Technical Report

Lehrstruhl fiir Regelungstechnik
Friedrich-Alexander Universitdit Erlangen-Niirnberg
Cauerstrafie 7, D-91058 Erlangen

Supervisory Control and Simulation
of a Bottling Station

Moor/Wittmann/FGDES, 2016-09-12

Abstract: This report addresses an experimental set-up in supervisory control. It
(a) provides documentation for the simulator of a bottling station, including its
discrete-event interface; (b) proposes a discrete-event plant model and a specifi-
cation; (c) outlines a controller synthesis procedure; (d) gives instructions on how
to run the controller with the plant simulation in closed-loop configuration. The
overall set-up was motivated by an in-house benchmark, originally proposed by
Jan Richter, Siemens AG, 2012. Back than it was agreed that the simulator should
be made freely available. The main purpose of this report is to document the
technological set-up and to invite the interested reader to develop and evaluate al-
ternative control strategies. This report is a follow-up on (Wittmann, 2012). It may
receive updatesfimprovements in due course, please contact us for an up-to-date
revision.

Keywords: discrete-event systems, physical plant simulation, closed-loop simu-
lation

1 Physical Plant and Simulation

The plant under consideration consists of a filling system and a transport system in
a configuration shown by Figure[T] In its intended mode of operation, containers
are fed to the plant from the right to pass sensor S1, are then separated by the
separator V, in order to enter the roundabout at sensor S2. The roundabout can be
controlled to progress in 30°-steps and to forward containers to the filling station.
There, containers can be filled with products A and/or B. Using the roundabout

again, containers will be picked up by the conveyor belt and exit the station via
sensor S3. A high-level factory management system places orders for products and
expects acknowledgement when they have been produced.

roundabout R

containers

filling station

Figure 1: physical layout of the bottling station

FGDES provides the software simulation FicPlant to mimique the behaviour
of the bottling station. It is distributed with the faudes_application-package,
freely available atwww.rt.eei.uni-erlangen.de/FGdes/download.html, ei-
ther pre-compiled for Linux, Mac OSX or MS Windows, or, for the case of com-
patibility issues, in source form. Let us know if you experience problems in ob-
taining/running the simulator. To this end, the simulation is started by simple
double-click to show the physical layout of the bottling station. Actuators can be
triggered manually, e.g, clicking the roundabout will progress it by 30°. For the
subsequent controller design, it is instructive to play along and to operate the plant
manually.

Discrete-event interface: textual definition

For the purpose of this report, the bottling station can be adequately modelled as a
discrete-event system, with relevant events defined in textual form by Table m

Table 1: discrete-event interface of the bottling station

Event Documentation

S1,S2, S3 | Sensors to indicate the arrival of a bottle at the respective posi-
tion, i.e., at the separator, at the roundabout and on exit. These
events can be considered as edges on boolean valued signals
associated with the input reading of the respective sensor.

www.rt.eei.uni-erlangen.de/FGdes/download.html

\ The event V triggers an abstract command to let one bottle
pass the entry stopper. The command is considered completed,
when the bottle arrives at the roundabout S2. If no bottle is
present at S1 the command is silently ignored. Likewise, as
long as there is a pending V-command, subsequent V events
are ignored. This behaviour is considered to be implemented
by a low-level software component.

R, r The event R triggers an abstract command to turn the round-
about by 30°, i.e., by one position. Completion is acknowl-
edged by the event r. A corresponding low-level software
component implements R by turnning on the motor of the
roundabout and by waiting for a key-switch to indicate arrival
at the next position. By the design of this software component,
one must not issue another R-command befor completion.
RR This is the same as R-command, but progresses the roundabout
by 90°. Using consistently RR instead of R effectively reduces
the capacity of the roundabout. This is a last resort when
synthesis fails due to exhaustion of computational resources.
AB Abstract commands to fill either product type A or B into the
container at the filling station. The filling command is imple-
mented by a low-level software component which by design
uses half of the container capacity. lLe., to fill a bottle, two
commands are to be issued. The filling station will jam on
filling with no container or with filling above the container
capacity. The filling station will also jam if another filling
process is started befor the most recent filling process is com-
pleted; see also the below events a and b.

a, b, f Acknowledgement of completion of the recent filling process
A and B, resp., or, indication of an error. Here, error does not
refer to the machine being jammed, but to some other unmod-
elled malfunction; e.g., out of supply. In the simulation, the
error will only occur if the user clicks the fail-button. This fea-
ture is meant to investigate fault-tolerant control and is ignored
for the remainder of this report.

