libFAUDES
Sections
Index
|
1_generator.cppGo to the documentation of this file.00001 /** @file 1_generator.cpp 00002 00003 Tutorial, Generator methods. 00004 00005 The Generator class implements the 5-tuple automaton G, consisting of 00006 - Set of States Q, 00007 - Alphabet Sigma, 00008 - Transition Relation Delta, 00009 - Set of Initial States Qo, and 00010 - Set of Marked States Qm. 00011 00012 This tutorial demonstrates how to insert/erase states, events and transitions. 00013 It also demonstrates file IO. 00014 00015 @ingroup Tutorials 00016 00017 @include 1_generator.cpp 00018 */ 00019 00020 00021 #include "libfaudes.h" 00022 00023 // make faudes namespace available 00024 using namespace faudes; 00025 00026 00027 00028 ///////////////// 00029 // main program 00030 ///////////////// 00031 00032 int main() { 00033 00034 //////////////////////////////////////////// 00035 // Constructors (part 1) and filling example 00036 //////////////////////////////////////////// 00037 00038 // at first we create an empty Generator object 00039 00040 Generator g1; 00041 00042 // do some random "user interaction" stuff with the Generator g1 00043 00044 g1.InsState("s1"); 00045 g1.InsState("s2"); 00046 g1.InsState("s3"); 00047 00048 g1.InsEvent("a"); 00049 g1.InsEvent("b"); 00050 00051 g1.SetTransition("s1", "a", "s2"); 00052 g1.SetTransition("s2", "a", "s3"); 00053 g1.SetTransition("s3", "b", "s1"); 00054 00055 g1.SetInitState("s1"); 00056 g1.SetMarkedState("s2"); 00057 g1.SetMarkedState("s3"); 00058 00059 // inspect result on console 00060 00061 std::cout << "################################\n"; 00062 std::cout << "# tutorial, handcraft generator \n"; 00063 g1.Write(); 00064 std::cout << "################################\n"; 00065 00066 // record test case 00067 FAUDES_TEST_DUMP("g1", g1); 00068 00069 00070 00071 /////////////////////////////////////////////////// 00072 // Constructors (part 2) & Copying and versioning 00073 /////////////////////////////////////////////////// 00074 00075 // Create a 1:1 copy of the Generator with the copy constructor ... 00076 00077 Generator g_copy(g1); 00078 00079 // ... with assignment method, or assignement operator 00080 00081 Generator g2; 00082 g2.Assign(g1); 00083 Generator g3=g2; 00084 00085 // create a Generator copy with versioned events (for testing algorithms): 00086 // versioning by an integer. E.g. for integer 3 events {"a", "b", "c"} 00087 // become {"a_3", "b_3", "c_3"}. 00088 00089 Generator version1; 00090 g3.Version(3, version1); 00091 00092 // versioning by a string. "a" -> "a_versionstring" 00093 00094 Generator version2; 00095 g3.Version("str", version2); 00096 00097 // inspect result on console 00098 00099 std::cout << "################################\n"; 00100 std::cout << "# tutorial, version of generator \n"; 00101 version2.Write(); 00102 std::cout << "################################\n"; 00103 00104 // record test case 00105 FAUDES_TEST_DUMP("generator", version1); 00106 00107 00108 /////////////////////////////////////////////// 00109 // Methods for Input/Output 00110 /////////////////////////////////////////////// 00111 00112 // read a Generator from file 00113 00114 g2.Read("data/simplemachine.gen"); 00115 00116 // create a Generator by reading a Generator file 00117 00118 Generator g4("data/simplemachine.gen"); 00119 00120 00121 // write a Generator to file 00122 00123 g4.Write("tmp_simplemachine.gen"); 00124 00125 // write a Generator to file with re-indexed states 00126 00127 g4.ReindexOnWrite(true); 00128 g4.Write("tmp_simplemachine_ridx.gen"); 00129 00130 // read back files (testing token io) 00131 g4.Read("tmp_simplemachine.gen"); 00132 g4.Read("tmp_simplemachine_ridx.gen"); 00133 00134 // debug output of Generator to console 00135 00136 std::cout << "################################\n"; 00137 std::cout << "# tutorial, debug dump \n"; 00138 g4.DWrite(); 00139 std::cout << "################################\n"; 00140 00141 // create dotfile for further processing by graphviz 00142 // (map state indices to begin with 1) 00143 00144 g4.DotWrite("tmp_simplemachine.dot"); 00145 g4.DDotWrite("tmp_simplemachine_debug.dot"); 00146 00147 // there also is a convenience method, that runs graphviz to 00148 // generate graphical output; requires "dot" binary in $PATH 00149 try { 00150 g4.GraphWrite("tmp_simplemachin.png"); 00151 } catch(faudes::Exception& exception) { 00152 std::cout << "1_generator: cannot execute graphviz' dot. " << std::endl; 00153 } 00154 00155 00156 // create a debug string for an event with symbolic name + index 00157 00158 std::string str_singleevent = g1.EStr(2); 00159 00160 // create a debug string for a state with symbolic name + index. 00161 // If there is no symblic name, a symbolic name of the index is constructed. 00162 00163 std::string str_singlestate = g1.SStr(3); 00164 00165 // build string of events in the Generator's alphabet 00166 00167 std::string str_alph = g1.AlphabetToString(); 00168 00169 // build string of states in the Generator's set of states 00170 std::string str_states = g1.StatesToString(); 00171 00172 // there also are TransRelToString(), InitStatesToString() and MarkedStatesToString() 00173 00174 00175 ////////////////////////////////////// 00176 // Accessing the Generator's Members 00177 ////////////////////////////////////// 00178 00179 // get the Generator's name 00180 00181 std::string str_name = g1.Name(); 00182 00183 // set new name for Generator 00184 00185 g1.Name("NewName"); 00186 00187 00188 00189 // the core members alphabet, stateset and transitionrelation may be retrieved 00190 // as const references; ie. they can be inspected freely, but write access is 00191 // exclusively via the provided Generator methods. 00192 00193 // retrieve a const reference to and copy of the Generator's alphabet 00194 00195 const EventSet& eset_ref_alph = g1.Alphabet(); 00196 EventSet eset_copy_alph = g1.Alphabet(); 00197 00198 // you cannot alter the alphabet of a generator via an alphabet method 00199 // eset_ref_alph.Insert("new_event"); // compile time error! 00200 00201 // however, the copy can be altered, but with no effect on the original generator 00202 00203 eset_copy_alph.Insert("new_event"); 00204 if(g1.ExistsEvent("new_event")) std::cout << "### THIS CANNOT HAPPEN ###"; 00205 00206 // retrieve a const reference to and copy of the Generator's set of states "mStates" 00207 00208 const StateSet& sset_ref_states = g1.States(); 00209 StateSet sset_copy_states = g1.States(); 00210 00211 // retrieve a const reference to and a copy of the Generator's transition relation "mTransRel" 00212 00213 const TransSet& tset_ref_trel = g1.TransRel(); 00214 TransSet tset_copy_trel = g1.TransRel(); 00215 00216 // same with initial states and marked states 00217 00218 const StateSet& sset_ref_istates = g1.InitStates(); 00219 StateSet sset_copy_istates = g1.InitStates(); 00220 00221 const StateSet& sset_ref_mstates = g1.MarkedStates(); 00222 StateSet sset_copy_mstates = g1.MarkedStates(); 00223 00224 00225 00226 ////////////////////////////////////////////////////////////////////////////// 00227 // Modifying the 5-tuple Generator (X, Sigma, Delta, X0 and Xm) 00228 ////////////////////////////////////////////////////////////////////////////// 00229 00230 // insert an event by it's symbolic name in the alphabet 00231 // (if the event is not known so far, a new index for the symbolic name is generated) 00232 g1.InsEvent("newevent"); 00233 00234 00235 // insert an existing event into the Generator's alphabet (mAlphabet) 00236 // (by "existing event" we refer to an event that has been previously inserted to some Generator) 00237 00238 g1.InsEvent(1); // of course index 1 is already in the alphabet here... 00239 00240 // insert a bunch of events (EventSet) and get the integer index if requested 00241 00242 EventSet eset1; 00243 eset1.Insert("newevent1"); 00244 Idx idx_tmp = eset1.Insert("newevent2"); 00245 g1.InsEvents(eset1); 00246 00247 // delete an event from Generator ie delete from alphabet and transition relation 00248 00249 g1.DelEvent("newevent1"); // by symbolic name 00250 g1.DelEvent(idx_tmp); // by index 00251 00252 // delete a bunch of events 00253 // g1.DelEvents(eset1); // .. of course we have already deleted them before... 