About
User Reference
C++ API
luafaudes
Developer
Links
libFAUDES online
libFAUDES

Sections

Index

1_generator.cpp

Go to the documentation of this file.
00001 /** @file 1_generator.cpp 
00002 
00003 Tutorial, Generator methods. 
00004 
00005 The Generator class implements the 5-tuple automaton G, consisting of
00006 - Set of States Q, 
00007 - Alphabet Sigma, 
00008 - Transition Relation Delta,
00009 - Set of Initial States Qo, and
00010 - Set of Marked States Qm.
00011 
00012 This tutorial demonstrates how to insert/erase states, events and transitions. 
00013 It also demonstrates file IO.
00014 
00015 @ingroup Tutorials 
00016 
00017 @include 1_generator.cpp
00018 */
00019 
00020 
00021 #include "libfaudes.h"
00022 
00023 // make faudes namespace available
00024 using namespace faudes;
00025 
00026 
00027 
00028 /////////////////
00029 // main program
00030 /////////////////
00031 
00032 int main() {
00033 
00034   ////////////////////////////////////////////
00035   // Constructors (part 1) and filling example
00036   ////////////////////////////////////////////
00037 
00038   // at first we create an empty Generator object
00039 
00040   Generator g1;
00041 
00042   // do some random "user interaction" stuff with the Generator g1
00043 
00044   g1.InsState("s1");  
00045   g1.InsState("s2");                  
00046   g1.InsState("s3");                  
00047 
00048   g1.InsEvent("a");         
00049   g1.InsEvent("b");
00050 
00051   g1.SetTransition("s1", "a", "s2");  
00052   g1.SetTransition("s2", "a", "s3");  
00053   g1.SetTransition("s3", "b", "s1");
00054 
00055   g1.SetInitState("s1");              
00056   g1.SetMarkedState("s2");
00057   g1.SetMarkedState("s3");
00058 
00059   // inspect result on console
00060 
00061   std::cout << "################################\n";
00062   std::cout << "# tutorial, handcraft generator \n";
00063   g1.Write();
00064   std::cout << "################################\n";
00065 
00066   // record test case
00067   FAUDES_TEST_DUMP("g1", g1); 
00068 
00069 
00070 
00071   ///////////////////////////////////////////////////
00072   // Constructors (part 2) & Copying and versioning
00073   ///////////////////////////////////////////////////
00074 
00075   // Create a  1:1 copy of the Generator with the copy constructor ... 
00076 
00077   Generator g_copy(g1);
00078 
00079   // ... with assignment method, or assignement operator
00080 
00081   Generator g2;
00082   g2.Assign(g1);
00083   Generator g3=g2;
00084 
00085   // create a Generator copy with versioned events (for testing algorithms):
00086   // versioning by an integer. E.g. for integer 3 events {"a", "b", "c"}
00087   // become {"a_3", "b_3", "c_3"}.
00088 
00089   Generator version1;
00090   g3.Version(3, version1);
00091 
00092   // versioning by a string. "a" -> "a_versionstring"
00093 
00094   Generator version2;
00095   g3.Version("str", version2);
00096 
00097   // inspect result on console
00098 
00099   std::cout << "################################\n";
00100   std::cout << "# tutorial, version of generator \n";
00101   version2.Write();
00102   std::cout << "################################\n";
00103 
00104   // record test case
00105   FAUDES_TEST_DUMP("generator", version1); 
00106 
00107 
00108   ///////////////////////////////////////////////
00109   // Methods for Input/Output
00110   ///////////////////////////////////////////////
00111 
00112   // read a Generator from file 
00113 
00114   g2.Read("data/simplemachine.gen");
00115 
00116   // create a Generator by reading a Generator file
00117 
00118   Generator g4("data/simplemachine.gen");
00119 
00120 
00121   // write a Generator to file 
00122 
00123   g4.Write("tmp_simplemachine.gen");
00124 
00125   // write a Generator to file with re-indexed states
00126   
00127   g4.ReindexOnWrite(true);
00128   g4.Write("tmp_simplemachine_ridx.gen");
00129 
00130   // read back files (testing token io)
00131   g4.Read("tmp_simplemachine.gen");
00132   g4.Read("tmp_simplemachine_ridx.gen");
00133 
00134   // debug output of Generator to console 
00135 
00136   std::cout << "################################\n";
00137   std::cout << "# tutorial, debug dump \n";
00138   g4.DWrite();
00139   std::cout << "################################\n";
00140 
00141   // create dotfile for further processing by graphviz 
00142   // (map state indices to begin with 1)
00143 
00144   g4.DotWrite("tmp_simplemachine.dot"); 
00145   g4.DDotWrite("tmp_simplemachine_debug.dot");
00146 
00147   // there also is a convenience method, that runs graphviz to
00148   // generate graphical output; requires  "dot" binary in $PATH
00149   try {
00150     g4.GraphWrite("tmp_simplemachin.png");
00151   } catch(faudes::Exception& exception) {
00152     std::cout << "1_generator: cannot execute graphviz' dot. " << std::endl;
00153   } 
00154 
00155 
00156   // create a debug string for an event with symbolic name + index
00157 
00158   std::string str_singleevent = g1.EStr(2);
00159 
00160   // create a debug string for a state with symbolic name + index.
