libFAUDES
Sections
Index
|
1_generator.cppGo to the documentation of this file.00001 /** @file 1_generator.cpp 00002 00003 Tutorial, Generator methods. 00004 00005 The Generator class implements the 5-tuple automaton G, consisting of 00006 - Set of States Q, 00007 - Alphabet Sigma, 00008 - Transition Relation Delta, 00009 - Set of Initial States Qo, and 00010 - Set of Marked States Qm. 00011 00012 This tutorial demonstrates how to insert/erase states, events and transitions. 00013 It also demonstrates file IO. 00014 00015 @ingroup Tutorials 00016 00017 @include 1_generator.cpp 00018 */ 00019 00020 00021 #include "libfaudes.h" 00022 00023 // make faudes namespace available 00024 using namespace faudes; 00025 00026 00027 00028 ///////////////// 00029 // main program 00030 ///////////////// 00031 00032 int main() { 00033 00034 //////////////////////////////////////////// 00035 // Constructors (part 1) and filling example 00036 //////////////////////////////////////////// 00037 00038 // at first we create an empty Generator object 00039 00040 Generator g1; 00041 00042 // do some random "user interaction" stuff with the Generator g1 00043 00044 g1.InsState("s1"); 00045 g1.InsState("s2"); 00046 g1.InsState("s3"); 00047 00048 g1.InsEvent("a"); 00049 g1.InsEvent("b"); 00050 00051 g1.SetTransition("s1", "a", "s2"); 00052 g1.SetTransition("s2", "a", "s3"); 00053 g1.SetTransition("s3", "b", "s1"); 00054 00055 g1.SetInitState("s1"); 00056 g1.SetMarkedState("s2"); 00057 g1.SetMarkedState("s3"); 00058 00059 // inspect result on console 00060 00061 std::cout << "################################\n"; 00062 std::cout << "# tutorial, handcraft generator \n"; 00063 g1.Write(); 00064 std::cout << "################################\n"; 00065 00066 // record test case 00067 FAUDES_TEST_DUMP("g1", g1); 00068 00069 /////////////////////////////////////////////////// 00070 // Constructors (part 2) & Copying and versioning 00071 /////////////////////////////////////////////////// 00072 00073 // Create a 1:1 copy of the Generator with the copy constructor ... 00074 00075 Generator g_copy(g1); 00076 00077 // ... with assignment method, or assignement operator 00078 00079 Generator g2; 00080 g2.Assign(g1); 00081 Generator g3=g2; 00082 00083 // create a Generator copy with versioned events (for testing algorithms): 00084 // versioning by an integer. E.g. for integer 3 events {"a", "b", "c"} 00085 // become {"a_3", "b_3", "c_3"}. 00086 00087 Generator version1; 00088 g3.Version(3, version1); 00089 00090 // versioning by a string. "a" -> "a_versionstring" 00091 00092 Generator version2; 00093 g3.Version("str", version2); 00094 00095 // inspect result on console 00096 00097 std::cout << "################################\n"; 00098 std::cout << "# tutorial, version of generator \n"; 00099 version2.Write(); 00100 std::cout << "################################\n"; 00101 00102 // record test case 00103 FAUDES_TEST_DUMP("generator", version1); 00104 00105 00106 /////////////////////////////////////////////// 00107 // Methods for Input/Output 00108 /////////////////////////////////////////////// 00109 00110 // read a Generator from file 00111 00112 g2.Read("data/simplemachine.gen"); 00113 00114 // create a Generator by reading a Generator file 00115 00116 Generator g4("data/simplemachine.gen"); 00117 00118 00119 // write a Generator to file 00120 // (map state indices to begin with 1) 00121 00122 g4.Write("tmp_simplemachine.gen"); 00123 00124 // write a Generator to file by appending the output 00125 // (map state indeces to begin with 1) 00126 00127 g4.Write("tmp_simplemachine.gen", std::ios::out|std::ios::app); 00128 00129 // debug output of Generator to console 00130 // (use actual state indices) 00131 00132 std::cout << "################################\n"; 00133 std::cout << "# tutorial, debug dump \n"; 00134 g4.DWrite(); 00135 std::cout << "################################\n"; 00136 00137 // create dotfile for