00254 00255 // insert a new state. The state gets a integer index that is unique within 00256 // the Generator 00257 00258 idx_tmp = g1.InsState(); // anonymous state 00259 idx_tmp = g1.InsState("newstate2"); // named state 00260 idx_tmp = g1.InsState("77"); // named state 00261 00262 // insert a new state as initial state 00263 00264 idx_tmp = g1.InsInitState(); 00265 idx_tmp = g1.InsInitState("newinitstate"); 00266 00267 // ... same for marked states 00268 00269 idx_tmp = g1.InsMarkedState(); 00270 idx_tmp = g1.InsMarkedState("newmarkedstate"); 00271 00272 00273 // delete single states from Generator ie stateset and transitionrelation 00274 00275 g1.DelState(idx_tmp); // by index (relatively fast, for algorithms) 00276 g1.DelState("newinitstate"); // by symbolic name, if name assigned 00277 00278 // delete a bunch of states 00279 // (this should be more efficient than deleting states individually) 00280 00281 StateSet stateset1; 00282 stateset1.Insert(1); 00283 stateset1.Insert(2); 00284 stateset1.Insert(3); 00285 g1.DelStates(stateset1); 00286 00287 // for further proceeding we insert some new states and events... 00288 00289 Idx idx_s10 = g1.InsState("s10"); 00290 Idx idx_s11 = g1.InsState("s11"); 00291 Idx idx_s12 = g1.InsState("s12"); 00292 Idx idx_e10 = g1.InsEvent("e10"); 00293 Idx idx_e11 = g1.InsEvent("e11"); 00294 00295 // set a state that already exists in Generator as initial state 00296 00297 g1.SetInitState(idx_s10); 00298 00299 // set a state that already exists in Generator as marked state 00300 00301 g1.SetMarkedState(idx_s11); 00302 00303 // unset an existing state as initial state (does not remove from mStates) 00304 00305 g1.ClrInitState(idx_s10); 00306 00307 // unset an existing state as marked state (does not remove from stateset) 00308 00309 g1.ClrMarkedState(idx_s10); 00310 00311 // clear all initial states (does not remove from stateset) 00312 00313 // g1.ClrInitStates(); // we do not really do it here, so it's commented 00314 00315 // clear all marked states (mStates stays untouched) 00316 00317 // g1.ClrMarkedStates(); // we do not really do it here, so it's commented 00318 00319 // set a transition for existing states and events 00320 00321 g1.SetTransition(idx_s10, idx_e10, idx_s11); // by indices 00322 g1.SetTransition("s10", "e11", "s10"); // by symbolic names (slow) 00323 00324 00325 // report back to console 00326 00327 std::cout << "################################\n"; 00328 std::cout << "# tutorial, on the way ... \n"; 00329 g1.Write(); 00330 std::cout << "################################\n"; 00331 00332 00333 // clear a transition (does not touch mStates, mInitStates and mMarkedStates) 00334 00335 g1.ClrTransition(idx_s10, idx_e10, idx_s11); // by index 00336 00337 // transitions can also be cleared by names (slower) or by an assigned 00338 // TransSet::Iterator (faster); use ClearTransRel() to remove all transitions 00339 00340 00341 // clear the symbolic name for a state in the StateSymbolTable 00342 00343 g1.ClrStateName(idx_s10); 00344 00345 // exists event index/name in mAlphabet? 00346 00347 bool bool_eventexists1 = g1.ExistsEvent("e11"); 00348 bool bool_eventexists2 = g1.ExistsEvent(2); 00349 00350 00351 // exists state in mStates? 00352 00353 bool bool_stateexists1 = g1.ExistsState(4); 00354 00355 00356 // check if a state is an initial state 00357 00358 bool bool_initstateexists = g1.ExistsInitState(4); 00359 00360 // check if a state is a marked state 00361 00362 bool bool_ismarkedstate = g1.ExistsMarkedState(4); 00363 00364 // look up event name for index in the EventSymbolTable of the event domain 00365 00366 std::string str_eventname1 = g1.EventName(1); 00367 00368 // look up event index for name in the EventSymbolTable of the event domain 00369 00370 Idx idx_eventindex = g1.EventIndex("e11"); 00371 00372 // get symbolic name assigned to state (returns "" if no name assigned). 