00161   // If there is no symblic name, a symbolic name of the index is constructed.
00162 
00163   std::string str_singlestate = g1.SStr(3);
00164 
00165   // build string of events in the Generator's alphabet
00166 
00167   std::string str_alph =  g1.AlphabetToString();
00168 
00169   // build string of states in the Generator's set of states
00170   std::string str_states = g1.StatesToString();
00171 
00172   // there also are TransRelToString(), InitStatesToString() and  MarkedStatesToString()  
00173 
00174 
00175   //////////////////////////////////////
00176   // Accessing the Generator's Members
00177   //////////////////////////////////////
00178 
00179   // get the Generator's name
00180 
00181   std::string str_name = g1.Name();
00182 
00183   // set new name for Generator
00184 
00185   g1.Name("NewName");
00186 
00187 
00188 
00189   // the core members alphabet, stateset and transitionrelation may be retrieved 
00190   // as const references; ie. they can be inspected freely, but write access is 
00191   // exclusively via the provided Generator methods.
00192 
00193   // retrieve a const reference to and copy of the Generator's alphabet
00194 
00195   const EventSet&  eset_ref_alph  = g1.Alphabet();
00196   EventSet         eset_copy_alph = g1.Alphabet();
00197 
00198   // you cannot alter the alphabet of a generator via an  alphabet method
00199   // eset_ref_alph.Insert("new_event");  // compile time error!
00200 
00201   // however, the copy can be altered, but with no effect on the original generator
00202 
00203   eset_copy_alph.Insert("new_event"); 
00204   if(g1.ExistsEvent("new_event")) std::cout << "### THIS CANNOT HAPPEN ###";
00205 
00206   // retrieve a const reference to and copy of the Generator's set of states "mStates"
00207 
00208   const StateSet& sset_ref_states = g1.States();
00209   StateSet sset_copy_states = g1.States();
00210 
00211   // retrieve a const reference to and a copy of the Generator's transition relation "mTransRel"
00212 
00213   const TransSet& tset_ref_trel = g1.TransRel();
00214   TransSet tset_copy_trel = g1.TransRel();
00215 
00216   // same with initial states and marked states
00217 
00218   const StateSet& sset_ref_istates = g1.InitStates();
00219   StateSet sset_copy_istates = g1.InitStates();
00220 
00221   const StateSet& sset_ref_mstates = g1.MarkedStates();
00222   StateSet sset_copy_mstates = g1.MarkedStates();
00223 
00224 
00225 
00226   //////////////////////////////////////////////////////////////////////////////
00227   // Modifying the 5-tuple Generator (X, Sigma, Delta, X0 and Xm)
00228   //////////////////////////////////////////////////////////////////////////////
00229 
00230   // insert an event by it's symbolic name in the alphabet
00231   // (if the event is not known so far, a new index for the symbolic name is generated) 
00232   g1.InsEvent("newevent");
00233 
00234 
00235   // insert an existing event into the Generator's alphabet (mAlphabet)
00236   // (by "existing event" we refer to an event that has been previously inserted to some Generator)
00237 
00238   g1.InsEvent(1);   // of course index 1 is already in the alphabet here...
00239 
00240   // insert a bunch of events (EventSet) and get the integer index if requested
00241 
00242   EventSet eset1;
00243   eset1.Insert("newevent1");
00244   Idx idx_tmp = eset1.Insert("newevent2");
00245   g1.InsEvents(eset1);
00246 
00247   // delete an event from Generator ie delete from alphabet and transition relation
00248 
00249   g1.DelEvent("newevent1"); // by symbolic name
00250   g1.DelEvent(idx_tmp);     // by index
00251 
00252   // delete a bunch of events
00253   // g1.DelEvents(eset1); // .. of course we have already deleted them before...