In our overall set-up, the bottling station interacts with a factory management
system that places orders, i.e., requests a container being filled by a certain recipe.
Recipes under consideration are “only A”, “only B” or a “mixture of A and B”,
specified as orders P1, P2 and P3, respectively. To this end, the simulator provides
push-buttons for a human operator to place orders. It also logs acknowledgements
for inspection. Events relevant for the factory management system are defined in
textual form by Table[2]

Table 2: discrete-event interface for the factory management

Event Documentation

P1, P2, P3 | High-level product request for the respective product type. In
the simulation, these events are triggered by push-buttons.

Pl High-level event issued by the supervisor to indicate that the
recent product request has been rejected by the supervisor.
Preferably, the supervisor shall not reject product requests un-
less necessary; e.g., due to machine break down.

p1,p2, p3 | High-level events to acknowledge delivery of the respective
product to the factory management. These events are to be
issued by the supervisor when the respective container leaves
the station at S3.

pi High-level event to indicate the delivery of an unspecified
product. Preferably, the supervisor shall not deliver unspec-
ified products unless necessary; e.g., due to machine break
down. This feature is not relevant for the purpose of this re-
port.

Discrete-event interface: access via TCP/IP

In order to form a closed-loop system, the plant simulator FtcPlant exports its
discrete-event interface via the TCP/IP based Simplenet protocol. The latter is
implemented as part of the 1ibFAUDES software library. For basic tests, the library
includes the command-line tool iomonitor to connect to FtcPlant and to monitor
events:

> c¢d ~/FTCNOMINAL
> ~/LIBFAUDES_BIN/iomonitor ftcsuper.dev

Here, ~/FTCNOMINAL is to be substituted by the location of the example data
that comes with the simulator FtcPlant and ~/LIBFAUDES_BIN should point to the
executable iomonitor. [l

The C++ sources of iomonitor (included with 1ibFAUDES) may serve as a
starting point for the development of a controller for the plant at hand. For other
programming languages that provide methods to connect/listen to TCP/IP ports
(e.g. Matlab or Python), a minimal implementation of the Simplenet protocol
really is simple. If you want to go that path, please contact us for further direction-
s/documentation.

'We understand that command-line tools are old-fashioned — but this one is straight forward — if
you are unfamiliar with the command line, consult your local IT-expert for a 5 minutes tutorial.

In the two subsequent sections we propose to design a controller that is repre-
sented by finite automata. For this situation, 1ibFAUDES includes a ready-to-use
software component to interpret finite automata and to synchronise event execution
with the plant simulator FtcPlant; for detailed instructions see Section [Z_f}

2 Transport System

Supervisor control theory, as originally introduced by P.G. Ramadge and W.M. Won-
ham, provides a framework for the design of feed-back controllers that operate

discrete-event systems. From a pragmatic point of view, the framework suggests to

represent plant capabilities and closed-loop requirements by finite automata and to

use this input data for the computation of the controller dynamics that make ends

meet. For a concise and self-contained introduction by the original authors see

(Ramadge and Wonham, [1989). A textbook presentation is available in Chapter 3

of (Cassandras and Lafortunel [2008)).

We start our discussion with the transport system and organise the plant model
by individual components, each referring to one place on the roundabout; i.e.
Place1, Place2, ..., Place? as illustrated by Figure[l]

Feed containers to Place1

The nominal event sequence S1-V-S2 corresponds to a feed to Place1. An S1
event during feed must be recorded for subsequent feed operations. During a feed
operation, the roundabout must not move.