further processing by graphviz 00138 // (map state indices to begin with 1) 00139 00140 g4.DotWrite("tmp_simplemachine.dot"); 00141 g4.DDotWrite("tmp_simplemachine_debug.dot"); 00142 00143 // there also is a convenience method, that runs graphviz to 00144 // generate graphical output; requires "dot" binary in $PATH 00145 try { 00146 g4.GraphWrite("tmp_simplemachin.png"); 00147 } catch(faudes::Exception& exception) { 00148 std::cout << "1_generator: cannot execute graphviz' dot. " << std::endl; 00149 } 00150 00151 00152 // create a debug string for an event with symbolic name + index 00153 00154 std::string str_singleevent = g1.EStr(2); 00155 00156 // create a debug string for a state with symbolic name + index. 00157 // If there is no symblic name, a symbolic name of the index is constructed. 00158 00159 std::string str_singlestate = g1.SStr(3); 00160 00161 // build string of events in the Generator's alphabet 00162 00163 std::string str_alph = g1.AlphabetToString(); 00164 00165 // build string of states in the Generator's set of states 00166 std::string str_states = g1.StatesToString(); 00167 00168 // there also are TransRelToString(), InitStatesToString() and MarkedStatesToString() 00169 00170 00171 ////////////////////////////////////// 00172 // Accessing the Generator's Members 00173 ////////////////////////////////////// 00174 00175 // get the Generator's name 00176 00177 std::string str_name = g1.Name(); 00178 00179 // set new name for Generator 00180 00181 g1.Name("NewName"); 00182 00183 00184 00185 // the core members alphabet, stateset and transitionrelation may be retrieved 00186 // as const references; ie. they can be inspected freely, but write access is 00187 // exclusively via the provided Generator methods. 00188 00189 // retrieve a const reference to and copy of the Generator's alphabet 00190 00191 const EventSet& eset_ref_alph = g1.Alphabet(); 00192 EventSet eset_copy_alph = g1.Alphabet(); 00193 00194 // you cannot alter the alphabet of a generator via an alphabet method 00195 // eset_ref_alph.Insert("new_event"); // compile time error! 00196 00197 // however, the copy can be altered, but with no effect on the original generator 00198 00199 eset_copy_alph.Insert("new_event"); 00200 if(g1.ExistsEvent("new_event")) std::cout << "### THIS CANNOT HAPPEN ###"; 00201 00202 // retrieve a const reference to and copy of the Generator's set of states "mStates" 00203 00204 const StateSet& sset_ref_states = g1.States(); 00205 StateSet sset_copy_states = g1.States(); 00206 00207 // retrieve a const reference to and a copy of the Generator's transition relation "mTransRel" 00208 00209 const TransSet& tset_ref_trel = g1.TransRel(); 00210 TransSet tset_copy_trel = g1.TransRel(); 00211 00212 // same with initial states and marked states 00213 00214 const StateSet& sset_ref_istates = g1.InitStates(); 00215 StateSet sset_copy_istates = g1.InitStates(); 00216 00217 const StateSet& sset_ref_mstates = g1.MarkedStates(); 00218 StateSet sset_copy_mstates = g1.MarkedStates(); 00219 00220 00221 00222 ////////////////////////////////////////////////////////////////////////////// 00223 // Modifying the 5-tuple Generator (X, Sigma, Delta, X0 and Xm) 00224 ////////////////////////////////////////////////////////////////////////////// 00225 00226 // insert an event by it's symbolic name in the alphabet 00227 // (if the event is not known so far, a new index for the symbolic name is generated) 00228 g1.InsEvent("newevent"); 00229 00230 00231 // insert an existing event into the Generator's alphabet (mAlphabet) 00232 // (by "existing event" we refer to an event that has been previously inserted to some Generator) 00233 00234 g1.InsEvent(1); // of course index 1 is already in the alphabet here... 00235 00236 // insert a bunch of events (EventSet) and get the integer index if requested 00237 00238 EventSet eset1; 00239 eset1.Insert("newevent1"); 00240 Idx idx_tmp = eset1.Insert("newevent2"); 00241 g1.InsEvents(eset1); 00242 00243 // delete an event from Generator ie delete from alphabet and transition relation 00244 00245 g1.DelEvent("newevent1"); // by symbolic name 00246 g1.DelEvent(idx_tmp); // by index 00247 00248 // delete a bunch of events 00249 // g1.DelEvents(eset1); // .. of course we have already deleted them before... 