00373 00374 std::string str_tmp = g1.StateName(idx_s10); 00375 00376 // get index for symbolic state name. only possible for state names of states in 00377 // the Generator 00378 00379 idx_tmp = g1.StateIndex("s12"); 00380 00381 // clear Generator (including alphabet) 00382 00383 g4.Clear(); 00384 00385 // get the number of events in the Generator's alphabet 00386 00387 Idx idx_eventnum = g1.AlphabetSize(); 00388 00389 // get the number of states 00390 00391 Idx idx_statenum = g1.Size(); 00392 00393 // get the number of transitions 00394 00395 Idx idx_transnum = g1.TransRelSize(); 00396 00397 // there also are InitStatesSize(), MarkedStatesSize() 00398 00399 // is the alphabet of the Generator empty? 00400 00401 bool bool_alphempty = g1.AlphabetEmpty(); 00402 00403 // is the Generator empty (number of states == 0) ? 00404 00405 bool bool_isempty = g1.Empty(); 00406 00407 // see also TransRelEmpty, InitStatesEmpty, MarkedStatesEmpty 00408 00409 00410 // insert a small loop 00411 00412 Idx initstate = g1.InsInitState("in"); 00413 Idx markedstate = g1.InsMarkedState("out"); 00414 g1.SetTransition("in","a","out"); 00415 g1.SetTransition("out","a","in"); 00416 00417 00418 // show effect on console 00419 00420 std::cout << "################################\n"; 00421 std::cout << "# tutorial, after ins and del \n"; 00422 g1.DWrite(); 00423 std::cout << "################################\n"; 00424 00425 // record test case 00426 FAUDES_TEST_DUMP("g1, edited", g1); 00427 00428 /////////////////////// 00429 // Iterators 00430 /////////////////////// 00431 00432 // since the core members are all implemented as sets, iterators 00433 // effectively are const_iterators, i.e. you cannot change the 00434 // current value of an iterator. instead you may remove the value 00435 // and insert the new value. 00436 00437 // iteration over alphabet indices (member "mAlphabet") 00438 00439 std::cout << "################################\n"; 00440 std::cout << "# tutorial, iterators 1 \n"; 00441 EventSet::Iterator eit; 00442 for (eit = g1.AlphabetBegin(); eit != g1.AlphabetEnd(); ++eit) { 00443 std::cout << "event \"" << g1.EventName(*eit) << "\" with index "<< *eit << std::endl; 00444 } 00445 std::cout << "################################\n"; 00446 00447 // iteration over state indices (member "mStates") 00448 00449 std::cout << "################################\n"; 00450 std::cout << "# tutorial, iterators 2 \n"; 00451 StateSet::Iterator sit; 00452 for (sit = g1.StatesBegin(); sit != g1.StatesEnd(); ++sit) { 00453 std::cout << *sit << std::endl; 00454 } 00455 std::cout << "################################\n"; 00456 00457 // iteration over complete transition relation (member "mTransRel") 00458 00459 std::cout << "################################\n"; 00460 std::cout << "# tutorial, iterators 3 \n"; 00461 TransSet::Iterator tit; 00462 for (tit = g1.TransRelBegin(); tit != g1.TransRelEnd(); ++tit) { 00463 std::cout << g1.TStr(*tit) << std::endl; 00464 } 00465 std::cout << "################################\n"; 00466 00467 // iteration over transitions from a given state; note that we avoid 00468 // computation of the end of the iteration in every step 00469 00470 std::cout << "################################\n"; 00471 std::cout << "# tutorial, iterators 4 \n"; 00472 idx_tmp = g1.StateIndex("s1"); 00473 TransSet::Iterator tit_end; 00474 tit = g1.TransRelBegin(idx_tmp); 00475 tit_end = g1.TransRelEnd(idx_tmp); 00476 for (; tit != tit_end; ++tit) { 00477 std::cout << g1.TStr(*tit) << std::endl; 00478 } 00479 std::cout << "################################\n"; 00480 00481 // variations: transitions of given state index + given event