00254 
00255   // insert a new state. The state gets a integer index that is unique within
00256   // the Generator
00257 
00258   idx_tmp = g1.InsState();            // anonymous state
00259   idx_tmp = g1.InsState("newstate2"); // named state
00260   idx_tmp = g1.InsState("77"); // named state
00261 
00262   // insert a new state as initial state
00263 
00264   idx_tmp = g1.InsInitState();
00265   idx_tmp = g1.InsInitState("newinitstate");
00266 
00267   // ... same for marked states
00268 
00269   idx_tmp = g1.InsMarkedState();
00270   idx_tmp = g1.InsMarkedState("newmarkedstate");
00271 
00272 
00273   // delete single states from Generator ie stateset and transitionrelation
00274 
00275   g1.DelState(idx_tmp); // by index (relatively fast, for algorithms)
00276   g1.DelState("newinitstate"); // by symbolic name, if name assigned
00277 
00278   // delete a bunch of states 
00279   // (this should be more efficient than deleting states individually)
00280 
00281   StateSet stateset1;
00282   stateset1.Insert(1);
00283   stateset1.Insert(2);
00284   stateset1.Insert(3);
00285   g1.DelStates(stateset1);
00286 
00287   // for further proceeding we insert some new states and events...
00288 
00289   Idx idx_s10 = g1.InsState("s10");
00290   Idx idx_s11 = g1.InsState("s11");
00291   Idx idx_s12 = g1.InsState("s12");
00292   Idx idx_e10 = g1.InsEvent("e10");
00293   Idx idx_e11 = g1.InsEvent("e11");
00294 
00295   // set a state that already exists in Generator as initial state
00296 
00297   g1.SetInitState(idx_s10);
00298 
00299   // set a state that already exists in Generator as marked state
00300 
00301   g1.SetMarkedState(idx_s11);
00302 
00303   // unset an existing state as initial state (does not remove from mStates)
00304 
00305   g1.ClrInitState(idx_s10); 
00306 
00307   // unset an existing state as marked state (does not remove from stateset)
00308 
00309   g1.ClrMarkedState(idx_s10); 
00310 
00311   // clear all initial states (does not remove from stateset)
00312 
00313   //   g1.ClrInitStates();  // we do not really do it here, so it's commented
00314 
00315   // clear all marked states (mStates stays untouched)
00316 
00317   //   g1.ClrMarkedStates();  // we do not really do it here, so it's commented
00318 
00319   // set a transition for existing states and events
00320 
00321   g1.SetTransition(idx_s10, idx_e10, idx_s11); // by indices
00322   g1.SetTransition("s10", "e11", "s10"); // by symbolic names (slow)
00323 
00324 
00325   // report back to console
00326 
00327   std::cout << "################################\n";
00328   std::cout << "# tutorial, on the way ... \n";
00329   g1.Write();
00330   std::cout << "################################\n";
00331 
00332 
00333   // clear a transition (does not touch mStates, mInitStates and mMarkedStates)
00334 
00335   g1.ClrTransition(idx_s10, idx_e10, idx_s11); // by index
00336 
00337   // transitions can also be cleared by names (slower) or by an assigned
00338   // TransSet::Iterator (faster); use ClearTransRel() to remove all transitions
00339 
00340 
00341   // clear the symbolic name for a state in the StateSymbolTable
00342 
00343   g1.ClrStateName(idx_s10); 
00344 
00345   // exists event index/name in mAlphabet?
00346 
00347   bool bool_eventexists1 = g1.ExistsEvent("e11"); 
00348   bool bool_eventexists2 = g1.ExistsEvent(2); 
00349 
00350 
00351   // exists state in mStates?
00352 
00353   bool bool_stateexists1 = g1.ExistsState(4); 
00354 
00355 
00356   // check if a state is an initial state
00357 
00358   bool bool_initstateexists = g1.ExistsInitState(4); 
00359 
00360   // check if a state is a marked state
00361 
00362   bool bool_ismarkedstate = g1.ExistsMarkedState(4); 
00363 
00364   // look up event name for index in the EventSymbolTable of the event domain
00365 
00366   std::string str_eventname1 = g1.EventName(1);
00367 
00368   // look up event index for name in the EventSymbolTable of the event domain
00369 
00370   Idx idx_eventindex = g1.EventIndex("e11");
00371 
00372   // get symbolic name assigned to state (returns "" if no name assigned).