00250 00251 // insert a new state. The state gets a integer index that is unique within 00252 // the Generator 00253 00254 idx_tmp = g1.InsState(); // anonymous state 00255 idx_tmp = g1.InsState("newstate2"); // named state 00256 idx_tmp = g1.InsState("77"); // named state 00257 00258 // insert a new state as initial state 00259 00260 idx_tmp = g1.InsInitState(); 00261 idx_tmp = g1.InsInitState("newinitstate"); 00262 00263 // ... same for marked states 00264 00265 idx_tmp = g1.InsMarkedState(); 00266 idx_tmp = g1.InsMarkedState("newmarkedstate"); 00267 00268 00269 // delete single states from Generator ie stateset and transitionrelation 00270 00271 g1.DelState(idx_tmp); // by index (relatively fast, for algorithms) 00272 g1.DelState("newinitstate"); // by symbolic name, if name assigned 00273 00274 // delete a bunch of states 00275 // (this should be more efficient than deleting states individually) 00276 00277 StateSet stateset1; 00278 stateset1.Insert(1); 00279 stateset1.Insert(2); 00280 stateset1.Insert(3); 00281 g1.DelStates(stateset1); 00282 00283 // for further proceeding we insert some new states and events... 00284 00285 Idx idx_s10 = g1.InsState("s10"); 00286 Idx idx_s11 = g1.InsState("s11"); 00287 Idx idx_s12 = g1.InsState("s12"); 00288 Idx idx_e10 = g1.InsEvent("e10"); 00289 Idx idx_e11 = g1.InsEvent("e11"); 00290 00291 // set a state that already exists in Generator as initial state 00292 00293 g1.SetInitState(idx_s10); 00294 00295 // set a state that already exists in Generator as marked state 00296 00297 g1.SetMarkedState(idx_s11); 00298 00299 // unset an existing state as initial state (does not remove from mStates) 00300 00301 g1.ClrInitState(idx_s10); 00302 00303 // unset an existing state as marked state (does not remove from stateset) 00304 00305 g1.ClrMarkedState(idx_s10); 00306 00307 // clear all initial states (does not remove from stateset) 00308 00309 // g1.ClrInitStates(); // we do not really do it here, so it's commented 00310 00311 // clear all marked states (mStates stays untouched) 00312 00313 // g1.ClrMarkedStates(); // we do not really do it here, so it's commented 00314 00315 // set a transition for existing states and events 00316 00317 g1.SetTransition(idx_s10, idx_e10, idx_s11); // by indices 00318 g1.SetTransition("s10", "e11", "s10"); // by symbolic names (slow) 00319 00320 00321 // report back to console 00322 00323 std::cout << "################################\n"; 00324 std::cout << "# tutorial, on the way ... \n"; 00325 g1.Write(); 00326 std::cout << "################################\n"; 00327 00328 00329 // clear a transition (does not touch mStates, mInitStates and mMarkedStates) 00330 00331 g1.ClrTransition(idx_s10, idx_e10, idx_s11); // by index 00332 00333 // transitions can also be cleared by names (slower) or by an assigned 00334 // TransSet::Iterator (faster); use ClearTransRel() to remove all transitions 00335 00336 00337 // clear the symbolic name for a state in the StateSymbolTable 00338 00339 g1.ClrStateName(idx_s10); 00340 00341 // exists event index/name in mAlphabet? 00342 00343 bool bool_eventexists1 = g1.ExistsEvent("e11"); 00344 bool bool_eventexists2 = g1.ExistsEvent(2); 00345 00346 00347 // exists state in mStates? 00348 00349 bool bool_stateexists1 = g1.ExistsState(4); 00350 00351 00352 // check if a state is an initial state 00353 00354 bool bool_initstateexists = g1.ExistsInitState(4); 00355 00356 // check if a state is a marked state 00357 00358 bool bool_ismarkedstate = g1.ExistsMarkedState(4); 00359 00360 // look up event name for index in the EventSymbolTable of the event domain 00361 00362 std::string str_eventname1 = g1.EventName(1); 00363 00364 // look up event index for name in the EventSymbolTable of the event domain 00365 00366 Idx idx_eventindex = g1.EventIndex("e11"); 00367 00368 // get symbolic name assigned to state (returns "" if no name assigned). 