The routine returns true if the generator has an initial state
00647   // and a marked state.
00648   Generator gtrim(greach);
00649   gtrim.Name("GTrim");
00650   bool bool_isnontrivial = gtrim.Trim();
00651 
00652   // Make the Generator omega-trim by removing transitions and states. 
00653   // The routine returns true if the generator has an initial state
00654   // and a marked state.
00655   Generator gotrim(greach);
00656   gotrim.Name("GOmegaTrim");
00657   gotrim.OmegaTrim();
00658 
00659   // show effect on console
00660   std::cout << "################################\n";
00661   std::cout << "# tutorial, reachability results \n";
00662   gaccess.Write();
00663   gcoaccess.Write();
00664   gcompl.Write();
00665   gtrim.Write();
00666   gotrim.Write();
00667   std::cout << "################################\n";
00668 
00669   // contribute to html docu
00670   greach.Write("tmp_greach.gen");
00671   gaccess.Write("tmp_gaccess.gen");
00672   gcoaccess.Write("tmp_gcoaccess.gen");
00673   gcompl.Write("tmp_gcompl.gen");
00674   gtrim.Write("tmp_gtrim.gen");
00675   gotrim.Write("tmp_gotrim.gen");
00676 
00677   // Test protocol
00678   FAUDES_TEST_DUMP("accessible",gaccess);
00679   FAUDES_TEST_DUMP("coaccessible",gcoaccess);
00680   FAUDES_TEST_DUMP("complete",gcompl);
00681   FAUDES_TEST_DUMP("trim",gtrim);
00682   FAUDES_TEST_DUMP("omega trim",gotrim);
00683   
00684 
00685   ///////////////////////////////////
00686   // Test case eveluation
00687   ///////////////////////////////////
00688   FAUDES_TEST_DIFF();
00689 
00690   return 0;
00691 }
00692 
00693 
00694 

libFAUDES 2.20d --- 2011.04.26 --- c++ source docu by doxygen