index: 00482 // TransRelBegin(x1, ev) - TransRelEnd(x1, ev) 00483 00484 // iteration over initial and marked states: 00485 // InitStatesBegin() - InitStatesEnd() (member "mInitStates") 00486 // MarkedStatesBegin() - MarkedStatesEnd() (member "mMarkedStates") 00487 00488 00489 //////////////////////////////////////////////////////////// 00490 // retrieve copies of the Generator's transition releation 00491 // in different sorting orders than X1 -> Ev -> X2 00492 //////////////////////////////////////////////////////////// 00493 00494 // note: the availabity of iterator ranges depends on the sorting order; 00495 // eg iteration with specified x2 requires X2->Ev->X1 or X2->X1->Ev sorting. 00496 00497 // retrieve a copy that is sorted by X2 -> Ev -> X1 by the binary 00498 // predicate TransSort::X2EvX1. 00499 00500 TransSetX2EvX1 tset_x2evx1; 00501 g1.TransRel(tset_x2evx1); 00502 00503 // report to console 00504 00505 std::cout << "################################\n"; 00506 std::cout << "# tutorial, x2-ev-x1 sorting\n"; 00507 TransSetX2EvX1::Iterator tit2; 00508 for (tit2 = tset_x2evx1.Begin(); tit2 != tset_x2evx1.End(); ++tit2) { 00509 std::cout << g1.TStr(*tit2) << std::endl; 00510 } 00511 std::cout << "################################\n"; 00512 00513 00514 00515 //////////////////////// 00516 // Convenience Methods 00517 //////////////////////// 00518 00519 // remove all events from mAlphabet, that do not have a transition in 00520 // mTransRel: g1.MinimizeAlphabet() 00521 00522 // get an EventSet containing all the events that drive some transition 00523 00524 EventSet eset_usedevents = g1.UsedEvents(); 00525 00526 // get an EventSet containing all the events that do not drive any transition 00527 00528 EventSet eset_unusedevents = g1.UnusedEvents(); 00529 00530 // return the active event set at a given state 00531 00532 EventSet eset_activeeventset = g1.ActiveEventSet(idx_s12); 00533 00534 // return a StateSet containing all the states that are connected by 00535 // some transition 00536 00537 StateSet sset_trel_sspace = g1.TransRelStateSpace(); 00538 00539 // return a StateSet containing all the successor states of a given predecessor 00540 // state. 00541 00542 StateSet sset_successors = g1.TransRelStateSpace(idx_s12); 00543 00544 // note: if you need predecessor states, use a resorted transition relation 00545 00546 ///////////////////////////////// 00547 // Symbolic state name handling 00548 ///////////////////////////////// 00549 00550 // are symbolic state names enabled? depending on this boolean value 00551 // library functions like Determine or StateMin may create symbolic 00552 // state names automatically 00553 00554 bool bool_statenamesenabled = g1.StateNamesEnabled(); 00555 00556 // disable state name creation in resulting generators for functions in 00557 // the faudes library, that support this feature (nearly all) with 00558 // "false"; enable state name creation with "true". 00559 00560 g1.StateNamesEnabled(true); // anyway .. true is the default value 00561 00562 // clear existing symbolic statenames for states in the Generator 00563 00564 // g1.ClearStateNames(); 00565 00566 // set symbolic names for all states in the generator. the symbolic name becomes 00567 // the equivalent string representation of the state's integer index. This is 00568 // only usefull for debugging purposes. 00569 00570 g1.SetDefaultStateNames(); 00571 00572 00573 // show effect on console 00574 00575 std::cout << "################################\n"; 00576 std::cout << "# tutorial, default names \n"; 00577 g1.Write(); 00578 std::cout << "################################\n"; 00579 00580 00581 /////////////////////////////////// 00582 // Accessible, Coaccessible, Complete, Trim 00583 /////////////////////////////////// 00584 00585 // read example generator for reachability analysis 00586 Generator greach("data/trimness_nottrim.gen"); 00587 00588 std::cout << "################################\n"; 