00373 
00374   std::string str_tmp = g1.StateName(idx_s10);
00375 
00376   // get index for symbolic state name. only possible for state names of states in
00377   // the Generator 
00378 
00379   idx_tmp = g1.StateIndex("s12");
00380 
00381   // clear Generator (including alphabet)
00382 
00383   g4.Clear();
00384 
00385   // get the number of events in the Generator's alphabet
00386 
00387   Idx idx_eventnum = g1.AlphabetSize();
00388 
00389   // get the number of states
00390 
00391   Idx idx_statenum = g1.Size();
00392 
00393   // get the number of transitions
00394 
00395   Idx idx_transnum = g1.TransRelSize();
00396 
00397   // there also are InitStatesSize(), MarkedStatesSize()
00398 
00399   // is the alphabet of the Generator empty?
00400 
00401   bool bool_alphempty = g1.AlphabetEmpty();
00402 
00403   // is the Generator empty (number of states == 0) ?
00404 
00405   bool bool_isempty = g1.Empty();
00406 
00407   // see also TransRelEmpty, InitStatesEmpty, MarkedStatesEmpty
00408 
00409 
00410   // insert a small loop 
00411 
00412   Idx initstate = g1.InsInitState("in");
00413   Idx markedstate = g1.InsMarkedState("out");
00414   g1.SetTransition("in","a","out");
00415   g1.SetTransition("out","a","in");
00416 
00417 
00418   // show effect on console 
00419 
00420   std::cout << "################################\n";
00421   std::cout << "# tutorial, after ins and del \n";
00422   g1.DWrite();
00423   std::cout << "################################\n";
00424 
00425   // record test case
00426   FAUDES_TEST_DUMP("g1, edited", g1); 
00427 
00428   ///////////////////////
00429   // Iterators
00430   ///////////////////////
00431 
00432   // since the core members are all implemented as sets, iterators
00433   // effectively are const_iterators, i.e. you cannot change the 
00434   // current value of an iterator. instead you may remove the value 
00435   // and insert the new value.
00436 
00437   // iteration over alphabet indices (member "mAlphabet")
00438 
00439   std::cout << "################################\n";
00440   std::cout << "# tutorial, iterators 1         \n";
00441   EventSet::Iterator eit;
00442   for (eit = g1.AlphabetBegin(); eit != g1.AlphabetEnd(); ++eit) {
00443     std::cout << "event \"" << g1.EventName(*eit) << "\" with index "<< *eit << std::endl;
00444   }
00445   std::cout << "################################\n";
00446 
00447   // iteration over state indices (member "mStates")
00448 
00449   std::cout << "################################\n";
00450   std::cout << "# tutorial, iterators 2         \n";
00451   StateSet::Iterator sit;
00452   for (sit = g1.StatesBegin(); sit != g1.StatesEnd(); ++sit) {
00453     std::cout << *sit << std::endl;
00454   }
00455   std::cout << "################################\n";
00456 
00457   // iteration over complete transition relation (member "mTransRel")
00458 
00459   std::cout << "################################\n";
00460   std::cout << "# tutorial, iterators 3         \n";
00461   TransSet::Iterator tit;
00462   for (tit = g1.TransRelBegin(); tit != g1.TransRelEnd(); ++tit) {
00463     std::cout << g1.TStr(*tit) << std::endl;
00464   }
00465   std::cout << "################################\n";
00466 
00467   // iteration over transitions from a given state; note that we avoid
00468   // computation of the end of the iteration in every step
00469 
00470   std::cout << "################################\n";
00471   std::cout << "# tutorial, iterators 4         \n";
00472   idx_tmp = g1.StateIndex("s1");
00473   TransSet::Iterator tit_end;
00474   tit = g1.TransRelBegin(idx_tmp);
00475   tit_end = g1.TransRelEnd(idx_tmp);
00476   for (; tit != tit_end; ++tit) {
00477     std::cout << g1.TStr(*tit) << std::endl;
00478   }
00479   std::cout << "################################\n";
00480 
00481   // variations: transitions of given state index + given event index:
00482   // TransRelBegin(x1, ev) - TransRelEnd(x1, ev)
00483 
00484   // iteration over initial and marked states:
00485   // InitStatesBegin() - InitStatesEnd()  (member "mInitStates")
00486   // MarkedStatesBegin() - MarkedStatesEnd() (member "mMarkedStates")
00487 
00488 
00489   ////////////////////////////////////////////////////////////
00490   // retrieve copies of the Generator's transition releation
00491   // in different sorting orders than X1 -> Ev -> X2
00492   ////////////////////////////////////////////////////////////
00493 
00494   // note: the availabity of iterator ranges depends on the sorting order;
00495   // eg iteration with specified x2 requires X2->Ev->X1 or X2->X1->Ev sorting.