We propose the plant components LFeed and LRaCtrl. The former relates the
events S1, V and S2, while the latter relates R and r; see Figure@

”A r

(=) E,
R

Figure 2: plant components LFeed (left) and LRaCtrl (right)

Likewise, we propose the specification EFeedA to relate S1 and V, and the
specification EFeedB to relate S2, V, R and r; see Figure@

Figure 3: specification components EFeedA (left) and EFeedB (right)

Organise transport from Place1 to Place7

Except for Place1, the individual places do not have sensors. However, when a
container arrives at Place7, the roundabout must not turn until the container has
safely exited the station via S3. Thus, a nearby specification would refer to a
non-existent sensor that indicates when Place7 becomes occupied. To state such
a specification, we introduce the unobservable events o{i}, i = 2, ..., 7, with the
semantics of the non-existing sensors for individual places to become occupied.
More precisely, if the predecessor Place{i—1} is occupied and the roundabout turns,
ofi} is defined to occur just befor the roundabout stops with r. The component that
models the feed to Place{i} is named LPlace{i}, with the special case for LPlace2
where arrival at the predecessor Place1 is reported by the actual sensor S2; see

Figure[4

Figure 4: plant model LPlace(i} for transport to Place{i} (left: i # 2, righti =2)

Since the additional sensor events are declared unobservable, synthesis for par-
tial observation will virtually figure how to keep track and provide us a supervisor
that can be implemented in the absence of the missing sensor information, while it
is perfectly fine to refer to the additional events in the specification.

We can now model the exit sensor S3 by relating 07, R and S3 and specify, that
R must not occur between 07 and S3, i.e., that containers will safely leave Place7
and exit the station. The respective automata LExit and EEXxit are given in Figure 3]
Here, EEXxit specifies that the plant component LEXxit must not attain the dedicated
error state Err, and, hence, we do not need to model its future behaviour (i.e., we
do not need to discuss whether containers that pass Place7 by the roundabout are
dropped or whether they re-appear at S2; neither do we need to be concerned with
how many containers may be on the conveyor belt between Place7 and S3).

We finalise the transport system by the two more specifications given in Fig-

R undefined R

o
(XX

Figure 5: components LEXxit (left) and EEXit (right)

ure [6] ELazy is cosmetic and tracks whether or not the roundabout is empty to
prevent idle rotation. The intention of EProcl is to make the unobservable event
04 visible by the additional observable event X and thereby provide an interface
for the control of the filling station. In principle, there are two possible outcomes
of this approach. If our intuition is right and the supervisor turns out able to track
occupancy of Place4 accurately, the closed loop will actually reach a state that
corresponds to the report state Rep and therefore must enable X to attain a marked
state. Since X is not related to a physical event, we can adjust execution semantics
such that enabling X amounts to executing X. On the other hand, if we got it wrong,
the synthesis procedure will implicitly prevent 04 to avoid blocking. This can be
validated easily.

S2,02-06

$2,02-06

Figure 6: specification components ELazy (left) and EProcl (right)

Controller Synthesis

The example data includes all of the above plant components and specifications
(in 1ibFAUDES file-format with file-names matching the identifiers used in this
report) and the luafaudes-script transport. lua to organise controller synthesis.
The script implements a straightforward monolithical design along the following
stages.

(i) Compute the parallel composition of all plant components to form an over-
all plant model:

LTransport = LFeed || LRaCtrl || LPlace1 || ... || LPlace7 || LExit.

This amounts to 1947 reachable states.

(i) Compute the parallel composition of all specification components to form
an overall specification:

ETransport = EFeedA || EFeedB || EExit || ELazy || EProcl .

This amounts to 44 reachable states.

(iii) Apply inverse projection to the overall alphabet to obtain matching alpha-
bets. For the plant, this amounts to self-looping with the additional event X,
which is regarded controllable for the synthesis procedure. For the specifi-
cation, this amounts to self-looping with all unobservable events except for
04;

(iv) Compute a relatively closed, controllable and observable sublanguage of the
specification. Since all unobservable events are uncontrollable, observabil-
ity matches prefix-normality and we can go for the supremal closed-loop
behaviour; see e.g. (Lin and Wonham| [1988};|Cho and Marcus| [1989)). The
script reports 1520 reachable states and we refer to this result as KTrans-
port.

(v) Project to the observable alphabet to obtain a basis for the implementation
of a supervisor. After state minimisation, the script reports 608 states. This
is the main result of this section and we refer to it as HTransport.