00589 std::cout << "# tutorial, reachability test case \n"; 00590 greach.Write(); 00591 std::cout << "# tutorial, reachability relevant sets \n"; 00592 StateSet astates = greach.AccessibleSet(); 00593 StateSet cstates = greach.CoaccessibleSet(); 00594 StateSet tstates = greach.TerminalStates(); 00595 astates.Write(); 00596 cstates.Write(); 00597 tstates.Write(); 00598 std::cout << "# tutorial, reachability analysis \n"; 00599 bool isacc = greach.IsAccessible(); 00600 if(isacc) 00601 std::cout << "accesibility: ok [error]\n"; 00602 else 00603 std::cout << "accesibility: failed [expected]\n"; 00604 bool iscoacc = greach.IsCoaccessible(); 00605 if(iscoacc) 00606 std::cout << "coaccesibility: ok [error]\n"; 00607 else 00608 std::cout << "coaccesibility: failed [expected]\n"; 00609 bool iscompl = greach.IsComplete(); 00610 if(iscompl) 00611 std::cout << "completeness: ok [error]\n"; 00612 else 00613 std::cout << "completeness: failed [expected]\n"; 00614 bool istrim = greach.IsTrim(); 00615 if(istrim) 00616 std::cout << "trimness: ok [error]\n"; 00617 else 00618 std::cout << "trimness: failed [expected]\n"; 00619 bool isotrim = greach.IsOmegaTrim(); 00620 if(isotrim) 00621 std::cout << "w-trimness: ok [error]\n"; 00622 else 00623 std::cout << "w-trimness: failed [expected]\n"; 00624 std::cout << "################################\n"; 00625 00626 // record test case 00627 FAUDES_TEST_DUMP("acc",astates); 00628 FAUDES_TEST_DUMP("coacc",cstates); 00629 FAUDES_TEST_DUMP("term",tstates); 00630 00631 // Make the Generator accessible by removing transitions and states. 00632 // The routine returns true if the generator has an initial state. 00633 Generator gaccess(greach); 00634 gaccess.Name("GAccessible"); 00635 bool bool_hasinit = gaccess.Accessible(); 00636 00637 // Make the Generator coaccessible by removing transitions and states. 00638 // The routine returns true if the generator has a marked state. 00639 Generator gcoaccess(greach); 00640 gcoaccess.Name("GCoccessible"); 00641 bool bool_hasmarked = gcoaccess.Coaccessible(); 00642 00643 // Make the Generator complete by removing transitions and states. 00644 // The routine returns true if the generator has an initial state. 00645 Generator gcompl(greach); 00646 gcompl.Name("GComplete"); 00647 gcompl.Complete(); 00648 00649 // Make the Generator trim by removing transitions and states. 00650 // The routine returns true if the generator has an initial state 00651 // and a marked state. 00652 Generator gtrim(greach); 00653 gtrim.Name("GTrim"); 00654 bool bool_isnontrivial = gtrim.Trim(); 00655 00656 // Make the Generator omega-trim by removing transitions and states. 00657 // The routine returns true if the generator has an initial state 00658 // and a marked state. 00659 Generator gotrim(greach); 00660 gotrim.Name("GOmegaTrim"); 00661 gotrim.OmegaTrim(); 00662 00663 // show effect on console 00664 std::cout << "################################\n"; 00665 std::cout << "# tutorial, reachability results \n"; 00666 gaccess.Write(); 00667 gcoaccess.Write(); 00668 gcompl.Write(); 00669 gtrim.Write(); 00670 gotrim.Write(); 00671 std::cout << "################################\n"; 00672 00673 // contribute to html docu 00674 greach.Write("tmp_greach.gen"); 00675 gaccess.Write("tmp_gaccess.gen"); 00676 gcoaccess.Write("tmp_gcoaccess.gen"); 00677 gcompl.Write("tmp_gcompl.gen"); 00678 gtrim.Write("tmp_gtrim.gen"); 00679 gotrim.Write("tmp_gotrim.gen"); 00680 00681 // Test protocol 00682 FAUDES_TEST_DUMP("accessible",gaccess); 00683 FAUDES_TEST_DUMP("coaccessible",gcoaccess); 00684 FAUDES_TEST_DUMP("complete",gcompl); 00685 FAUDES_TEST_DUMP("trim",gtrim); 00686 FAUDES_TEST_DUMP("omega trim",gotrim); 00687 00688 00689 /////////////////////////////////// 00690 // Test case eveluation 00691 /////////////////////////////////// 00692 FAUDES_TEST_DIFF(); 00693 00694 return 0; 00695 } 00696 00697 00698 |
libFAUDES 2.22k --- 2013.04.02 --- c++ source docu by doxygen