00496 
00497   // retrieve a copy that is sorted by X2 -> Ev -> X1 by the binary
00498   // predicate TransSort::X2EvX1. 
00499   
00500   TransSetX2EvX1 tset_x2evx1;
00501   g1.TransRel(tset_x2evx1);
00502 
00503   // report to console
00504 
00505   std::cout << "################################\n";
00506   std::cout << "# tutorial, x2-ev-x1 sorting\n";
00507   TransSetX2EvX1::Iterator tit2;
00508   for (tit2 = tset_x2evx1.Begin(); tit2 != tset_x2evx1.End(); ++tit2) {
00509     std::cout << g1.TStr(*tit2) << std::endl;
00510   }
00511   std::cout << "################################\n";
00512 
00513 
00514 
00515   ////////////////////////
00516   // Convenience Methods
00517   ////////////////////////
00518 
00519   // remove all events from mAlphabet, that do not have a transition in
00520   // mTransRel:  g1.MinimizeAlphabet()
00521 
00522   // get an EventSet containing all the events that drive some transition 
00523 
00524   EventSet eset_usedevents = g1.UsedEvents();
00525 
00526   // get an EventSet containing all the events that do not drive any transition
00527 
00528   EventSet eset_unusedevents = g1.UnusedEvents();
00529 
00530   // return the active event set at a given state 
00531 
00532   EventSet eset_activeeventset = g1.ActiveEventSet(idx_s12);
00533 
00534   // return a StateSet containing all the states that are connected by
00535   // some transition 
00536 
00537   StateSet sset_trel_sspace = g1.TransRelStateSpace();
00538 
00539   // return a StateSet containing all the successor states of a given predecessor
00540   // state.
00541 
00542   StateSet sset_successors = g1.TransRelStateSpace(idx_s12);
00543 
00544   // note: if you need predecessor states, use a resorted transition relation
00545 
00546   /////////////////////////////////
00547   // Symbolic state name handling
00548   /////////////////////////////////
00549 
00550   // are symbolic state names enabled? depending on this boolean value
00551   // library functions like Determine or StateMin may create symbolic
00552   // state names automatically
00553 
00554   bool bool_statenamesenabled = g1.StateNamesEnabled();
00555 
00556   // disable state name creation in resulting generators for functions in
00557   // the faudes library, that support this feature (nearly all) with
00558   // "false"; enable state name creation with "true".
00559 
00560   g1.StateNamesEnabled(true); // anyway .. true is the default value
00561 
00562   // clear existing symbolic statenames for states in the Generator
00563 
00564   // g1.ClearStateNames(); 
00565 
00566   // set symbolic names for all states in the generator. the symbolic name becomes
00567   // the equivalent string representation of the state's integer index. This is
00568   // only usefull for debugging purposes.