Subsequent design stages for the filling process will refer to the events X to
enable filling, R to prevent progressing the roundabout during filling, and S3 to
issue acknowledgement. Given the marking chosen for our plant model, non-
blocking control requires that a supervisor must not prevent the roundabout from
becoming empty. Thus, an abstraction suitable for the design of non-blocking
supervisors must track whether the roundabout is empty. When considering natural
projections as abstractions, this suggests the minimum high-level alphabet Zy; =
{S2, R, X, S3}. The provided script computes the projection to the latter alphabet.
After state minimisation, the resulting state count amounts to 192. We did not
go through the automaton in detail, however, the state count makes sense. This
result is referred to as HTransAbs. Although well motivated by intuition, it remains
the question whether there is a formal guarantee that any supervisor designed for
HTransAbs will be applicable to the actual plant HTransport. For the example at
hand, this guarantee is provided by a test proposed in (Moor, 2014). Alternatively,
one could add S1 to the high-level alphabet to obtain a so called natural observer;
see Wong and Wonham| (1996)). The latter abstraction exhibits a state count of 384,
effectively encoding one additional place for transit from S1 to S2.

3 Filling System and Factory Management

For the filling process we begin with a model to relate the events A, B, a and b;
see the plant component LProc in Figure[7} Neither of the four events is related
to the transport system, and, hence, the plant component LProc can be shuffle-
composed with the abstract closed-loop model HTransAbs to extend the overall-
plant accordingly.

To ask for a supervisor that coordinates transport, product types and filling, we
introduce the two specifications EProcA and EProcB; see again Figure [/l Here,
specification EProcA prevents the roundabout to start while filling is in progress.
Each one of the three recipes is enabled by the newly introduced high-level events
D1, D2 and D3, which are used to interface the process with the factory manage-
ment. As with the interface event X from the previous section, the D_ events are
considered controllable.

Figure 7: filling system LProc with specifications EProcA and EProcB (left to right)

We propose to synthesise a controller right at this stage to effectively get rid
of the low-level filling events A, B, a and b and to reduce the relevant state count.
Along the same line of thought as in the previous section, the luafaudes script
process.lua implements the below stages.

(i) Obtain an overall plant model and an overall specification by

LProduct = HTransAbs || LProc
EProduct = EProcA || EProcB

(i) Augment LProduct by D_-self-loops.

(iii) Compute the supremal controllable sublanguage, denote the realisation by
KProduct. The script reports a state count of 896.

(iv) Test whether X; = {S2, R, D1, D2, D3, S3} is an adequate alphabet to
obtain an abstraction by natural projection. As it turns out, the natural
observer condition is satisfied. After state minimisation, the realisation
exhibits 192 states. This result is referred to a HProduct.

We did not inspect the automata in detail, but we expect from the state count that
HProduct is effectively identical to HTransport with the X-transitions substituted
by D_-transitions.

Acknowledgement and request buffers

The factory management places orders P1, P2 and P3 when the container enters the
bottling station and expects acknowledgement when a container leaves the station.
This can be arranged by two FIFO-buffers.

The order buffer is fed P_ events and outputs them by enabling the oldest
corresponding D__ event. The depth of this buffer should be three or four, depending
how one reads “orders placed on container entry”. Here, P_ events are considered
uncontrollable plant events which on overflow are rejected from the buffer by a Pl
event. Figures[§|shows the additional plant component LReq and the order buffer
EReqBuf for a reduced variety of products and a reduced depth.

Figure 8: request buffer EReqBuf (two products, depth 2)

The acknowledgement buffer is fed D_-events and outputs them by enabling the
corresponding oldest p_ event. Here, we disable p_-events altogether except after
S3. Since the supervisor controls the execution of p_-events, appropriate execution
priorities ensure prompt acknowledgement. Figures[9]shows the acknowledgement
buffer and the additional specification, again, with for a reduced variety of products
and a reduced depth.

The actual state counts for the plant at hand with three different products are

202 and 121 for an acknowledgement buffer with depth 4 and for a request buffer
with depth 3, respectively. The provided example data includes a luafaudes-script

-10 -

Figure 9: acknowledge buffer EAckBUf (two products, depth 2) and exit specification EEXit

to generate the automata representations in a systematic manner. We do not see an
alternative for the order buffer. For the acknowledgement buffer, however, one may
instead augment the transport system model by tracking the container contents for
the places Place{i} fori =4, 5, 6, 7.

For controller synthesis, we start with the acknowledgement mechanism since
it refers to S3 and we may get rid of this event once acknowledgement has been
implemented. The provided script organises the design as follows.