00369 00370 std::string str_tmp = g1.StateName(idx_s10); 00371 00372 // get index for symbolic state name. only possible for state names of states in 00373 // the Generator 00374 00375 idx_tmp = g1.StateIndex("s12"); 00376 00377 // clear Generator (including alphabet) 00378 00379 g4.Clear(); 00380 00381 // get the number of events in the Generator's alphabet 00382 00383 Idx idx_eventnum = g1.AlphabetSize(); 00384 00385 // get the number of states 00386 00387 Idx idx_statenum = g1.Size(); 00388 00389 // get the number of transitions 00390 00391 Idx idx_transnum = g1.TransRelSize(); 00392 00393 // there also are InitStatesSize(), MarkedStatesSize() 00394 00395 // is the alphabet of the Generator empty? 00396 00397 bool bool_alphempty = g1.AlphabetEmpty(); 00398 00399 // is the Generator empty (number of states == 0) ? 00400 00401 bool bool_isempty = g1.Empty(); 00402 00403 // see also TransRelEmpty, InitStatesEmpty, MarkedStatesEmpty 00404 00405 00406 // insert a small loop 00407 00408 Idx initstate = g1.InsInitState("in"); 00409 Idx markedstate = g1.InsMarkedState("out"); 00410 g1.SetTransition("in","a","out"); 00411 g1.SetTransition("out","a","in"); 00412 00413 00414 // show effect on console 00415 00416 std::cout << "################################\n"; 00417 std::cout << "# tutorial, after ins and del \n"; 00418 g1.DWrite(); 00419 std::cout << "################################\n"; 00420 00421 // record test case 00422 FAUDES_TEST_DUMP("g1, edited", g1); 00423 00424 /////////////////////// 00425 // Iterators 00426 /////////////////////// 00427 00428 // since the core members are all implemented as sets, iterators 00429 // effectively are cont_iterators, i.e. you cannot change the 00430 // current value of an iterator. instead you may remove the value 00431 // and insert the new value. 00432 00433 // iteration over alphabet indices (member "mAlphabet") 00434 00435 std::cout << "################################\n"; 00436 std::cout << "# tutorial, iterators 1 \n"; 00437 EventSet::Iterator eit; 00438 for (eit = g1.AlphabetBegin(); eit != g1.AlphabetEnd(); ++eit) { 00439 std::cout << "event \"" << g1.EventName(*eit) << "\" with index "<< *eit << std::endl; 00440 } 00441 std::cout << "################################\n"; 00442 00443 // iteration over state indices (member "mStates") 00444 00445 std::cout << "################################\n"; 00446 std::cout << "# tutorial, iterators 2 \n"; 00447 StateSet::Iterator sit; 00448 for (sit = g1.StatesBegin(); sit != g1.StatesEnd(); ++sit) { 00449 std::cout << *sit << std::endl; 00450 } 00451 std::cout << "################################\n"; 00452 00453 // iteration over complete transition relation (member "mTransRel") 00454 00455 std::cout << "################################\n"; 00456 std::cout << "# tutorial, iterators 3 \n"; 00457 TransSet::Iterator tit; 00458 for (tit = g1.TransRelBegin(); tit != g1.TransRelEnd(); ++tit) { 00459 std::cout << g1.TStr(*tit) << std::endl; 00460 } 00461 std::cout << "################################\n"; 00462 00463 // iteration over transitions from a given state; note that we avoid 00464 // computation of the end of the iteration in every step 00465 00466 std::cout << "################################\n"; 00467 std::cout << "# tutorial, iterators 4 \n"; 00468 idx_tmp = g1.StateIndex("s1"); 00469 TransSet::Iterator tit_end; 00470 tit = g1.TransRelBegin(idx_tmp); 00471 tit_end = g1.TransRelEnd(idx_tmp); 00472 for (; tit != tit_end; ++tit) { 00473 std::cout << g1.TStr(*tit) << std::endl; 00474 } 00475 std::cout << "################################\n"; 00476 00477 // variations: transitions of given state index + given event