00569 
00570   g1.SetDefaultStateNames();
00571 
00572 
00573   // show effect on console 
00574 
00575   std::cout << "################################\n";
00576   std::cout << "# tutorial, default names \n";
00577   g1.Write();
00578   std::cout << "################################\n";
00579 
00580 
00581   ///////////////////////////////////
00582   // Accessible, Coaccessible, Complete, Trim
00583   ///////////////////////////////////
00584 
00585   // read example generator for reachability analysis
00586   Generator greach("data/trimness_nottrim.gen");
00587 
00588   std::cout << "################################\n";
00589   std::cout << "# tutorial, reachability test case  \n";
00590   greach.Write();
00591   std::cout << "# tutorial, reachability relevant sets \n";
00592   StateSet astates = greach.AccessibleSet();
00593   StateSet cstates = greach.CoaccessibleSet();
00594   StateSet tstates = greach.TerminalStates();
00595   astates.Write();
00596   cstates.Write();
00597   tstates.Write();   
00598   std::cout << "# tutorial, reachability analysis \n";
00599   bool isacc = greach.IsAccessible(); 
00600   if(isacc) 
00601     std::cout << "accesibility: ok [error]\n";
00602   else
00603     std::cout << "accesibility: failed [expected]\n";
00604   bool iscoacc = greach.IsCoaccessible(); 
00605   if(iscoacc) 
00606     std::cout << "coaccesibility: ok [error]\n";
00607   else
00608     std::cout << "coaccesibility: failed [expected]\n";
00609   bool iscompl = greach.IsComplete(); 
00610   if(iscompl) 
00611     std::cout << "completeness: ok [error]\n";
00612   else
00613     std::cout << "completeness: failed [expected]\n";
00614   bool istrim = greach.IsTrim(); 
00615   if(istrim) 
00616     std::cout << "trimness: ok [error]\n";
00617   else
00618     std::cout << "trimness: failed [expected]\n";
00619   bool isotrim = greach.IsOmegaTrim(); 
00620   if(isotrim) 
00621     std::cout << "w-trimness: ok [error]\n";
00622   else
00623     std::cout << "w-trimness: failed [expected]\n";
00624   std::cout << "################################\n";
00625   
00626   // record test case
00627   FAUDES_TEST_DUMP("acc",astates);
00628   FAUDES_TEST_DUMP("coacc",cstates);
00629   FAUDES_TEST_DUMP("term",tstates);
00630 
00631   // Make the Generator accessible by removing transitions and states. 
00632   // The routine returns true if the generator has an initial state.
00633   Generator gaccess(greach);
00634   gaccess.Name("GAccessible");
00635   bool bool_hasinit = gaccess.Accessible();
00636 
00637   // Make the Generator coaccessible by removing transitions and states.
00638   // The routine returns true if the generator has a marked state.
00639   Generator gcoaccess(greach);
00640   gcoaccess.Name("GCoccessible");
00641   bool bool_hasmarked = gcoaccess.Coaccessible();
00642 
00643   // Make the Generator complete by removing transitions and states. 
00644   // The routine returns true if the generator has an initial state.
00645   Generator gcompl(greach);
00646   gcompl.Name("GComplete");
00647   gcompl.Complete();
00648 
00649   // Make the Generator trim by removing transitions and states. 
00650   // The routine returns true if the generator has an initial state
00651   // and a marked state.
00652   Generator gtrim(greach);
00653   gtrim.Name("GTrim");
00654   bool bool_isnontrivial = gtrim.Trim();
00655 
00656   // Make the Generator omega-trim by removing transitions and states. 
00657   // The routine returns true if the generator has an initial state
00658   // and a marked state.
00659   Generator gotrim(greach);
00660   gotrim.Name("GOmegaTrim");
00661   gotrim.OmegaTrim();
00662 
00663   // show effect on console
00664   std::cout << "################################\n";
00665   std::cout << "# tutorial, reachability results \n";
00666   gaccess.Write();
00667   gcoaccess.Write();
00668   gcompl.Write();
00669   gtrim.Write();
00670   gotrim.Write();
00671   std::cout << "################################\n";
00672 
00673   // contribute to html docu
00674   greach.Write("tmp_greach.gen");
00675   gaccess.Write("tmp_gaccess.gen");
00676   gcoaccess.Write("tmp_gcoaccess.gen");
00677   gcompl.Write("tmp_gcompl.gen");
00678   gtrim.Write("tmp_gtrim.gen");
00679   gotrim.Write("tmp_gotrim.gen");
00680 
00681   // Test protocol
00682   FAUDES_TEST_DUMP("accessible",gaccess);
00683   FAUDES_TEST_DUMP("coaccessible",gcoaccess);
00684   FAUDES_TEST_DUMP("complete",gcompl);
00685   FAUDES_TEST_DUMP("trim",gtrim);
00686   FAUDES_TEST_DUMP("omega trim",gotrim);
00687   
00688 
00689   ///////////////////////////////////
00690   // Test case eveluation
00691   ///////////////////////////////////
00692   FAUDES_TEST_DIFF();
00693 
00694   return 0;
00695 }
00696 
00697 
00698 

libFAUDES 2.22k --- 2013.04.02 --- c++ source docu by doxygen