®

(i)
(iii)

(iv)

(vi)

Use HProduct as abstract plant model and compose the specification EAc-
know:

LAcknow = Hproduct
EAcknow = EAckBuUf || EExit.

Augment LAcknow by p_-self-loops.

Compute the supremal controllable sublanguage, denote the realisation by
KAcknow. The script reports a state count of 4480.

An abstraction of KAcknow for the purpose at hand only needs to rep-
resent the fact that any D_-event will become eventually enabled. Thus,
Zhi = {D1, D2, D3} would be a first guess for a high-level alphabet. This,
however, leads to a single state which in the setting of plain supervisory con-
trol would allow for supervisors that disable the three products altogether
and, hence, provoke a blocking situation. The next best choice is to add
the uncontrollable sensor event S2, i.e., we use Xy; = {S2, D1, D2, D3} to
obtain the projection HAcknow with a state count of 10. It passes the test
provided by Moor| (2014). It is, however, not a natural observer. The script
demonstrates that a natural observer can be obtained by adding another
event, namely R.

Using HAcknow as plant, and applying the usual procedure for the spec-

-11 -

ification EReqgBuf, we obtain the supremal closed-loop behaviour with
realisation KRequest at a state count of 2020. It turns out identical to the
product of plant and specification. Hence, we can alternatively use the
specification as a supervisor. E]

The overall supervisor consists of the components HTransport, KProduct, KAc-
know and KRequest, to be executed based on parallel-composition semantics with
some refinements required to accommodate the technological set up.

4 Closed-Loop Configuration

We give instructions on how to run a closed-loop simulation using simfaudes
to implement the controller. simfaudes is a command-line tool to simulate the
behaviour of finite automata with the option to synchronise with external hard- or
software. The tool is part of the 1ibFAUDES software package, with documentation
at www.rt.techfak. fau.de/FGdes/faudes/reference/simulator_index.
html. For convenience, simfaudes is also distributed together with the plant
simulator FtcPlant.

For the purpose at hand, a configuration of simfaudes consists of two files.
The first file refers to the supervisor components that are to be simulated and to an
attributed list of events. Here, the attributes are used to resolve ambiguities, i.e.,
when more than one event is enabled, which one to execute and at which physical
time to do so. To this end, the provided example data includes the configuration
file ftcsuper. sim with the below contents.

Simulator configuration ftcsuper.sim

<Executor>

<Generators>

<!—— run my supervisors ——>
"htransport.gen"
"kproduct.gen"

"kacknow . gen"

"krequest.gen"

</ Generators>

<SimEvents>

<!—— prefer feed over roundabout ——>
V <Priority> 10 </Priority>

R <Priority> 5 </Priority>

There is a subtle catch here: buffer overflow requires Pl to preempt P1, P2 and P3. The provided
script circumvents this issue by effectively taking P_-events as controllable. Thus, the result requires
verification in that P1, P2 and P3 are indeed only disabled in favour of PI.

-12 -

www.rt.techfak.fau.de/FGdes/faudes/reference/simulator_index.html
www.rt.techfak.fau.de/FGdes/faudes/reference/simulator_index.html

<!=— do not miss high—level feedback ——>
pl <Priority> 20 </Priority>

p2 <Priority> 20 </Priority>

p3 <Priority> 20 </Priority>
</SimEvents>

</ Executor>

The generators to simulate are given as filenames to reside in the filesystem next
to the configuration file. They have been synthesised with the scripts outlined in
the previous sections and are included with the example data. The default priority
of each event is zero, if more than one event is enabled the highest priority wins.
The proposed configuration imposes no timing constrains, transitions are executed
immediately.

The second configuration file is optional and sets up how simfaudes is meant
to synchronise with external devices. For the use case at hand, we configure
simfaudes to synchronise events with the plant simulator FtcPlant via the TCP/IP
based Simplenet protocol. This is done with the additional device configuration
file ftcsuper.dev.