index: 00478 // TransRelBegin(x1, ev) - TransRelEnd(x1, ev) 00479 00480 // iteration over initial and marked states: 00481 // InitStatesBegin() - InitStatesEnd() (member "mInitStates") 00482 // MarkedStatesBegin() - MarkedStatesEnd() (member "mMarkedStates") 00483 00484 00485 //////////////////////////////////////////////////////////// 00486 // retrieve copies of the Generator's transition releation 00487 // in different sorting orders than X1 -> Ev -> X2 00488 //////////////////////////////////////////////////////////// 00489 00490 // note: the availabity of iterator ranges depends on the sorting order; 00491 // eg iteration with specified x2 requires X2->Ev->X1 or X2->X1->Ev sorting. 00492 00493 // retrieve a copy that is sorted by X2 -> Ev -> X1 by the binary 00494 // predicate TransSort::X2EvX1. 00495 00496 TransSetX2EvX1 tset_x2evx1; 00497 g1.TransRel(tset_x2evx1); 00498 00499 // report to console 00500 00501 std::cout << "################################\n"; 00502 std::cout << "# tutorial, x2-ev-x1 sorting\n"; 00503 TransSetX2EvX1::Iterator tit2; 00504 for (tit2 = tset_x2evx1.Begin(); tit2 != tset_x2evx1.End(); ++tit2) { 00505 std::cout << g1.TStr(*tit2) << std::endl; 00506 } 00507 std::cout << "################################\n"; 00508 00509 00510 00511 //////////////////////// 00512 // Convenience Methods 00513 //////////////////////// 00514 00515 // remove all events from mAlphabet, that do not have a transition in 00516 // mTransRel: g1.MinimizeAlphabet() 00517 00518 // get an EventSet containing all the events that drive some transition 00519 00520 EventSet eset_usedevents = g1.UsedEvents(); 00521 00522 // get an EventSet containing all the events that do not drive any transition 00523 00524 EventSet eset_unusedevents = g1.UnusedEvents(); 00525 00526 // return the active event set at a given state 00527 00528 EventSet eset_activeeventset = g1.ActiveEventSet(idx_s12); 00529 00530 // return a StateSet containing all the states that are connected by 00531 // some transition 00532 00533 StateSet sset_trel_sspace = g1.TransRelStateSpace(); 00534 00535 // return a StateSet containing all the successor states of a given predecessor 00536 // state. 00537 00538 StateSet sset_successors = g1.TransRelStateSpace(idx_s12); 00539 00540 // note: if you need predecessor states, use a resorted transition relation 00541 00542 ///////////////////////////////// 00543 // Symbolic state name handling 00544 ///////////////////////////////// 00545 00546 // are symbolic state names enabled? depending on this boolean value 00547 // library functions like Determine or StateMin may create symbolic 00548 // state names. 00549 00550 bool bool_statenamesenabled = g1.StateNamesEnabled(); 00551 00552 // disable state name creation in resulting generators for functions in 00553 // the faudes library, that support this feature (nearly all) with 00554 // "false"; enable state name creation with "true". 00555 00556 g1.StateNamesEnabled(true); // anyway .. true is the default value 00557 00558 // clear existing symbolic statenames for states in the Generator 00559 00560 // g1.ClearStateNames(); 00561 00562 // set symbolic names for all states in the generator. the symbolic name becomes 00563 // the equivalent string representation of the state's integer index. This is 00564 // only usefull for debugging purposes. 00565 00566 g1.SetDefaultStateNames(); 00567 00568 00569 // show effect on console 00570 00571 std::cout << "################################\n"; 00572 std::cout << "# tutorial, default names \n"; 00573 g1.Write(); 00574 std::cout << "################################\n"; 00575 00576 00577 /////////////////////////////////// 00578 // Accessible, Coaccessible, Complete, Trim 00579 /////////////////////////////////// 00580 00581 // read example generator for reachability analysis 00582 Generator greach("data/trimness_nottrim.gen"); 00583 00584 std::cout << "################################\n"; 00585 