Device configuration ftcsuper.dev

<SimplenetDevice name="Supervisor">

<TimeScale value="1000"/>
<ServerAddress value="localhost:40001"/>
<Network name="FtcLoop">

<Node name="Plant"/>

<Node name="Supervisor"/>

</Network>

<EventConfiguration>

<!=— physical actuator/sensor events ——>
<Event name="V" iotype="output"/>
<Event name="R" iotype="output"/>
<Event name="RR" iotype="output"/>
<Event name="r1" iotype="input"/>
<Event name="S1" iotype="input"/>
<Event name="S2" iotype="input"/>
<Event name="S3" iotype="input"/>
<Event name="A" iotype="output"/>
<Event name="a" iotype="input"/>
<Event name="B" iotype="output"/>
<Event name="b" iotype="input"/>
<Event name="f" iotype="input"/>
<!—— factory management events ——>
<Event name="P1" iotype="input"/>
<Event name="P2" iotype="input"/>

-13 -

<Event name="P3" iotype="input"/>

<Event name="pl" iotype="output"/>
<Event name="p2" iotype="output" />
<Event name="p3" iotype="output"/>
<Event name="1" iotype="output"/>

</EventConfiguration>
</SimplenetDevice>

Events tagged with iotype="output" will be executed by simfaudes as
soon as they are enabled and according to their respective priority. The plant
simulation FtcPlant will connect to simfaudes on TCP port 40001 to receive
notifications whenever simfaudes executes an output-event. You can connect to
the same port (by e.g. telnet or nc) to observe the notifications. Vice versa,
simfaudes will never execute iotype="1input" unless being notified by a server.
On start-up, simfaudes will search for servers via UDP broadcast. It will discover
that FtcPlant provides notifications on TCP port 40000 and will subscribe for
relevant input events.

To run simfaudes with the provided configuration files, enter the following at
the command prompt.

> ¢d ~/FTCNOMINAL
> ~/LIBFAUDES_BIN/simfaudes —dr —-d ftcsuper.dev ftcsuper.sim

Again, ~/FTCNOMINAL is to be substituted by the location of the example data
that comes with FicPlant and ~/LIBFAUDES_BIN should point to the executable
iomonitor.

The 1ibFAUDES GUI DESTool also provides means to simulate the supervisor
in closed-loop configuration. Figure [I0]shows DESTool’s animation-tab with pro-
jectfile ftcsuper.pro loaded. DESTool is distributed as developer preview via
the FGDES homepage with documentation available at www.rt.techfak.fau,
de/FGdes/destool.

Summary

FGDES distributes the animated plant simulation FtcPlant of a bottling station
to serve as a test case for design methods in supervisory control. The simulator
was originally motivated by an in-house benchmark, however, we believe that it
may be useful in general and therefore provide documentation by this report. For
demonstration purposes, the report also provides a basic solution in that it proposes
component models, specifications and a controller design. If you plan to use our
simulator, do not hesitate to ask for technical support. And please forward your

- 14 -

www.rt.techfak.fau.de/FGdes/destool
www.rt.techfak.fau.de/FGdes/destool

Variables Script Animation
System State
Generator State

htransport7p "

kproduct "
kacknow "
Step No. 0
Execute Transition/Time
Enabled Disabled
P1 D1
S1 r
5: start simulation P2 v 4: number of steps
to simulate
Exec. Steps 100
Exec. Prop. wait forever
3: verify connection
2: connect to FtcPlant BLOEEL i with FtcPlant
Status: up and running —
Stop Reset

1: reset automata
to initial state Controls
Init. Step Revert Configure ¥

Figure 10: running the supervisor by DESTool

controller design, which we can package with a future revision of FtcPlant to
promote your solution.

References

C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, second edition, 2008.

H. Cho and S. I. Marcus. On supremal languages of classes of sublanguages
that arise in supervisor synthesis problems with partial observation. Maths. of
Control, Signals & Systems, 2:47-69, 1989.

F. Lin and W. M. Wonham. On observability of discrete-event systems. Information
Sciences, 44:173-198, 1988.

T. Moor. Natural projections for the synthesis of non-conflicting supervisory con-
trollers. In Workshop on Discrete Event Systems (WODES), Paris, 2014.

P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77:81-98, 1989.

-15-

Th. Wittmann. Abstraction based controller design for discrete event systems: an
application example. Interner Bericht Nr. 8, 2012.

K. C. Wong and W. M. Wonham. Hierarchical control of discrete-event systems.
Discrete Event Dynamic Systems: Theory and Applications, 1996.

	Physical Plant and Simulation
	Transport System
	Filling System and Factory Management
	Closed-Loop Configuration