std::cout << "# tutorial, reachability test case \n"; 00586 greach.Write(); 00587 std::cout << "# tutorial, reachability relevant sets \n"; 00588 StateSet astates = greach.AccessibleSet(); 00589 StateSet cstates = greach.CoaccessibleSet(); 00590 StateSet tstates = greach.TerminalStates(); 00591 astates.Write(); 00592 cstates.Write(); 00593 tstates.Write(); 00594 std::cout << "# tutorial, reachability analysis \n"; 00595 bool isacc = greach.IsAccessible(); 00596 if(isacc) 00597 std::cout << "accesibility: ok [error]\n"; 00598 else 00599 std::cout << "accesibility: failed [expected]\n"; 00600 bool iscoacc = greach.IsCoaccessible(); 00601 if(iscoacc) 00602 std::cout << "coaccesibility: ok [error]\n"; 00603 else 00604 std::cout << "coaccesibility: failed [expected]\n"; 00605 bool iscompl = greach.IsComplete(); 00606 if(iscompl) 00607 std::cout << "completeness: ok [error]\n"; 00608 else 00609 std::cout << "completeness: failed [expected]\n"; 00610 bool istrim = greach.IsTrim(); 00611 if(istrim) 00612 std::cout << "trimness: ok [error]\n"; 00613 else 00614 std::cout << "trimness: failed [expected]\n"; 00615 bool isotrim = greach.IsOmegaTrim(); 00616 if(isotrim) 00617 std::cout << "w-trimness: ok [error]\n"; 00618 else 00619 std::cout << "w-trimness: failed [expected]\n"; 00620 std::cout << "################################\n"; 00621 00622 // record test case 00623 FAUDES_TEST_DUMP("acc",astates); 00624 FAUDES_TEST_DUMP("coacc",cstates); 00625 FAUDES_TEST_DUMP("term",tstates); 00626 00627 // Make the Generator accessible by removing transitions and states. 00628 // The routine returns true if the generator has an initial state. 00629 Generator gaccess(greach); 00630 gaccess.Name("GAccessible"); 00631 bool bool_hasinit = gaccess.Accessible(); 00632 00633 // Make the Generator coaccessible by removing transitions and states. 00634 // The routine returns true if the generator has a marked state. 00635 Generator gcoaccess(greach); 00636 gcoaccess.Name("GCoccessible"); 00637 bool bool_hasmarked = gcoaccess.Coaccessible(); 00638 00639 // Make the Generator complete by removing transitions and states. 00640 // The routine returns true if the generator has an initial state. 00641 Generator gcompl(greach); 00642 gcompl.Name("GComplete"); 00643 gcompl.Complete(); 00644 00645 // Make the Generator trim by removing transitions and states. 00646 // The routine returns true if the generator has an initial state 00647 // and a marked state. 00648 Generator gtrim(greach); 00649 gtrim.Name("GTrim"); 00650 bool bool_isnontrivial = gtrim.Trim(); 00651 00652 // Make the Generator omega-trim by removing transitions and states. 00653 // The routine returns true if the generator has an initial state 00654 // and a marked state. 00655 Generator gotrim(greach); 00656 gotrim.Name("GOmegaTrim"); 00657 gotrim.OmegaTrim(); 00658 00659 // show effect on console 00660 std::cout << "################################\n"; 00661 std::cout << "# tutorial, reachability results \n"; 00662 gaccess.Write(); 00663 gcoaccess.Write(); 00664 gcompl.Write(); 00665 gtrim.Write(); 00666 gotrim.Write(); 00667 std::cout << "################################\n"; 00668 00669 // contribute to html docu 00670 greach.Write("tmp_greach.gen"); 00671 gaccess.Write("tmp_gaccess.gen"); 00672 gcoaccess.Write("tmp_gcoaccess.gen"); 00673 gcompl.Write("tmp_gcompl.gen"); 00674 gtrim.Write("tmp_gtrim.gen"); 00675 gotrim.Write("tmp_gotrim.gen"); 00676 00677 // Test protocol 00678 FAUDES_TEST_DUMP("accessible",gaccess); 00679 FAUDES_TEST_DUMP("coaccessible",gcoaccess); 00680 FAUDES_TEST_DUMP("complete",gcompl); 00681 FAUDES_TEST_DUMP("trim",gtrim); 00682 FAUDES_TEST_DUMP("omega trim",gotrim); 00683 00684 00685 /////////////////////////////////// 00686 // Test case eveluation 00687 /////////////////////////////////// 00688 FAUDES_TEST_DIFF(); 00689 00690 return 0; 00691 } 00692 00693 00694 |
libFAUDES 2.20d --- 2011.04.26 --- c++ source docu by doxygen